Spaces:
Running
Running
File size: 34,318 Bytes
7d7268b 88f2a10 43656b3 7d7268b 43656b3 6109248 43656b3 6803948 7d7268b 591d755 7d7268b 88f2a10 43656b3 6109248 7d7268b 88f2a10 7d7268b 9f6abf4 7d7268b 6a51e6d 7d7268b 9f6abf4 7d7268b 9f6abf4 7d7268b 9f6abf4 7d7268b 9f6abf4 7d7268b 64125ec 88f2a10 64125ec 88f2a10 64125ec 88f2a10 6109248 6803948 88f2a10 64125ec 7d7268b 78b57a9 7d7268b 6a51e6d 64125ec 88f2a10 64125ec 6109248 64125ec 6109248 88f2a10 64125ec 88f2a10 64125ec 88f2a10 6109248 88f2a10 7d7268b 6a51e6d 64125ec 6a51e6d 7d7268b ed54e20 7d7268b 43656b3 7d7268b 64125ec 6109248 7d7268b ed54e20 7d7268b 43656b3 7d7268b 6803948 43656b3 b25a877 591d755 78b57a9 591d755 43656b3 b25a877 78b57a9 b25a877 78b57a9 591d755 43656b3 591d755 43656b3 591d755 78b57a9 b25a877 78b57a9 591d755 7d7268b 1688aaf 6109248 1688aaf 6109248 64125ec ed54e20 6a51e6d 6109248 6a51e6d 88f2a10 6803948 7d7268b 6803948 7d7268b 88f2a10 7d7268b 6109248 7d7268b 6109248 7d7268b 6a51e6d 6109248 6a51e6d 7d7268b 88f2a10 7d7268b 88f2a10 ed54e20 6109248 7d7268b ed54e20 1688aaf 6109248 7d7268b 6a51e6d 579bdeb 6a51e6d 6109248 6a51e6d 7d7268b 6a51e6d 579bdeb 6a51e6d 6109248 6a51e6d 7d7268b 1688aaf 7d7268b ed54e20 7d7268b 88f2a10 579bdeb 43656b3 64125ec 6109248 7d7268b 579bdeb 64125ec 579bdeb 78b57a9 7d7268b 6109248 579bdeb 7d7268b 88f2a10 7d7268b 579bdeb 7d7268b 88f2a10 ed54e20 579bdeb 6109248 7d7268b 579bdeb 7d7268b 579bdeb ed54e20 579bdeb 6109248 7d7268b 78b57a9 7d7268b 6109248 7d7268b ed54e20 7d7268b ed54e20 78b57a9 7d7268b ed54e20 78b57a9 ed54e20 78b57a9 7d7268b bf7288d 12a36fb bf7288d 6109248 bf7288d 7d7268b bf7288d 6109248 bf7288d 6109248 bf7288d 7d7268b bf7288d 6109248 bf7288d 6109248 bf7288d 7d7268b bf7288d 12a36fb bf7288d 6109248 bf7288d 7d7268b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 |
import csv
import itertools
import random
import json
import os
import uuid
from datetime import datetime, timedelta
from io import BytesIO
from typing import Dict, List, Tuple, Optional
import gradio as gr
try:
from huggingface_hub import HfApi
except Exception: # optional dependency at runtime
HfApi = None # type: ignore
BASE_DIR = os.path.dirname(__file__)
PERSIST_DIR = os.environ.get("PERSIST_DIR", "/data")
# Persistent local storage inside HF Spaces
PERSIST_DIR = os.environ.get("PERSIST_DIR", "/data")
# Evaluation knobs (can be overridden via env vars)
MIN_RATERS_PER_PAIR = int(os.environ.get("MIN_RATERS_PER_PAIR", 20))
BATCH_SIZE = int(os.environ.get("BATCH_SIZE", 20))
RELOAD_EVERY = int(os.environ.get("RELOAD_EVERY", 5))
REPEAT_RATE = float(os.environ.get("REPEAT_RATE", 0.05)) # fraction of repeats within batch
REPEAT_MIN_HOURS = float(os.environ.get("REPEAT_MIN_HOURS", 24))
FAST_MIN_SEC = float(os.environ.get("FAST_MIN_SEC", 2.0))
TASK_CONFIG = {
"Scene Composition & Object Insertion": {
"folder": "scene_composition_and_object_insertion",
"score_fields": [
("physical_interaction_fidelity_score", "物理交互保真度 (Physical Interaction Fidelity)"),
("optical_effect_accuracy_score", "光学效应准确度 (Optical Effect Accuracy)"),
("semantic_functional_alignment_score", "语义/功能对齐度 (Semantic/Functional Alignment)"),
("overall_photorealism_score", "整体真实感 (Overall Photorealism)"),
],
},
}
def _csv_path_for_task(task_name: str, filename: str) -> str:
folder = TASK_CONFIG[task_name]["folder"]
return os.path.join(BASE_DIR, folder, filename)
def _persist_csv_path_for_task(task_name: str) -> str:
folder = TASK_CONFIG[task_name]["folder"]
return os.path.join(PERSIST_DIR, folder, "evaluation_results.csv")
def _resolve_image_path(path: str) -> str:
return path if os.path.isabs(path) else os.path.join(BASE_DIR, path)
def _file_exists_under_base(rel_or_abs_path: str) -> bool:
"""Check if file exists, resolving relative paths under BASE_DIR."""
check_path = rel_or_abs_path if os.path.isabs(rel_or_abs_path) else os.path.join(BASE_DIR, rel_or_abs_path)
return os.path.exists(check_path)
def _load_task_rows(task_name: str) -> List[Dict[str, str]]:
csv_path = _csv_path_for_task(task_name, "results.csv")
if not os.path.exists(csv_path):
raise FileNotFoundError(f"未找到任务 {task_name} 的结果文件: {csv_path}")
with open(csv_path, newline="", encoding="utf-8") as csv_file:
reader = csv.DictReader(csv_file)
rows: List[Dict[str, str]] = []
for row in reader:
# Trim whitespaces in all string fields to avoid path/key mismatches
cleaned = {k.strip(): (v.strip() if isinstance(v, str) else v) for k, v in row.items()}
rows.append(cleaned)
return rows
def _build_image_pairs(rows: List[Dict[str, str]], task_name: str) -> List[Dict[str, str]]:
grouped: Dict[Tuple[str, str], List[Dict[str, str]]] = {}
for row in rows:
key = (row["test_id"], row["org_img"])
grouped.setdefault(key, []).append(row)
pairs: List[Dict[str, str]] = []
folder = TASK_CONFIG[task_name]["folder"]
for (test_id, org_img), entries in grouped.items():
for model_a, model_b in itertools.combinations(entries, 2):
if model_a["model_name"] == model_b["model_name"]:
continue
org_path = os.path.join(folder, org_img)
path_a = os.path.join(folder, model_a["path"])
path_b = os.path.join(folder, model_b["path"])
# Validate existence to avoid UI errors
if not (_file_exists_under_base(org_path) and _file_exists_under_base(path_a) and _file_exists_under_base(path_b)):
try:
print("[VisArena] Skipping invalid paths for test_id=", test_id, {
"org": org_path,
"a": path_a,
"b": path_b,
})
except Exception:
pass
continue
pair = {
"test_id": test_id,
"org_img": org_path,
"model1_name": model_a["model_name"],
"model1_res": model_a["res"],
"model1_path": path_a,
"model2_name": model_b["model_name"],
"model2_res": model_b["res"],
"model2_path": path_b,
}
pairs.append(pair)
def sort_key(item: Dict[str, str]):
test_id = item["test_id"]
try:
test_id_key = int(test_id)
except ValueError:
test_id_key = test_id
return (test_id_key, item["model1_name"], item["model2_name"])
pairs.sort(key=sort_key)
return pairs
def _read_eval_counts(task_name: str) -> Dict[Tuple[str, frozenset, str], int]:
"""Global counts per pair key across all annotators."""
counts: Dict[Tuple[str, frozenset, str], int] = {}
csv_path = _persist_csv_path_for_task(task_name)
if not os.path.exists(csv_path):
return counts
try:
with open(csv_path, newline="", encoding="utf-8") as f:
reader = csv.DictReader(f)
for r in reader:
tid = str(r.get("test_id", "")).strip()
m1 = str(r.get("model1_name", "")).strip()
m2 = str(r.get("model2_name", "")).strip()
org = str(r.get("org_img", "")).strip()
if not (tid and m1 and m2 and org):
continue
key = (tid, frozenset({m1, m2}), org)
counts[key] = counts.get(key, 0) + 1
except Exception:
pass
return counts
def _read_user_done_keys(task_name: str, annotator_id: str) -> set:
"""Keys already evaluated by the given annotator.
If CSV has no annotator_id column (legacy rows), those rows are ignored for per-user filtering.
"""
keys = set()
if not annotator_id:
return keys
csv_path = _persist_csv_path_for_task(task_name)
if not os.path.exists(csv_path):
return keys
try:
with open(csv_path, newline="", encoding="utf-8") as f:
reader = csv.DictReader(f)
for r in reader:
if str(r.get("annotator_id", "")).strip() != str(annotator_id).strip():
continue
tid = str(r.get("test_id", "")).strip()
m1 = str(r.get("model1_name", "")).strip()
m2 = str(r.get("model2_name", "")).strip()
org = str(r.get("org_img", "")).strip()
if tid and m1 and m2 and org:
keys.add((tid, frozenset({m1, m2}), org))
except Exception:
pass
return keys
def _read_user_last_times(task_name: str, annotator_id: str) -> Dict[Tuple[str, frozenset, str], datetime]:
"""Return the user's last evaluation datetime per pair key."""
last: Dict[Tuple[str, frozenset, str], datetime] = {}
if not annotator_id:
return last
csv_path = _persist_csv_path_for_task(task_name)
if not os.path.exists(csv_path):
return last
try:
with open(csv_path, newline="", encoding="utf-8") as f:
reader = csv.DictReader(f)
for r in reader:
if str(r.get("annotator_id", "")).strip() != str(annotator_id).strip():
continue
tid = str(r.get("test_id", "")).strip()
m1 = str(r.get("model1_name", "")).strip()
m2 = str(r.get("model2_name", "")).strip()
org = str(r.get("org_img", "")).strip()
dt = str(r.get("eval_date", "")).strip() or str(r.get("submit_ts", "")).strip()
if not (tid and m1 and m2 and org and dt):
continue
key = (tid, frozenset({m1, m2}), org)
try:
t = datetime.fromisoformat(dt)
except Exception:
continue
if key not in last or t > last[key]:
last[key] = t
except Exception:
pass
return last
def _schedule_round_robin_by_test_id(pairs: List[Dict[str, str]], seed: Optional[int] = None) -> List[Dict[str, str]]:
"""Interleave pairs across test_ids for balanced coverage; shuffle within each group.
"""
groups: Dict[str, List[Dict[str, str]]] = {}
for p in pairs:
groups.setdefault(p["test_id"], []).append(p)
rnd = random.Random(seed)
for lst in groups.values():
rnd.shuffle(lst)
# round-robin drain
ordered: List[Dict[str, str]] = []
while True:
progressed = False
for tid in sorted(groups.keys(), key=lambda x: (int(x) if x.isdigit() else x)):
if groups[tid]:
ordered.append(groups[tid].pop())
progressed = True
if not progressed:
break
return ordered
def load_task(task_name: str, annotator_id: str = ""):
if not task_name:
raise gr.Error("Please select a task first.")
rows = _load_task_rows(task_name)
pairs_all = _build_image_pairs(rows, task_name)
# Per-user filtering and global balancing
def key_of(p: Dict[str, str]):
return (p["test_id"], frozenset({p["model1_name"], p["model2_name"]}), p["org_img"])
user_done_keys = _read_user_done_keys(task_name, annotator_id)
user_last_times = _read_user_last_times(task_name, annotator_id)
global_counts = _read_eval_counts(task_name)
# Main eligible set: not done by this user and below min raters threshold
pairs = [
p for p in pairs_all
if key_of(p) not in user_done_keys and global_counts.get(key_of(p), 0) < MIN_RATERS_PER_PAIR
]
# Balanced schedule: prioritize low-count pairs, and within same count do round-robin by test_id
seed_env = os.environ.get("SCHEDULE_SEED")
seed = int(seed_env) if seed_env and seed_env.isdigit() else None
def count_of(p: Dict[str, str]):
return global_counts.get(key_of(p), 0)
buckets: Dict[int, List[Dict[str, str]]] = {}
for p in sorted(pairs, key=count_of):
buckets.setdefault(count_of(p), []).append(p)
ordered: List[Dict[str, str]] = []
for c in sorted(buckets.keys()):
ordered.extend(_schedule_round_robin_by_test_id(buckets[c], seed=seed))
pairs = ordered
# Deterministic rotation by user's progress to avoid always starting from the same pairs
try:
elig_keys = [key_of(p) for p in pairs]
progress = len([k for k in user_done_keys if k in elig_keys])
if pairs:
rot = progress % len(pairs)
pairs = pairs[rot:] + pairs[:rot]
except Exception:
pass
# Limit batch size
main_batch = pairs[: max(0, BATCH_SIZE)]
# Small proportion of spaced repeats for test-retest
repeats: List[Dict[str, str]] = []
try:
repeat_target = int(max(0, round(BATCH_SIZE * REPEAT_RATE)))
if repeat_target > 0 and user_last_times:
min_time = datetime.utcnow() - timedelta(hours=REPEAT_MIN_HOURS)
candidates = [k for k, t in user_last_times.items() if t < min_time]
def find_pair_from_key(k):
tid, names, org = k
for p in pairs_all:
if p["test_id"] == tid and p["org_img"] == org and frozenset({p["model1_name"], p["model2_name"]}) == names:
return p
return None
picked = 0
used_keys = {key_of(p) for p in main_batch}
for k in candidates:
if picked >= repeat_target:
break
p = find_pair_from_key(k)
if not p:
continue
if key_of(p) in used_keys:
continue
repeats.append(p)
used_keys.add(key_of(p))
picked += 1
except Exception:
pass
pairs = main_batch + repeats
# Assign A/B order to counteract position bias: alternate after scheduling
for idx, p in enumerate(pairs):
p["swap"] = bool(idx % 2) # True -> A=B's image; False -> A=A's image
if not pairs:
try:
print("[VisArena] No pending pairs.")
print("[VisArena] total_pairs=", len(pairs_all))
print("[VisArena] already_done_by_user=", len(user_done_keys))
print("[VisArena] persist_csv=", _persist_csv_path_for_task(task_name))
except Exception:
pass
# Return empty list; UI will render an informative message instead of erroring out
return []
return pairs
def _format_pair_header(_pair: Dict[str, str]) -> str:
# Mask model identity in UI; keep header neutral
return ""
def _build_eval_row(pair: Dict[str, str], scores: Dict[str, int]) -> Dict[str, object]:
row = {
"eval_date": datetime.utcnow().isoformat(),
"test_id": pair["test_id"],
"model1_name": pair["model1_name"],
"model2_name": pair["model2_name"],
"org_img": pair["org_img"],
"model1_res": pair["model1_res"],
"model2_res": pair["model2_res"],
"model1_path": pair["model1_path"],
"model2_path": pair["model2_path"],
}
row.update(scores)
return row
def _local_persist_csv_path(task_name: str) -> str:
folder = TASK_CONFIG[task_name]["folder"]
return os.path.join(PERSIST_DIR, folder, "evaluation_results.csv")
def _append_local_persist_csv(task_name: str, row: Dict[str, object]) -> bool:
csv_path = _local_persist_csv_path(task_name)
os.makedirs(os.path.dirname(csv_path), exist_ok=True)
csv_exists = os.path.exists(csv_path)
fieldnames = [
"eval_date",
"annotator_id",
"session_id",
"view_start_ts",
"submit_ts",
"duration_sec",
"is_fast",
"is_flat_a",
"is_flat_b",
"test_id",
"model1_name",
"model2_name",
"org_img",
"model1_res",
"model2_res",
"model1_path",
"model2_path",
"model1_physical_interaction_fidelity_score",
"model1_optical_effect_accuracy_score",
"model1_semantic_functional_alignment_score",
"model1_overall_photorealism_score",
"model2_physical_interaction_fidelity_score",
"model2_optical_effect_accuracy_score",
"model2_semantic_functional_alignment_score",
"model2_overall_photorealism_score",
]
try:
with open(csv_path, "a", newline="", encoding="utf-8") as csv_file:
writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
if not csv_exists:
writer.writeheader()
writer.writerow(row)
return True
except Exception:
return False
def _upload_eval_record_to_dataset(task_name: str, row: Dict[str, object]) -> Tuple[bool, str]:
"""Upload a single-eval JSONL record to a dataset repo.
Repo is taken from EVAL_REPO_ID env or defaults to 'peiranli0930/VisEval'.
Returns (ok, message) for UI feedback and debugging.
"""
if HfApi is None:
return False, "huggingface_hub not installed"
token = os.environ.get("HF_TOKEN") or os.environ.get("HUGGINGFACEHUB_API_TOKEN")
repo_id = os.environ.get("EVAL_REPO_ID", "peiranli0930/VisEval")
if not token:
return False, "Missing write token (HF_TOKEN/HUGGINGFACEHUB_API_TOKEN)"
if not repo_id:
return False, "EVAL_REPO_ID is not set"
try:
from huggingface_hub import CommitOperationAdd
api = HfApi(token=token)
date_prefix = datetime.utcnow().strftime("%Y-%m-%d")
folder = TASK_CONFIG[task_name]["folder"]
uid = str(uuid.uuid4())
path_in_repo = f"submissions/{folder}/{date_prefix}/{uid}.jsonl"
payload = (json.dumps(row, ensure_ascii=False) + "\n").encode("utf-8")
operations = [CommitOperationAdd(path_in_repo=path_in_repo, path_or_fileobj=BytesIO(payload))]
api.create_commit(
repo_id=repo_id,
repo_type="dataset",
operations=operations,
commit_message=f"Add eval {folder} {row.get('test_id')} {uid}",
)
return True, f"Uploaded: {repo_id}/{path_in_repo}"
except Exception as e:
# Print to logs for debugging in Space
try:
print("[VisArena] Upload to dataset failed:", repr(e))
except Exception:
pass
return False, f"Exception: {type(e).__name__}: {e}"
def _extract_annotator_id(request: Optional[gr.Request]) -> str:
"""Best-effort extraction of a stable user identifier on HF Spaces.
Priority: request.username -> X-Forwarded-User header -> cookies/user-id -> env/session fallback.
"""
try:
if request is None:
return ""
# gradio>=4.0 may set username for Spaces-authenticated users
username = getattr(request, "username", None)
if username:
return str(username)
headers = getattr(request, "headers", {}) or {}
for k in ("x-forwarded-user", "x-user", "x-hub-user"):
v = headers.get(k) or headers.get(k.upper())
if v:
return str(v)
except Exception:
pass
return ""
def on_task_change(task_name: str, _state_pairs: List[Dict[str, str]], request: gr.Request,
view_started_at: float, session_quota: int, reload_count: int, session_id: str):
annotator_id = _extract_annotator_id(request)
if not annotator_id:
default_scores = [3, 3, 3, 3, 3, 3, 3, 3]
return (
[],
gr.update(value=0, minimum=0, maximum=0, visible=False),
gr.update(value=""),
gr.update(value=None),
gr.update(value=None),
gr.update(value=None),
*default_scores,
gr.update(value="请先登录你的 Hugging Face 账户后再开始评测。"),
float(datetime.utcnow().timestamp()),
BATCH_SIZE,
0,
session_id or str(uuid.uuid4()),
)
pairs = load_task(task_name, annotator_id)
# Defaults for A and B (8 sliders total)
default_scores = [3, 3, 3, 3, 3, 3, 3, 3]
if not pairs:
return (
[],
gr.update(value=0, minimum=0, maximum=0, visible=False),
gr.update(value=""),
gr.update(value=None),
gr.update(value=None),
gr.update(value=None),
*default_scores,
gr.update(value="当前没有待评对(或已达到最小标注阈值)。"),
float(datetime.utcnow().timestamp()),
BATCH_SIZE,
0,
session_id or str(uuid.uuid4()),
)
pair = pairs[0]
header = _format_pair_header(pair)
# Pick display order according to swap flag
a_path = pair["model2_path"] if pair.get("swap") else pair["model1_path"]
b_path = pair["model1_path"] if pair.get("swap") else pair["model2_path"]
max_index = max(0, len(pairs) - 1)
return (
pairs,
gr.update(value=0, minimum=0, maximum=max_index, visible=(len(pairs) > 1)),
gr.update(value=header),
_resolve_image_path(pair["org_img"]),
_resolve_image_path(a_path),
_resolve_image_path(b_path),
*default_scores,
gr.update(value=f"本批次分配 {len(pairs)} 组;目标每对 {MIN_RATERS_PER_PAIR} 人。"),
float(datetime.utcnow().timestamp()),
BATCH_SIZE,
0,
session_id or str(uuid.uuid4()),
)
def on_pair_navigate(index: int, pairs: List[Dict[str, str]], view_started_at: float):
if not pairs:
# Gracefully no-op when no pairs
return (
gr.update(value=0, minimum=0, maximum=0, visible=False),
gr.update(value=""),
gr.update(value=None),
gr.update(value=None),
gr.update(value=None),
3, 3, 3, 3, # A
3, 3, 3, 3, # B
float(datetime.utcnow().timestamp()),
)
index = int(index)
index = max(0, min(index, len(pairs) - 1))
pair = pairs[index]
header = _format_pair_header(pair)
a_path = pair["model2_path"] if pair.get("swap") else pair["model1_path"]
b_path = pair["model1_path"] if pair.get("swap") else pair["model2_path"]
return (
gr.update(value=index),
gr.update(value=header),
_resolve_image_path(pair["org_img"]),
_resolve_image_path(a_path),
_resolve_image_path(b_path),
3, 3, 3, 3, # A
3, 3, 3, 3, # B
float(datetime.utcnow().timestamp()),
)
def on_submit(
task_name: str,
index: int,
pairs: List[Dict[str, str]],
a_physical_score: int,
a_optical_score: int,
a_semantic_score: int,
a_overall_score: int,
b_physical_score: int,
b_optical_score: int,
b_semantic_score: int,
b_overall_score: int,
request: gr.Request,
view_started_at: float,
session_quota: int,
reload_count: int,
session_id: str,
):
if not task_name:
return (
pairs,
gr.update(value=0),
gr.update(value=""),
gr.update(value=None),
gr.update(value=None),
gr.update(value=None),
3, 3, 3, 3,
3, 3, 3, 3,
gr.update(value="Please select a task first."),
float(datetime.utcnow().timestamp()),
session_quota,
reload_count,
session_id,
)
if not pairs:
return (
pairs,
gr.update(value=0, minimum=0, maximum=0, visible=False),
gr.update(value=""),
gr.update(value=None),
gr.update(value=None),
gr.update(value=None),
3, 3, 3, 3,
3, 3, 3, 3,
gr.update(value="No pending pairs to submit."),
float(datetime.utcnow().timestamp()),
session_quota,
reload_count,
session_id,
)
# Resolve annotator id from request
annotator_id = _extract_annotator_id(request)
pair = pairs[index]
score_map = {
# Model A
"model1_physical_interaction_fidelity_score": int(a_physical_score),
"model1_optical_effect_accuracy_score": int(a_optical_score),
"model1_semantic_functional_alignment_score": int(a_semantic_score),
"model1_overall_photorealism_score": int(a_overall_score),
# Model B
"model2_physical_interaction_fidelity_score": int(b_physical_score),
"model2_optical_effect_accuracy_score": int(b_optical_score),
"model2_semantic_functional_alignment_score": int(b_semantic_score),
"model2_overall_photorealism_score": int(b_overall_score),
}
# Map A/B scores to the correct model columns depending on swap
if pair.get("swap"):
# UI A == model2, UI B == model1
score_map = {
"model1_physical_interaction_fidelity_score": int(b_physical_score),
"model1_optical_effect_accuracy_score": int(b_optical_score),
"model1_semantic_functional_alignment_score": int(b_semantic_score),
"model1_overall_photorealism_score": int(b_overall_score),
"model2_physical_interaction_fidelity_score": int(a_physical_score),
"model2_optical_effect_accuracy_score": int(a_optical_score),
"model2_semantic_functional_alignment_score": int(a_semantic_score),
"model2_overall_photorealism_score": int(a_overall_score),
}
# Build record
row = _build_eval_row(pair, score_map)
row["annotator_id"] = annotator_id
# timing + heuristics
submit_ts = datetime.utcnow()
try:
started = datetime.utcfromtimestamp(float(view_started_at)) if view_started_at else submit_ts
except Exception:
started = submit_ts
duration = max(0.0, (submit_ts - started).total_seconds())
row["view_start_ts"] = started.isoformat()
row["submit_ts"] = submit_ts.isoformat()
row["duration_sec"] = round(duration, 3)
row["is_fast"] = bool(duration < FAST_MIN_SEC)
row["is_flat_a"] = bool(len({int(a_physical_score), int(a_optical_score), int(a_semantic_score), int(a_overall_score)}) == 1)
row["is_flat_b"] = bool(len({int(b_physical_score), int(b_optical_score), int(b_semantic_score), int(b_overall_score)}) == 1)
row["session_id"] = session_id or str(uuid.uuid4())
# Idempotency: check if this pair already evaluated; if so, skip writing
done_keys = _read_user_done_keys(task_name, annotator_id)
eval_key = (pair["test_id"], frozenset({pair["model1_name"], pair["model2_name"]}), pair["org_img"])
if eval_key in done_keys:
ok_local = False
ok_hub, hub_msg = (False, "Skipped duplicate; already evaluated.")
info_prefix = "Skipped duplicate submission."
else:
ok_local = _append_local_persist_csv(task_name, row)
# add key locally for subsequent filtering in this call
if ok_local:
done_keys.add(eval_key)
ok_hub, hub_msg = _upload_eval_record_to_dataset(task_name, row)
info_prefix = "Saved evaluation."
# Recompute remaining pairs by filtering current state against done_keys
def key_of(p: Dict[str, str]):
return (p["test_id"], frozenset({p["model1_name"], p["model2_name"]}), p["org_img"])
remaining_pairs = [p for p in pairs if key_of(p) not in done_keys]
info = f"{info_prefix} Local persistence " + ("succeeded" if ok_local else "skipped/failed") + "."
info += " Dataset upload " + ("succeeded" if ok_hub else "failed") + (f" ({hub_msg})" if hub_msg else "") + "."
# Quota + reload
session_quota = max(0, int(session_quota) - 1)
reload_count = int(reload_count) + 1
# Periodic reload to absorb new results.csv / re-balance
if reload_count >= RELOAD_EVERY:
fresh_pairs = load_task(task_name, annotator_id)
remaining_pairs = fresh_pairs
reload_count = 0
if session_quota <= 0:
return (
[],
gr.update(value=0, minimum=0, maximum=0, visible=False),
gr.update(value=""),
gr.update(value=None),
gr.update(value=None),
gr.update(value=None),
3, 3, 3, 3,
3, 3, 3, 3,
gr.update(value=info + " 本批次已完成 20 组,请刷新页面获取下一批次。"),
float(datetime.utcnow().timestamp()),
session_quota,
reload_count,
row["session_id"],
)
if remaining_pairs:
next_index = min(index, len(remaining_pairs) - 1)
pair = remaining_pairs[next_index]
header = _format_pair_header(pair)
a_path = pair["model2_path"] if pair.get("swap") else pair["model1_path"]
b_path = pair["model1_path"] if pair.get("swap") else pair["model2_path"]
return (
remaining_pairs,
gr.update(value=next_index),
gr.update(value=header),
_resolve_image_path(pair["org_img"]),
_resolve_image_path(a_path),
_resolve_image_path(b_path),
3, 3, 3, 3,
3, 3, 3, 3,
gr.update(value=info + f" Next pair ({next_index + 1}/{len(remaining_pairs)})."),
float(datetime.utcnow().timestamp()),
session_quota,
reload_count,
row["session_id"],
)
# No remaining pairs: clear UI, hide slider, and return updated empty state
return (
[],
gr.update(value=0, minimum=0, maximum=0, visible=False),
gr.update(value=""),
gr.update(value=None),
gr.update(value=None),
gr.update(value=None),
3, 3, 3, 3,
3, 3, 3, 3,
gr.update(value=info + " All pairs completed."),
float(datetime.utcnow().timestamp()),
session_quota,
reload_count,
row["session_id"],
)
with gr.Blocks(title="VisArena Human Evaluation") as demo:
gr.Markdown(
"""
# VisArena Human Evaluation
Please select a task and rate the generated images. Each score ranges from 1 (poor) to 5 (excellent).
"""
)
with gr.Row():
task_selector = gr.Dropdown(
label="Task",
choices=list(TASK_CONFIG.keys()),
interactive=True,
value="Scene Composition & Object Insertion",
)
index_slider = gr.Slider(
label="Pair Index",
value=0,
minimum=0,
maximum=0,
step=1,
interactive=True,
visible=False,
)
pair_state = gr.State([])
# Hidden states for session control and metrics
view_started_at_state = gr.State(0.0)
session_quota_state = gr.State(BATCH_SIZE)
reload_count_state = gr.State(0)
session_id_state = gr.State("")
pair_header = gr.Markdown("")
# Layout: Original on top, two outputs below with their own sliders
with gr.Row():
with gr.Column(scale=12):
orig_image = gr.Image(type="filepath", label="Original", interactive=False)
with gr.Row():
with gr.Column(scale=6):
model1_image = gr.Image(type="filepath", label="Output A", interactive=False)
a_physical_input = gr.Slider(1, 5, value=3, step=1, label="A: Physical Interaction Fidelity")
a_optical_input = gr.Slider(1, 5, value=3, step=1, label="A: Optical Effect Accuracy")
a_semantic_input = gr.Slider(1, 5, value=3, step=1, label="A: Semantic/Functional Alignment")
a_overall_input = gr.Slider(1, 5, value=3, step=1, label="A: Overall Photorealism")
with gr.Column(scale=6):
model2_image = gr.Image(type="filepath", label="Output B", interactive=False)
b_physical_input = gr.Slider(1, 5, value=3, step=1, label="B: Physical Interaction Fidelity")
b_optical_input = gr.Slider(1, 5, value=3, step=1, label="B: Optical Effect Accuracy")
b_semantic_input = gr.Slider(1, 5, value=3, step=1, label="B: Semantic/Functional Alignment")
b_overall_input = gr.Slider(1, 5, value=3, step=1, label="B: Overall Photorealism")
submit_button = gr.Button("Submit Evaluation", variant="primary")
feedback_box = gr.Markdown("")
# Event bindings
task_selector.change(
fn=on_task_change,
inputs=[task_selector, pair_state, view_started_at_state, session_quota_state, reload_count_state, session_id_state],
outputs=[
pair_state,
index_slider,
pair_header,
orig_image,
model1_image,
model2_image,
a_physical_input,
a_optical_input,
a_semantic_input,
a_overall_input,
b_physical_input,
b_optical_input,
b_semantic_input,
b_overall_input,
feedback_box,
view_started_at_state,
session_quota_state,
reload_count_state,
session_id_state,
],
)
index_slider.release(
fn=on_pair_navigate,
inputs=[index_slider, pair_state, view_started_at_state],
outputs=[
index_slider,
pair_header,
orig_image,
model1_image,
model2_image,
a_physical_input,
a_optical_input,
a_semantic_input,
a_overall_input,
b_physical_input,
b_optical_input,
b_semantic_input,
b_overall_input,
view_started_at_state,
],
)
submit_button.click(
fn=on_submit,
inputs=[
task_selector,
index_slider,
pair_state,
a_physical_input,
a_optical_input,
a_semantic_input,
a_overall_input,
b_physical_input,
b_optical_input,
b_semantic_input,
b_overall_input,
view_started_at_state,
session_quota_state,
reload_count_state,
session_id_state,
],
outputs=[
pair_state,
index_slider,
pair_header,
orig_image,
model1_image,
model2_image,
a_physical_input,
a_optical_input,
a_semantic_input,
a_overall_input,
b_physical_input,
b_optical_input,
b_semantic_input,
b_overall_input,
feedback_box,
view_started_at_state,
session_quota_state,
reload_count_state,
session_id_state,
],
)
# Auto-load default task on startup
demo.load(
fn=on_task_change,
inputs=[task_selector, pair_state, view_started_at_state, session_quota_state, reload_count_state, session_id_state],
outputs=[
pair_state,
index_slider,
pair_header,
orig_image,
model1_image,
model2_image,
a_physical_input,
a_optical_input,
a_semantic_input,
a_overall_input,
b_physical_input,
b_optical_input,
b_semantic_input,
b_overall_input,
feedback_box,
view_started_at_state,
session_quota_state,
reload_count_state,
session_id_state,
],
)
if __name__ == "__main__":
demo.queue().launch()
|