Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,777 Bytes
ead1d74 72c4879 ead1d74 b843ea0 ead1d74 b843ea0 ead1d74 b843ea0 ead1d74 b843ea0 ead1d74 b843ea0 ead1d74 b843ea0 ead1d74 b843ea0 ead1d74 b843ea0 ead1d74 b843ea0 ead1d74 bab4acd ead1d74 bab4acd ead1d74 bab4acd ead1d74 bab4acd ead1d74 bab4acd ead1d74 88e229f bab4acd 5b603ac 21ecdbf ead1d74 de31997 ed0aa4d 7721187 ead1d74 bab4acd ead1d74 bab4acd ead1d74 72c4879 ead1d74 bab4acd ead1d74 5b603ac ead1d74 bab4acd 4180f8a bab4acd 21ecdbf bab4acd de31997 7721187 5b603ac bab4acd 21ecdbf ed0aa4d 5b603ac ead1d74 5b603ac ead1d74 bab4acd ead1d74 72c4879 ead1d74 72c4879 bab4acd ead1d74 bab4acd 4180f8a 72c4879 4180f8a bab4acd 5b603ac ead1d74 bab4acd ead1d74 8b3a614 ead1d74 5d57acf ead1d74 8b3a614 e603549 ead1d74 8b3a614 bab4acd 3254c73 bab4acd ead1d74 5b603ac ead1d74 bab4acd ead1d74 0eab3b1 bab4acd 0eab3b1 ead1d74 bab4acd 2d1e312 bab4acd 0eab3b1 8301b06 0eab3b1 ead1d74 53057e8 10b55e9 7642031 9952ae8 c341e4e 4c1d8f2 9b8424e 4552f8d ead1d74 bab4acd ead1d74 78d77e6 72c4879 ead1d74 bab4acd ead1d74 5d57acf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import os
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image
from typing import Iterable
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
colors.orange_red = colors.Color(
name="orange_red",
c50="#FFF0E5",
c100="#FFE0CC",
c200="#FFC299",
c300="#FFA366",
c400="#FF8533",
c500="#FF4500",
c600="#E63E00",
c700="#CC3700",
c800="#B33000",
c900="#992900",
c950="#802200",
)
class OrangeRedTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.orange_red,
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="white",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_secondary_text_color="black",
button_secondary_text_color_hover="white",
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
slider_color="*secondary_500",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
orange_red_theme = OrangeRedTheme()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.bfloat16
from diffusers import FlowMatchEulerDiscreteScheduler
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
print("Loading Qwen Image Edit Pipeline...")
pipe = QwenImageEditPlusPipeline.from_pretrained(
"Qwen/Qwen-Image-Edit-2509",
transformer=QwenImageTransformer2DModel.from_pretrained(
"linoyts/Qwen-Image-Edit-Rapid-AIO",
subfolder='transformer',
torch_dtype=dtype,
device_map='cuda'
),
torch_dtype=dtype
).to(device)
print("Loading and Fusing Lightning LoRA...")
pipe.load_lora_weights("lightx2v/Qwen-Image-Lightning",
weight_name="Qwen-Image-Lightning-4steps-V2.0-bf16.safetensors",
adapter_name="lightning")
pipe.fuse_lora(adapter_names=["lightning"], lora_scale=1.0)
print("Loading Task Adapters...")
pipe.load_lora_weights("tarn59/apply_texture_qwen_image_edit_2509",
weight_name="apply_texture_v2_qwen_image_edit_2509.safetensors",
adapter_name="texture")
pipe.load_lora_weights("ostris/qwen_image_edit_inpainting",
weight_name="qwen_image_edit_inpainting.safetensors",
adapter_name="fusion")
pipe.load_lora_weights("ostris/qwen_image_edit_2509_shirt_design",
weight_name="qwen_image_edit_2509_shirt_design.safetensors",
adapter_name="shirt_design")
pipe.load_lora_weights("dx8152/Qwen-Image-Edit-2509-Fusion",
weight_name="溶图.safetensors",
adapter_name="fusion-x")
try:
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
print("Flash Attention 3 Processor set successfully.")
except Exception as e:
print(f"Could not set FA3 processor (likely hardware mismatch): {e}. using default attention.")
MAX_SEED = np.iinfo(np.int32).max
def update_dimensions_on_upload(image):
if image is None:
return 1024, 1024
original_width, original_height = image.size
if original_width > original_height:
new_width = 1024
aspect_ratio = original_height / original_width
new_height = int(new_width * aspect_ratio)
else:
new_height = 1024
aspect_ratio = original_width / original_height
new_width = int(new_height * aspect_ratio)
# Ensure dimensions are multiples of 16
new_width = (new_width // 16) * 16
new_height = (new_height // 16) * 16
return new_width, new_height
@spaces.GPU(duration=30)
def infer(
image_1,
image_2,
prompt,
lora_adapter,
seed,
randomize_seed,
guidance_scale,
steps,
progress=gr.Progress(track_tqdm=True)
):
if image_1 is None or image_2 is None:
raise gr.Error("Please upload both images for Fusion/Texture/FaceSwap tasks.")
if not prompt:
if lora_adapter == "Cloth-Design-Fuse":
prompt = "Put this design on their shirt."
elif lora_adapter == "Texture Edit":
prompt = "Apply texture to object."
elif lora_adapter == "Fuse-Objects":
prompt = "Fuse object into background."
elif lora_adapter == "Super-Fusion":
prompt = "Blend the product into the background, correct its perspective and lighting, and make it naturally integrated with the scene."
adapters_map = {
"Texture Edit": "texture",
"Fuse-Objects": "fusion",
"Cloth-Design-Fuse": "shirt_design",
"Super-Fusion": "fusion-x",
}
active_adapter = adapters_map.get(lora_adapter)
if active_adapter:
pipe.set_adapters([active_adapter], adapter_weights=[1.0])
else:
pipe.set_adapters([], adapter_weights=[])
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
negative_prompt = "worst quality, low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry"
img1_pil = image_1.convert("RGB")
img2_pil = image_2.convert("RGB")
width, height = update_dimensions_on_upload(img1_pil)
result = pipe(
image=[img1_pil, img2_pil],
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=steps,
generator=generator,
true_cfg_scale=guidance_scale,
).images[0]
return result, seed
@spaces.GPU(duration=30)
def infer_example(image_1, image_2, prompt, lora_adapter):
if image_1 is None or image_2 is None:
return None, 0
result, seed = infer(
image_1.convert("RGB"),
image_2.convert("RGB"),
prompt,
lora_adapter,
0,
True,
1.0,
4
)
return result, seed
css="""
#col-container {
margin: 0 auto;
max-width: 1100px;
}
#main-title h1 {font-size: 2.1em !important;}
"""
with gr.Blocks(css=css, theme=orange_red_theme) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# **Qwen-Image-Edit-2509-LoRAs-Fast-Fusion**", elem_id="main-title")
gr.Markdown("Perform diverse image edits using specialized [LoRA](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image-Edit-2509) adapters for the [Qwen-Image-Edit](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) model.")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
with gr.Row():
image_1 = gr.Image(label="Base Image", type="pil", height=290)
image_2 = gr.Image(label="Reference Image", type="pil", height=290)
prompt = gr.Text(
label="Edit Prompt",
show_label=True,
placeholder="e.g., Apply wood texture to the mug...",
)
run_button = gr.Button("Edit Image", variant="primary")
with gr.Accordion("Advanced Settings", open=False, visible=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
guidance_scale = gr.Slider(label="True Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=4)
with gr.Column(scale=1):
output_image = gr.Image(label="Output Image", interactive=False, format="png", height=350)
with gr.Row():
lora_adapter = gr.Dropdown(
label="Choose Editing Style",
choices=["Texture Edit", "Cloth-Design-Fuse", "Fuse-Objects", "Super-Fusion"],
value="Texture Edit",
)
gr.Examples(
examples=[
["examples/Cloth2.jpg", "examples/Design2.png", "Put this design on their shirt.", "Cloth-Design-Fuse"],
["examples/Cup1.png", "examples/Wood1.png", "Apply wood texture to mug.", "Texture Edit"],
["examples/F3.jpg", "examples/F4.jpg", "Replace her glasses with the new glasses from image 1.", "Super-Fusion"],
["examples/F1.jpg", "examples/F2.jpg", "Put the small bottle on the table.", "Super-Fusion"],
["examples/Mug1.jpg", "examples/Texture1.jpg", "Apply the design from image 2 to the mug.", "Texture Edit"],
["examples/Cat1.jpg", "examples/Glass1.webp", "A cat wearing glasses in image 2.", "Fuse-Objects"],
["examples/Cloth1.jpg", "examples/Design1.png", "Put this design on their shirt.", "Cloth-Design-Fuse"],
],
inputs=[image_1, image_2, prompt, lora_adapter],
outputs=[output_image, seed],
fn=infer_example,
cache_examples=False,
label="Examples"
)
run_button.click(
fn=infer,
inputs=[image_1, image_2, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps],
outputs=[output_image, seed]
)
demo.launch(mcp_server=True, ssr_mode=False, show_error=True) |