Spaces:
Running
on
Zero
Running
on
Zero
Advik
commited on
Commit
·
56e3ef5
1
Parent(s):
3c768ef
cuda fixes
Browse files- __pycache__/software.cpython-311.pyc +0 -0
- software.py +18 -12
__pycache__/software.cpython-311.pyc
ADDED
|
Binary file (12.7 kB). View file
|
|
|
software.py
CHANGED
|
@@ -98,26 +98,19 @@ class BiScope:
|
|
| 98 |
|
| 99 |
class Software:
|
| 100 |
def __init__(self):
|
| 101 |
-
self.device_div = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 102 |
-
if torch.cuda.device_count() > 1:
|
| 103 |
-
self.device_bi = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
|
| 104 |
-
else:
|
| 105 |
-
self.device_bi = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 106 |
-
|
| 107 |
self.token = os.getenv("HF_TOKEN")
|
| 108 |
|
| 109 |
self.div_tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b", use_fast=False, trust_remote_code=True, use_auth_token=self.token)
|
| 110 |
self.div_model = AutoModelForCausalLM.from_pretrained(
|
| 111 |
-
"tiiuae/falcon-7b",
|
| 112 |
)
|
| 113 |
|
| 114 |
self.bi_tokenizer = AutoTokenizer.from_pretrained("google/gemma-1.1-2b-it", use_fast=False, trust_remote_code=True, use_auth_token=self.token)
|
| 115 |
self.bi_model = AutoModelForCausalLM.from_pretrained(
|
| 116 |
-
"google/gemma-1.1-2b-it",
|
| 117 |
)
|
| 118 |
|
| 119 |
-
|
| 120 |
-
self.biscope = BiScope(self.bi_model, self.bi_tokenizer, self.device_bi)
|
| 121 |
self.model_path = Path(__file__).parent / "model.json"
|
| 122 |
|
| 123 |
self.model = xgb.XGBClassifier()
|
|
@@ -134,8 +127,21 @@ class Software:
|
|
| 134 |
|
| 135 |
@spaces.GPU
|
| 136 |
def evaluate(self, text):
|
| 137 |
-
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
for f in biscope_features:
|
| 141 |
diveye_features.append(f)
|
|
|
|
| 98 |
|
| 99 |
class Software:
|
| 100 |
def __init__(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
self.token = os.getenv("HF_TOKEN")
|
| 102 |
|
| 103 |
self.div_tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b", use_fast=False, trust_remote_code=True, use_auth_token=self.token)
|
| 104 |
self.div_model = AutoModelForCausalLM.from_pretrained(
|
| 105 |
+
"tiiuae/falcon-7b", torch_dtype=torch.float16, trust_remote_code=True, use_auth_token=self.token
|
| 106 |
)
|
| 107 |
|
| 108 |
self.bi_tokenizer = AutoTokenizer.from_pretrained("google/gemma-1.1-2b-it", use_fast=False, trust_remote_code=True, use_auth_token=self.token)
|
| 109 |
self.bi_model = AutoModelForCausalLM.from_pretrained(
|
| 110 |
+
"google/gemma-1.1-2b-it", torch_dtype=torch.float16, trust_remote_code=True, use_auth_token=self.token
|
| 111 |
)
|
| 112 |
|
| 113 |
+
|
|
|
|
| 114 |
self.model_path = Path(__file__).parent / "model.json"
|
| 115 |
|
| 116 |
self.model = xgb.XGBClassifier()
|
|
|
|
| 127 |
|
| 128 |
@spaces.GPU
|
| 129 |
def evaluate(self, text):
|
| 130 |
+
# Load models to GPUs.
|
| 131 |
+
device_div = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 132 |
+
if torch.cuda.device_count() > 1:
|
| 133 |
+
device_bi = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
|
| 134 |
+
|
| 135 |
+
if not next(self.div_model.parameters()).is_cuda:
|
| 136 |
+
self.div_model = self.div_model.to(device_div)
|
| 137 |
+
if not next(self.bi_model.parameters()).is_cuda:
|
| 138 |
+
self.bi_model = self.bi_model.to(device_bi)
|
| 139 |
+
|
| 140 |
+
diveye = Diversity(self.div_model, self.div_tokenizer, device_div)
|
| 141 |
+
biscope = BiScope(self.bi_model, self.bi_tokenizer, self.device_bi)
|
| 142 |
+
|
| 143 |
+
diveye_features = diveye.compute_features(text)
|
| 144 |
+
biscope_features = biscope.detect_single_sample(text)
|
| 145 |
|
| 146 |
for f in biscope_features:
|
| 147 |
diveye_features.append(f)
|