| import spaces | |
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| model_name = "models/unsloth/Meta-Llama-3.1-8B-bnb-4bit" | |
| def load_model(): | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| return model, tokenizer | |
| def generate_text(prompt, model, tokenizer): | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| outputs = model.generate(**inputs, max_length=100) | |
| return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| def gradio_interface(): | |
| model, tokenizer = load_model() | |
| def wrapped_generate(prompt): | |
| return generate_text(prompt, model, tokenizer) | |
| iface = gr.Interface( | |
| fn=wrapped_generate, | |
| inputs="text", | |
| outputs="text", | |
| title="Meta-Llama 3.1 8B Text Generation" | |
| ) | |
| return iface | |
| if __name__ == "__main__": | |
| demo = gradio_interface() | |
| demo.launch() |