#============================================================================================ # https://huggingface.co/spaces/projectlosangeles/Orpheus-Mono-Melodies-Mixer #============================================================================================ print('=' * 70) print('Orpheus Mono Melodies Mixer Gradio App') print('=' * 70) print('Loading core Orpheus Mono Melodies Mixer modules...') import os import copy import time as reqtime import datetime from pytz import timezone print('=' * 70) print('Loading main Orpheus Mono Melodies Mixer modules...') os.environ['USE_FLASH_ATTENTION'] = '1' import torch torch.set_float32_matmul_precision('high') torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn torch.backends.cuda.enable_flash_sdp(True) from huggingface_hub import hf_hub_download import TMIDIX from midi_to_colab_audio import midi_to_colab_audio from x_transformer_2_3_1 import * import random import tqdm print('=' * 70) print('Loading aux Orpheus Mono Melodies Mixer modules...') import matplotlib.pyplot as plt import gradio as gr import spaces print('=' * 70) print('PyTorch version:', torch.__version__) print('=' * 70) print('Done!') print('Enjoy! :)') print('=' * 70) #================================================================================== MODEL_CHECKPOINT = 'Orpheus_Bridge_Music_Transformer_Trained_Model_43450_steps_0.8334_loss_0.7629_acc.pth' SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2' #================================================================================== print('=' * 70) print('Instantiating model...') device_type = 'cuda' dtype = 'bfloat16' ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) SEQ_LEN = 1668 PAD_IDX = 18819 model = TransformerWrapper(num_tokens = PAD_IDX+1, max_seq_len = SEQ_LEN, attn_layers = Decoder(dim = 2048, depth = 8, heads = 32, rotary_pos_emb = True, attn_flash = True ) ) model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX) print('=' * 70) print('Loading model checkpoint...') model_checkpoint = hf_hub_download(repo_id='asigalov61/Orpheus-Music-Transformer', filename=MODEL_CHECKPOINT ) model.load_state_dict(torch.load(model_checkpoint, map_location=device_type, weights_only=True ) ) model = torch.compile(model, mode='max-autotune') model.to(device_type) model.eval() print('=' * 70) print('Done!') print('=' * 70) print('Model will use', dtype, 'precision...') print('=' * 70) #================================================================================== print('=' * 70) print('Loading Orpheus Mono Melodies dataset...') orpheus_mono_mels_dataset_file = hf_hub_download(repo_id='asigalov61/Orpheus-Music-Transformer', filename='orpheus_data/58870_Orpheus_Mono_Melodies_40_88_Dataset_CC_BY_NC_SA.pickle' ) mono_mels_data = TMIDIX.Tegridy_Any_Pickle_File_Reader(orpheus_mono_mels_dataset_file) mono_mels_data = [[str(l[0]), list(l[1])] + l[2:] for l in mono_mels_data] print('=' * 70) print('Done!') print('=' * 70) print('Loaded', len(mono_mels_data), 'mels') print('=' * 70) #================================================================================== def tokens_to_score(tokens, abs_time): song_f = [] time = abs_time dur = 1 vel = 90 pitch = 60 channel = 0 patch = 0 patches = [-1] * 16 channels = [0] * 16 channels[9] = 1 for ss in tokens: if 0 <= ss < 256: time += ss * 16 if 256 <= ss < 16768: patch = (ss-256) // 128 if patch < 128: if patch not in patches: if 0 in channels: cha = channels.index(0) channels[cha] = 1 else: cha = 15 patches[cha] = patch channel = patches.index(patch) else: channel = patches.index(patch) if patch == 128: channel = 9 pitch = (ss-256) % 128 if 16768 <= ss < 18816: dur = ((ss-16768) // 8) * 16 vel = (((ss-16768) % 8)+1) * 15 song_f.append(['note', time, dur, channel, pitch, vel, patch]) return song_f, time #================================================================================== @spaces.GPU def Mix_Mono_Melodies(num_mels_to_mix, use_one_mel, mel_patch_num, model_temperature, model_sampling_top_k ): #=============================================================================== print('=' * 70) print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) start_time = reqtime.time() print('=' * 70) print('=' * 70) print('Requested settings:') print('=' * 70) print('Num mels to mix:', num_mels_to_mix) print('Use one mel:', use_one_mel) print('Melody MIDI patch number:', mel_patch_num) print('Model temperature:', model_temperature) print('Model top k:', model_sampling_top_k) print('=' * 70) #================================================================== print('Generating...') song = [] song_indexes = [] song_titles = [] song_parts = [] while len(song) <= 512: lidx = random.randint(0, len(mono_mels_data)-1) song = mono_mels_data[lidx][1] song_indexes.append(lidx) song_titles.append(mono_mels_data[lidx][0]) song_parts.append(mono_mels_data[lidx][1]) for i in tqdm.tqdm(range(num_mels_to_mix-1)): left_chunk = [1] + mono_mels_data[lidx][1][2:] if use_one_mel: right_chunk = [1] + mono_mels_data[lidx][1][2:] else: right_chunk = [] ridx = [-1] rlen = -1 while ridx and rlen <= 512: rlen = len(mono_mels_data[ridx[0]][1]) ridx = [l for l in mono_mels_data[lidx][2] if l not in song_indexes] if ridx: ridx = ridx[0] right_chunk = [1] + mono_mels_data[ridx][1][2:] lidx = ridx song_titles.append(mono_mels_data[lidx][0]) song_indexes.append(lidx) else: break seq = [18815] + left_chunk[-512:] + [18816] + right_chunk[:512] + [18817] + left_chunk[-64:] x = torch.LongTensor(seq).cuda() y_val = [] rcount = 0 while y_val != right_chunk[:64]: with ctx: out = model.generate(x, 576, temperature=model_temperature, filter_logits_fn=top_k, filter_kwargs={'k': model_sampling_top_k}, eos_token=18818, return_prime=False, verbose=False) y = out.tolist() y_val = y[-64:] if y_val != right_chunk[:64]: rcount += 1 print('Regenerating attempt #', rcount) if rcount == 3: break song = song + y[:-64] + right_chunk song_parts.append(y[:-64]) song_parts.append(right_chunk) #================================================================== print('=' * 70) print('Done!') print('=' * 70) #=============================================================================== print('Rendering results...') used_mels_titles = 'Composition uses ' + str(len(song_titles)) + ' monophonic melodies with the following indexes:\n\n' for i, t in enumerate(song_titles): used_mels_titles += 'Melody #' + str(i+1) + ': ' + str(t) + '\n' #=============================================================================== print('=' * 70) print('Sample INTs', song[:15]) print('=' * 70) output_score = [] abs_time = 1000 for i, part in enumerate(song_parts): if i == 0: part = part[1:] if not use_one_mel: part_idx = song_indexes[i // 2] else: part_idx = song_indexes[0] if i % 2 == 0: output_score.append(['text_event', abs_time + (part[0] * 16), 'Melody #' + str((i // 2)+1) + ' / IDX #' + str(part_idx)]) else: tidx = [i for i in range(20) if part[i] < 256][0] output_score.append(['text_event', abs_time + (part[tidx] * 16), 'AI-generated bridge']) score, abs_time= tokens_to_score(part, abs_time) output_score.extend(score) #=============================================================================== TMIDIX.adjust_score_velocities(output_score, 100, adj_per_channel=True) #=============================================================================== for e in output_score: if e[0] == 'note': if e[6] == 40: e[5] = 103 + (e[4] % 24) e[6] = mel_patch_num #=============================================================================== patched_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(output_score, reserved_patch=mel_patch_num, reserved_patch_channel=3 ) fn1 = "Orpheus-Mono-Melodies-Mixer-Composition" detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(patched_score, output_signature = 'Orpheus Mono Melodies Mixer', output_file_name = fn1, track_name='Project Los Angeles', list_of_MIDI_patches=patches ) #=============================================================================== new_fn = fn1+'.mid' #=============================================================================== audio = midi_to_colab_audio(new_fn, soundfont_path=SOUDFONT_PATH, sample_rate=16000, volume_scale=10, output_for_gradio=True ) #=============================================================================== print('Done!') print('=' * 70) #======================================================== output_midi = str(new_fn) output_audio = (16000, audio) output_plot = TMIDIX.plot_ms_SONG(patched_score, plot_title=output_midi, return_plt=True ) #=============================================================================== print(used_mels_titles) print('=' * 70) #======================================================== print('-' * 70) print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('-' * 70) print('Req execution time:', (reqtime.time() - start_time), 'sec') return used_mels_titles, output_audio, output_plot, output_midi #================================================================================== PDT = timezone('US/Pacific') print('=' * 70) print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('=' * 70) #================================================================================== with gr.Blocks() as demo: #================================================================================== gr.Markdown("

Orpheus Mono Melodies Mixer

") gr.Markdown("

Mix several monophonic melodies into one composition by bridging

") gr.HTML("""

Duplicate in Hugging Face

for faster execution and endless generation! """) #================================================================================== gr.Markdown("## Generation options") num_mels_to_mix = gr.Slider(2, 8, value=5, step=1, label="Number of melodies to mix") use_one_mel = gr.Checkbox(value=False, label="Use only one randomly selected melody") mel_patch_num = gr.Slider(0, 127, value=40, step=1, label="Melody MIDI patch number") model_temperature = gr.Slider(0.1, 1, value=1.0, step=0.01, label="Model temperature") model_sampling_top_k = gr.Slider(1, 100, value=5, step=1, label="Model sampling top k value") generate_btn = gr.Button("Mix Melodies", variant="primary") gr.Markdown("## Generation results") used_mels_titles = gr.Textbox(label="MIDI summary") output_audio = gr.Audio(label="MIDI audio", format="wav", elem_id="midi_audio") output_plot = gr.Plot(label="MIDI score plot") output_midi = gr.File(label="MIDI file", file_types=[".mid"]) generate_btn.click(Mix_Mono_Melodies, [num_mels_to_mix, use_one_mel, mel_patch_num, model_temperature, model_sampling_top_k ], [used_mels_titles, output_audio, output_plot, output_midi ] ) #================================================================================== demo.launch() #==================================================================================