from keras.models import load_model from PIL import Image, ImageOps #Install pillow instead of PIL import numpy as np # Disable scientific notation for clarity np.set_printoptions(suppress=True) # Load the model model = load_model('keras_Model.h5', compile=False) # Load the labels class_names = open('labels.txt', 'r').readlines() # Create the array of the right shape to feed into the keras model # The 'length' or number of images you can put into the array is # determined by the first position in the shape tuple, in this case 1. data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32) # Replace this with the path to your image image = Image.open('').convert('RGB') #resize the image to a 224x224 with the same strategy as in TM2: #resizing the image to be at least 224x224 and then cropping from the center size = (224, 224) image = ImageOps.fit(image, size, Image.Resampling.LANCZOS) #turn the image into a numpy array image_array = np.asarray(image) # Normalize the image normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1 # Load the image into the array data[0] = normalized_image_array # run the inference prediction = model.predict(data) index = np.argmax(prediction) class_name = class_names[index] confidence_score = prediction[0][index] print('Class:', class_name, end='') print('Confidence score:', confidence_score)