Spaces:
Runtime error
Runtime error
basic streamlit interface
Browse files- .gitignore +2 -0
- app.py +38 -0
- model.py +23 -0
- requirements.txt +3 -0
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.venv/
|
| 2 |
+
__pycache__/
|
app.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
ascii_art = r"""
|
| 3 |
+
_ _ _
|
| 4 |
+
___| |_ __ _ _ __ | |_ _ __ ___| | __
|
| 5 |
+
/ __| __/ _` | '__| | __| '__/ _ \ |/ /
|
| 6 |
+
\__ \ || (_| | | | |_| | | __/ <
|
| 7 |
+
|___/\__\__,_|_| \__|_| \___|_|\_\
|
| 8 |
+
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
from model import LLM
|
| 12 |
+
import streamlit as st
|
| 13 |
+
import streamlit_scrollable_textbox as stx
|
| 14 |
+
|
| 15 |
+
st.text(ascii_art)
|
| 16 |
+
|
| 17 |
+
with st.spinner("Please wait... loading model"):
|
| 18 |
+
llm = LLM()
|
| 19 |
+
|
| 20 |
+
demo_text = """DATA: The ship has gone into warp, sir.
|
| 21 |
+
RIKER: Who gave the command?
|
| 22 |
+
DATA: Apparently no one. Helm and navigation controls are not functioning. Our speed is now warp seven-point-three and holding.
|
| 23 |
+
PICARD: Picard to Engineering. Mister La Forge, what's going on down there?
|
| 24 |
+
"""
|
| 25 |
+
text = st.text_area("First few lines of the script:", demo_text)
|
| 26 |
+
|
| 27 |
+
col1, col2 = st.columns(2)
|
| 28 |
+
|
| 29 |
+
with col1:
|
| 30 |
+
temp = st.slider('Temperature', 0, 1, 1)
|
| 31 |
+
max_len = st.number_input('Max length', min_value=1, max_value=2048, value=512)
|
| 32 |
+
|
| 33 |
+
with col2:
|
| 34 |
+
top_p = st.slider('p', 0, 1, 0.95)
|
| 35 |
+
top_k = st.slider('k', 1, 100, 50)
|
| 36 |
+
|
| 37 |
+
with st.spinner("Generating text..."):
|
| 38 |
+
stx.scrollableTextbox(llm.generate(text, max_len, temp, top_k, top_p), height=400)
|
model.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 2 |
+
|
| 3 |
+
class LLM:
|
| 4 |
+
def __init__(self):
|
| 5 |
+
self.model = AutoModelForCausalLM.from_pretrained('progs2002/star-trek-tng-script-generator')
|
| 6 |
+
self.tokenizer = AutoTokenizer.from_pretrained('progs2002/star-trek-tng-script-generator')
|
| 7 |
+
|
| 8 |
+
def generate(self, text, max_len=512, temp=1, k=50, p=0.95):
|
| 9 |
+
encoded_prompt = self.tokenizer.encode(text, add_special_tokens=False, return_tensors="pt")
|
| 10 |
+
|
| 11 |
+
output_tokens = self.model.generate(
|
| 12 |
+
input_ids = encoded_prompt,
|
| 13 |
+
max_length = max_len,
|
| 14 |
+
do_sample=True,
|
| 15 |
+
num_return_sequences=1,
|
| 16 |
+
pad_token_id=self.model.config.eos_token_id,
|
| 17 |
+
temperature=temp,
|
| 18 |
+
top_k=k,
|
| 19 |
+
top_p=p
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
text_out = self.tokenizer.decode(output_tokens[0], clean_up_tokenization_spaces=True, skip_special_tokens=True)
|
| 23 |
+
return text_out
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
torch
|
| 3 |
+
streamlit-scrollable-textbox
|