File size: 11,777 Bytes
ead1d74
 
 
72c4879
ead1d74
 
 
 
 
 
 
b843ea0
 
 
 
 
 
 
 
 
 
 
 
 
ead1d74
 
b843ea0
ead1d74
 
 
b843ea0
 
ead1d74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b843ea0
ead1d74
 
b843ea0
ead1d74
 
 
b843ea0
 
 
 
ead1d74
 
b843ea0
ead1d74
 
 
b843ea0
 
ead1d74
 
 
 
 
 
 
 
 
b843ea0
ead1d74
 
bab4acd
ead1d74
 
 
 
 
 
bab4acd
ead1d74
 
 
 
 
 
 
 
 
 
 
bab4acd
 
 
 
 
ead1d74
bab4acd
ead1d74
bab4acd
 
 
ead1d74
88e229f
 
bab4acd
5b603ac
21ecdbf
 
 
ead1d74
de31997
 
ed0aa4d
7721187
ead1d74
 
 
 
bab4acd
ead1d74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bab4acd
ead1d74
 
 
 
 
72c4879
ead1d74
bab4acd
 
ead1d74
5b603ac
ead1d74
 
 
 
 
 
bab4acd
 
4180f8a
bab4acd
21ecdbf
 
bab4acd
 
 
 
de31997
 
7721187
5b603ac
bab4acd
 
21ecdbf
ed0aa4d
5b603ac
 
 
 
 
 
ead1d74
5b603ac
ead1d74
 
 
 
 
 
 
bab4acd
 
 
 
ead1d74
 
72c4879
ead1d74
 
 
 
 
 
 
 
 
 
 
72c4879
bab4acd
 
ead1d74
bab4acd
 
 
4180f8a
 
72c4879
 
 
 
4180f8a
bab4acd
5b603ac
ead1d74
 
 
bab4acd
ead1d74
8b3a614
ead1d74
 
5d57acf
ead1d74
8b3a614
e603549
ead1d74
8b3a614
bab4acd
 
3254c73
 
bab4acd
ead1d74
5b603ac
ead1d74
bab4acd
ead1d74
 
0eab3b1
bab4acd
0eab3b1
ead1d74
 
bab4acd
2d1e312
bab4acd
 
0eab3b1
 
 
 
 
8301b06
0eab3b1
 
 
ead1d74
 
53057e8
10b55e9
7642031
9952ae8
c341e4e
4c1d8f2
9b8424e
4552f8d
ead1d74
bab4acd
ead1d74
 
78d77e6
72c4879
ead1d74
 
 
 
bab4acd
ead1d74
 
 
5d57acf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import os
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image
from typing import Iterable
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes

colors.orange_red = colors.Color(
    name="orange_red",
    c50="#FFF0E5",
    c100="#FFE0CC",
    c200="#FFC299",
    c300="#FFA366",
    c400="#FF8533",
    c500="#FF4500",
    c600="#E63E00",
    c700="#CC3700",
    c800="#B33000",
    c900="#992900",
    c950="#802200",
)

class OrangeRedTheme(Soft):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.gray,
        secondary_hue: colors.Color | str = colors.orange_red,
        neutral_hue: colors.Color | str = colors.slate,
        text_size: sizes.Size | str = sizes.text_lg,
        font: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
        ),
        font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            background_fill_primary="*primary_50",
            background_fill_primary_dark="*primary_900",
            body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
            body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
            button_primary_text_color="white",
            button_primary_text_color_hover="white",
            button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
            button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
            button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
            button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
            button_secondary_text_color="black",
            button_secondary_text_color_hover="white",
            button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
            button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
            button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
            button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
            slider_color="*secondary_500",
            slider_color_dark="*secondary_600",
            block_title_text_weight="600",
            block_border_width="3px",
            block_shadow="*shadow_drop_lg",
            button_primary_shadow="*shadow_drop_lg",
            button_large_padding="11px",
            color_accent_soft="*primary_100",
            block_label_background_fill="*primary_200",
        )

orange_red_theme = OrangeRedTheme()

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.bfloat16

from diffusers import FlowMatchEulerDiscreteScheduler
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3

print("Loading Qwen Image Edit Pipeline...")
pipe = QwenImageEditPlusPipeline.from_pretrained(
    "Qwen/Qwen-Image-Edit-2509",
    transformer=QwenImageTransformer2DModel.from_pretrained(
        "linoyts/Qwen-Image-Edit-Rapid-AIO",
        subfolder='transformer',
        torch_dtype=dtype,
        device_map='cuda'
    ),
    torch_dtype=dtype
).to(device)

print("Loading and Fusing Lightning LoRA...")
pipe.load_lora_weights("lightx2v/Qwen-Image-Lightning",
                       weight_name="Qwen-Image-Lightning-4steps-V2.0-bf16.safetensors",
                       adapter_name="lightning")
pipe.fuse_lora(adapter_names=["lightning"], lora_scale=1.0)

print("Loading Task Adapters...")

pipe.load_lora_weights("tarn59/apply_texture_qwen_image_edit_2509", 
                       weight_name="apply_texture_v2_qwen_image_edit_2509.safetensors", 
                       adapter_name="texture")

pipe.load_lora_weights("ostris/qwen_image_edit_inpainting", 
                       weight_name="qwen_image_edit_inpainting.safetensors", 
                       adapter_name="fusion")

pipe.load_lora_weights("ostris/qwen_image_edit_2509_shirt_design", 
                       weight_name="qwen_image_edit_2509_shirt_design.safetensors", 
                       adapter_name="shirt_design")

pipe.load_lora_weights("dx8152/Qwen-Image-Edit-2509-Fusion", 
                       weight_name="溶图.safetensors", 
                       adapter_name="fusion-x")

try:
    pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
    print("Flash Attention 3 Processor set successfully.")
except Exception as e:
    print(f"Could not set FA3 processor (likely hardware mismatch): {e}. using default attention.")

MAX_SEED = np.iinfo(np.int32).max

def update_dimensions_on_upload(image):
    if image is None:
        return 1024, 1024
    
    original_width, original_height = image.size
    
    if original_width > original_height:
        new_width = 1024
        aspect_ratio = original_height / original_width
        new_height = int(new_width * aspect_ratio)
    else:
        new_height = 1024
        aspect_ratio = original_width / original_height
        new_width = int(new_height * aspect_ratio)
        
    # Ensure dimensions are multiples of 16
    new_width = (new_width // 16) * 16
    new_height = (new_height // 16) * 16
    
    return new_width, new_height

@spaces.GPU(duration=30)
def infer(
    image_1,
    image_2,
    prompt,
    lora_adapter,
    seed,
    randomize_seed,
    guidance_scale,
    steps,
    progress=gr.Progress(track_tqdm=True)
):
    if image_1 is None or image_2 is None:
        raise gr.Error("Please upload both images for Fusion/Texture/FaceSwap tasks.")
    
    if not prompt:
        if lora_adapter == "Cloth-Design-Fuse":
            prompt = "Put this design on their shirt."
        elif lora_adapter == "Texture Edit":
            prompt = "Apply texture to object."
        elif lora_adapter == "Fuse-Objects":
            prompt = "Fuse object into background."
        elif lora_adapter == "Super-Fusion":
            prompt = "Blend the product into the background, correct its perspective and lighting, and make it naturally integrated with the scene."
            
    adapters_map = {
        "Texture Edit": "texture",
        "Fuse-Objects": "fusion",
        "Cloth-Design-Fuse": "shirt_design",
        "Super-Fusion": "fusion-x",
    }
    
    active_adapter = adapters_map.get(lora_adapter)
    
    if active_adapter:
        pipe.set_adapters([active_adapter], adapter_weights=[1.0])
    else:
        pipe.set_adapters([], adapter_weights=[])

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator(device=device).manual_seed(seed)
    negative_prompt = "worst quality, low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry"

    img1_pil = image_1.convert("RGB")
    img2_pil = image_2.convert("RGB")
    
    width, height = update_dimensions_on_upload(img1_pil)

    result = pipe(
        image=[img1_pil, img2_pil],
        prompt=prompt,
        negative_prompt=negative_prompt,
        height=height,
        width=width,
        num_inference_steps=steps,
        generator=generator,
        true_cfg_scale=guidance_scale,
    ).images[0]

    return result, seed

@spaces.GPU(duration=30)
def infer_example(image_1, image_2, prompt, lora_adapter):
    if image_1 is None or image_2 is None:
        return None, 0
    result, seed = infer(
        image_1.convert("RGB"), 
        image_2.convert("RGB"), 
        prompt, 
        lora_adapter, 
        0,
        True,
        1.0,
        4
    )
    return result, seed

css="""
#col-container {
    margin: 0 auto;
    max-width: 1100px;
}
#main-title h1 {font-size: 2.1em !important;}
"""

with gr.Blocks(css=css, theme=orange_red_theme) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# **Qwen-Image-Edit-2509-LoRAs-Fast-Fusion**", elem_id="main-title")
        gr.Markdown("Perform diverse image edits using specialized [LoRA](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image-Edit-2509) adapters for the [Qwen-Image-Edit](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) model.")
        with gr.Row(equal_height=True):
          
            with gr.Column(scale=1):
                with gr.Row():
                    image_1 = gr.Image(label="Base Image", type="pil", height=290)
                    image_2 = gr.Image(label="Reference Image", type="pil", height=290)

                prompt = gr.Text(
                    label="Edit Prompt",
                    show_label=True,
                    placeholder="e.g., Apply wood texture to the mug...",
                )
                
                run_button = gr.Button("Edit Image", variant="primary")

                with gr.Accordion("Advanced Settings", open=False, visible=False):
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                    randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                    guidance_scale = gr.Slider(label="True Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
                    steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=4)

            with gr.Column(scale=1):
                output_image = gr.Image(label="Output Image", interactive=False, format="png", height=350)
                
                with gr.Row():
                    lora_adapter = gr.Dropdown(
                        label="Choose Editing Style",
                        choices=["Texture Edit", "Cloth-Design-Fuse", "Fuse-Objects", "Super-Fusion"],
                        value="Texture Edit",
                    )        
 
        gr.Examples(
            examples=[
                ["examples/Cloth2.jpg", "examples/Design2.png", "Put this design on their shirt.", "Cloth-Design-Fuse"],
                ["examples/Cup1.png", "examples/Wood1.png", "Apply wood texture to mug.", "Texture Edit"],
                ["examples/F3.jpg", "examples/F4.jpg", "Replace her glasses with the new glasses from image 1.", "Super-Fusion"],
                ["examples/F1.jpg", "examples/F2.jpg", "Put the small bottle on the table.", "Super-Fusion"],
                ["examples/Mug1.jpg", "examples/Texture1.jpg", "Apply the design from image 2 to the mug.", "Texture Edit"],
                ["examples/Cat1.jpg", "examples/Glass1.webp", "A cat wearing glasses in image 2.", "Fuse-Objects"],
                ["examples/Cloth1.jpg", "examples/Design1.png", "Put this design on their shirt.", "Cloth-Design-Fuse"],

            ],
            inputs=[image_1, image_2, prompt, lora_adapter],
            outputs=[output_image, seed],
            fn=infer_example,
            cache_examples=False,
            label="Examples"
        )

    run_button.click(
        fn=infer,
        inputs=[image_1, image_2, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps],
        outputs=[output_image, seed]
    )
    
demo.launch(mcp_server=True, ssr_mode=False, show_error=True)