--- title: Qwen Training emoji: 🧙 colorFrom: purple colorTo: blue sdk: gradio sdk_version: 5.49.1 app_file: app.py pinned: false license: mit suggested_hardware: zero-a10g short_description: app.py is base workkng --- # PromptWizard Qwen Fine-tuning This Space fine-tunes Qwen models using Gita dataset wit optimization methodology. ## Features - **GPU-Accelerated Training**: Uses HuggingFace's GPU infrastructure for fast training - **LoRA Fine-tuning**: Efficient parameter-efficient fine-tuning - **GITA Dataset**: High-quality use any custiom reasoning dataset - **PromptWizard Integration**: Uses Microsoft's PromptWizard evaluation methodology - **Auto Push to Hub**: Trained models are automatically uploaded to HuggingFace Hub ## How to Use 1. Select your base model (default: Qwen/Qwen2.5-7B) 2. Configure training parameters: - Number of epochs (3-5 recommended) - Batch size (4-8 for T4 GPU) - Learning rate (2e-5 is a good default) 3. Click "Start Training" and monitor the output 4. The trained model will be pushed to HuggingFace Hub ## Training Data The Space uses the GITA dataset, which contains grade school math problems. The data is formatted according to PromptWizard specifications for optimal prompt optimization. ## Model Output After training, the model will be available at: - HuggingFace Hub: `your-username/promptwizard-qwen-gsm8k` - Local download: Available in the Space's output directory ## Technical Details - **Base Model**: Qwen2.5-7B (or your choice) - **Training Method**: LoRA with rank 16 - **Quantization**: 8-bit for memory efficiency - **Mixed Precision**: FP16 for faster training - **Gradient Checkpointing**: Enabled for memory savings ## Resource Requirements - **GPU**: T4 or better recommended - **Memory**: 16GB+ GPU memory - **Training Time**: ~30-60 minutes on T4 ## Citation If you use this training setup, please cite: ```bibtex @misc{promptwizard2024, title={PromptWizard: Task-Aware Prompt Optimization}, author={Microsoft Research}, year={2024} } ```