Update app.py
Browse files
app.py
CHANGED
|
@@ -38,10 +38,7 @@ def call_ai_model(all_message):
|
|
| 38 |
def get_performance_data(conditions):
|
| 39 |
all_message = (
|
| 40 |
f"Provide the expected sports performance score at conditions: "
|
| 41 |
-
f"Temperature {conditions['temperature']}°C
|
| 42 |
-
f"Wind Speed {conditions['wind_speed']} km/h, UV Index {conditions['uv_index']}, "
|
| 43 |
-
f"Air Quality Index {conditions['air_quality_index']}, Precipitation {conditions['precipitation']} mm, "
|
| 44 |
-
f"Atmospheric Pressure {conditions['atmospheric_pressure']} hPa."
|
| 45 |
)
|
| 46 |
response = call_ai_model(all_message)
|
| 47 |
generated_text = ""
|
|
@@ -65,38 +62,23 @@ def get_performance_data(conditions):
|
|
| 65 |
|
| 66 |
# Streamlit app layout
|
| 67 |
st.title("Climate Impact on Sports Performance")
|
| 68 |
-
st.write("Analyze and visualize the impact of
|
| 69 |
|
| 70 |
-
#
|
| 71 |
temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25)
|
| 72 |
-
humidity = st.number_input("Humidity (%):", min_value=0, max_value=100, value=50)
|
| 73 |
-
wind_speed = st.number_input("Wind Speed (km/h):", min_value=0.0, max_value=200.0, value=15.0)
|
| 74 |
-
uv_index = st.number_input("UV Index:", min_value=0, max_value=11, value=5)
|
| 75 |
-
air_quality_index = st.number_input("Air Quality Index:", min_value=0, max_value=500, value=100)
|
| 76 |
-
precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0)
|
| 77 |
-
atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013)
|
| 78 |
|
| 79 |
# Button to generate predictions
|
| 80 |
if st.button("Generate Prediction"):
|
| 81 |
conditions = {
|
| 82 |
-
"temperature": temperature
|
| 83 |
-
"humidity": humidity,
|
| 84 |
-
"wind_speed": wind_speed,
|
| 85 |
-
"uv_index": uv_index,
|
| 86 |
-
"air_quality_index": air_quality_index,
|
| 87 |
-
"precipitation": precipitation,
|
| 88 |
-
"atmospheric_pressure": atmospheric_pressure
|
| 89 |
}
|
| 90 |
|
| 91 |
try:
|
| 92 |
with st.spinner("Generating predictions..."):
|
| 93 |
# Call AI model to get qualitative analysis
|
| 94 |
qualitative_analysis = (
|
| 95 |
-
f"Assess the impact on sports performance at
|
| 96 |
-
f"
|
| 97 |
-
f"Wind Speed {wind_speed} km/h, UV Index {uv_index}, "
|
| 98 |
-
f"Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, "
|
| 99 |
-
f"Atmospheric Pressure {atmospheric_pressure} hPa."
|
| 100 |
)
|
| 101 |
qualitative_result = call_ai_model(qualitative_analysis)
|
| 102 |
|
|
@@ -114,18 +96,14 @@ if st.button("Generate Prediction"):
|
|
| 114 |
st.write(f"Predicted Performance Scores: {performance_scores}")
|
| 115 |
|
| 116 |
# Plotting the data
|
| 117 |
-
st.subheader("Performance Score vs
|
| 118 |
|
| 119 |
-
#
|
| 120 |
-
climate_conditions = list(conditions.keys())
|
| 121 |
-
climate_values = list(conditions.values())
|
| 122 |
-
|
| 123 |
-
# Plotting performance score against climate conditions
|
| 124 |
fig, ax = plt.subplots()
|
| 125 |
-
ax.plot(
|
| 126 |
-
ax.set_xlabel('
|
| 127 |
ax.set_ylabel('Performance Score')
|
| 128 |
-
ax.set_title('Performance Score vs
|
| 129 |
ax.grid(True)
|
| 130 |
st.pyplot(fig)
|
| 131 |
|
|
|
|
| 38 |
def get_performance_data(conditions):
|
| 39 |
all_message = (
|
| 40 |
f"Provide the expected sports performance score at conditions: "
|
| 41 |
+
f"Temperature {conditions['temperature']}°C."
|
|
|
|
|
|
|
|
|
|
| 42 |
)
|
| 43 |
response = call_ai_model(all_message)
|
| 44 |
generated_text = ""
|
|
|
|
| 62 |
|
| 63 |
# Streamlit app layout
|
| 64 |
st.title("Climate Impact on Sports Performance")
|
| 65 |
+
st.write("Analyze and visualize the impact of temperature on sports performance.")
|
| 66 |
|
| 67 |
+
# Input for temperature
|
| 68 |
temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
# Button to generate predictions
|
| 71 |
if st.button("Generate Prediction"):
|
| 72 |
conditions = {
|
| 73 |
+
"temperature": temperature
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
}
|
| 75 |
|
| 76 |
try:
|
| 77 |
with st.spinner("Generating predictions..."):
|
| 78 |
# Call AI model to get qualitative analysis
|
| 79 |
qualitative_analysis = (
|
| 80 |
+
f"Assess the impact on sports performance at temperature: "
|
| 81 |
+
f"{temperature}°C."
|
|
|
|
|
|
|
|
|
|
| 82 |
)
|
| 83 |
qualitative_result = call_ai_model(qualitative_analysis)
|
| 84 |
|
|
|
|
| 96 |
st.write(f"Predicted Performance Scores: {performance_scores}")
|
| 97 |
|
| 98 |
# Plotting the data
|
| 99 |
+
st.subheader("Performance Score vs Temperature")
|
| 100 |
|
| 101 |
+
# Plot performance score against temperature
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
fig, ax = plt.subplots()
|
| 103 |
+
ax.plot(conditions['temperature'], performance_scores, marker='o', linestyle='-', color='b')
|
| 104 |
+
ax.set_xlabel('Temperature (°C)')
|
| 105 |
ax.set_ylabel('Performance Score')
|
| 106 |
+
ax.set_title('Performance Score vs Temperature')
|
| 107 |
ax.grid(True)
|
| 108 |
st.pyplot(fig)
|
| 109 |
|