Spaces:
Sleeping
Sleeping
| import argparse | |
| from dataclasses import asdict | |
| import json | |
| import os | |
| import streamlit as st | |
| from datasets import load_dataset | |
| from data_driven_characters.character import get_character_definition | |
| from data_driven_characters.corpus import ( | |
| get_corpus_summaries, | |
| load_docs, | |
| ) | |
| from data_driven_characters.chatbots import ( | |
| SummaryChatBot, | |
| RetrievalChatBot, | |
| SummaryRetrievalChatBot, | |
| ) | |
| from data_driven_characters.interfaces import CommandLine, Streamlit | |
| OUTPUT_ROOT = "output" | |
| def create_chatbot(corpus, character_name, chatbot_type, retrieval_docs, summary_type): | |
| # logging | |
| corpus_name = os.path.splitext(os.path.basename(corpus))[0] | |
| output_dir = f"{OUTPUT_ROOT}/{corpus_name}/summarytype_{summary_type}" | |
| #### corpus é fixo do Dov Tzamir, carregado em main() | |
| #### | |
| os.makedirs(output_dir, exist_ok=True) | |
| summaries_dir = f"{output_dir}/summaries" | |
| character_definitions_dir = f"{output_dir}/character_definitions" | |
| os.makedirs(character_definitions_dir, exist_ok=True) | |
| # load docs | |
| docs = load_docs(corpus_path=corpus, chunk_size=2048, chunk_overlap=64) | |
| # generate summaries | |
| corpus_summaries = get_corpus_summaries( | |
| docs=docs, summary_type=summary_type, cache_dir=summaries_dir | |
| ) | |
| # get character definition | |
| character_definition = get_character_definition( | |
| name=character_name, | |
| corpus_summaries=corpus_summaries, | |
| cache_dir=character_definitions_dir, | |
| ) | |
| print(json.dumps(asdict(character_definition), indent=4)) | |
| # construct retrieval documents | |
| if retrieval_docs == "raw": | |
| documents = [ | |
| doc.page_content | |
| for doc in load_docs(corpus_path=corpus, chunk_size=256, chunk_overlap=16) | |
| ] | |
| elif retrieval_docs == "summarized": | |
| documents = corpus_summaries | |
| else: | |
| raise ValueError(f"Unknown retrieval docs type: {retrieval_docs}") | |
| # initialize chatbot | |
| if chatbot_type == "summary": | |
| chatbot = SummaryChatBot(character_definition=character_definition) | |
| elif chatbot_type == "retrieval": | |
| chatbot = RetrievalChatBot( | |
| character_definition=character_definition, | |
| documents=documents, | |
| ) | |
| elif chatbot_type == "summary_retrieval": | |
| chatbot = SummaryRetrievalChatBot( | |
| character_definition=character_definition, | |
| documents=documents, | |
| ) | |
| else: | |
| raise ValueError(f"Unknown chatbot type: {chatbot_type}") | |
| exit | |
| return chatbot | |
| ## python -m streamlit run chat_dov.py -- --corpus data/tzamir.txt --character_name Dov --chatbot_type retrieval --retrieval_docs raw --interface streamlit | |
| def main(): | |
| # parametros fixos para Dov Tzamir, arquivos ja processados , exceto indice que são em memoria | |
| st.title("Converse com o avatar do Dov Tzamir") | |
| st.write("Baseado no texto do livro Fragmentos de Memória do Tito") | |
| st.write(" ") | |
| chatbot = st.cache_resource(create_chatbot)( | |
| "data/tzamir.txt", #args.corpus, | |
| "Dov", #args.character_name, | |
| "retrieval", #args.chatbot_type, | |
| "raw", #args.retrieval_docs, | |
| "map_reduce", #args.summary_type, | |
| ) | |
| st.write(" ") | |
| st.write("Digite o seu diálogo aqui finalizando a linha com ENTER") | |
| st.write("Voce pode continuar o diálogo, apagando sua perguntanda anterior e digitando aqui novamente") | |
| openai_api_key = os.environ["OPENAI_API_KEY"] | |
| app = Streamlit(chatbot=chatbot) | |
| app.run() | |
| if __name__ == "__main__": | |
| main() | |