Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from torch.utils.data import DataLoader
|
| 5 |
+
from transformers import AutoModel, AutoTokenizer, AutoProcessor, AdamW, get_scheduler
|
| 6 |
+
from datasets import load_dataset
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import os
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
|
| 11 |
+
# --- 1. Configuration ---
|
| 12 |
+
# A simple class to hold our configuration
|
| 13 |
+
class Config:
|
| 14 |
+
# Model IDs
|
| 15 |
+
IMAGE_ENCODER_ID = "unum-cloud/uform3-image-text-english-large"
|
| 16 |
+
TEXT_MODEL_ID = "Qwen/Qwen1.5-0.5B-Chat"
|
| 17 |
+
|
| 18 |
+
# Dataset
|
| 19 |
+
DATASET_ID = "recastai/LAION-art-EN-improved-captions"
|
| 20 |
+
|
| 21 |
+
# Training Parameters
|
| 22 |
+
LR = 5e-5
|
| 23 |
+
NUM_TRAIN_STEPS = 500 # Adjust this number. 500 steps is a quick test. 10,000+ would be better.
|
| 24 |
+
BATCH_SIZE = 4 # Lower if you run out of memory
|
| 25 |
+
|
| 26 |
+
# Projector Dimensions
|
| 27 |
+
IMAGE_EMBED_DIM = 768 # From uform3
|
| 28 |
+
TEXT_EMBED_DIM = 1024 # From Qwen1.5-0.5B
|
| 29 |
+
|
| 30 |
+
# Paths
|
| 31 |
+
PROJECTOR_WEIGHTS_PATH = "projector_weights.pt"
|
| 32 |
+
|
| 33 |
+
# --- 2. The Multimodal Model Architecture ---
|
| 34 |
+
# This class combines the frozen encoders with our trainable projector
|
| 35 |
+
class MultimodalModel(nn.Module):
|
| 36 |
+
def __init__(self, config):
|
| 37 |
+
super().__init__()
|
| 38 |
+
self.config = config
|
| 39 |
+
|
| 40 |
+
# Load and freeze the vision encoder
|
| 41 |
+
self.vision_encoder = AutoModel.from_pretrained(
|
| 42 |
+
config.IMAGE_ENCODER_ID, trust_remote_code=True
|
| 43 |
+
).eval() # .eval() is important
|
| 44 |
+
for param in self.vision_encoder.parameters():
|
| 45 |
+
param.requires_grad = False
|
| 46 |
+
|
| 47 |
+
# Load and freeze the language model
|
| 48 |
+
self.language_model = AutoModel.from_pretrained(
|
| 49 |
+
config.TEXT_MODEL_ID
|
| 50 |
+
).eval()
|
| 51 |
+
for param in self.language_model.parameters():
|
| 52 |
+
param.requires_grad = False
|
| 53 |
+
|
| 54 |
+
# Define our trainable projector
|
| 55 |
+
self.projector = nn.Sequential(
|
| 56 |
+
nn.Linear(config.IMAGE_EMBED_DIM, config.IMAGE_EMBED_DIM * 2),
|
| 57 |
+
nn.ReLU(),
|
| 58 |
+
nn.Linear(config.IMAGE_EMBED_DIM * 2, config.TEXT_EMBED_DIM)
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
def forward(self, pixel_values, input_ids, attention_mask=None, labels=None):
|
| 62 |
+
# 1. Get image embeddings from the vision encoder
|
| 63 |
+
# We need to process this to get a single vector per image
|
| 64 |
+
image_outputs = self.vision_encoder.get_image_features(pixel_values=pixel_values)
|
| 65 |
+
image_embeds = image_outputs
|
| 66 |
+
|
| 67 |
+
# 2. Project the image embeddings to match the text model's dimension
|
| 68 |
+
projected_image_embeds = self.projector(image_embeds)
|
| 69 |
+
|
| 70 |
+
# 3. Get text embeddings from the language model
|
| 71 |
+
text_embeds = self.language_model.get_input_embeddings()(input_ids)
|
| 72 |
+
|
| 73 |
+
# 4. Concatenate them: [Image Embedding, Text Embedding]
|
| 74 |
+
# The projected image embed acts as a "visual prefix"
|
| 75 |
+
inputs_embeds = torch.cat([projected_image_embeds.unsqueeze(1), text_embeds], dim=1)
|
| 76 |
+
|
| 77 |
+
# 5. Get language model outputs
|
| 78 |
+
outputs = self.language_model(
|
| 79 |
+
inputs_embeds=inputs_embeds,
|
| 80 |
+
attention_mask=attention_mask,
|
| 81 |
+
labels=labels
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
return outputs
|
| 85 |
+
|
| 86 |
+
# --- 3. The Training Function ---
|
| 87 |
+
def train_projector(training_steps, learning_rate, batch_size, progress=gr.Progress()):
|
| 88 |
+
if not torch.cuda.is_available():
|
| 89 |
+
yield "Training requires a GPU. Please provision one for this Space."
|
| 90 |
+
return
|
| 91 |
+
|
| 92 |
+
device = "cuda"
|
| 93 |
+
config = Config()
|
| 94 |
+
config.NUM_TRAIN_STEPS = int(training_steps)
|
| 95 |
+
config.LR = float(learning_rate)
|
| 96 |
+
config.BATCH_SIZE = int(batch_size)
|
| 97 |
+
|
| 98 |
+
yield "Initializing models and tokenizers..."
|
| 99 |
+
|
| 100 |
+
# Load processors
|
| 101 |
+
image_processor = AutoProcessor.from_pretrained(config.IMAGE_ENCODER_ID, trust_remote_code=True)
|
| 102 |
+
tokenizer = AutoTokenizer.from_pretrained(config.TEXT_MODEL_ID)
|
| 103 |
+
tokenizer.pad_token = tokenizer.eos_token # Qwen doesn't have a pad token by default
|
| 104 |
+
|
| 105 |
+
# Instantiate the combined model
|
| 106 |
+
model = MultimodalModel(config).to(device)
|
| 107 |
+
|
| 108 |
+
# Load and preprocess the dataset
|
| 109 |
+
yield "Loading and preprocessing dataset (this may take a moment)..."
|
| 110 |
+
|
| 111 |
+
def preprocess(batch):
|
| 112 |
+
# We need to handle potential errors if an image fails to load
|
| 113 |
+
try:
|
| 114 |
+
images = [Image.open(f).convert("RGB") for f in batch['image_path']]
|
| 115 |
+
except Exception:
|
| 116 |
+
return {'pixel_values': None}
|
| 117 |
+
|
| 118 |
+
captions = batch['caption']
|
| 119 |
+
|
| 120 |
+
# Process images
|
| 121 |
+
image_inputs = image_processor(images=images, return_tensors="pt")
|
| 122 |
+
|
| 123 |
+
# Process text
|
| 124 |
+
text_inputs = tokenizer(captions, padding="max_length", truncation=True, max_length=64, return_tensors="pt")
|
| 125 |
+
|
| 126 |
+
return {
|
| 127 |
+
'pixel_values': image_inputs['pixel_values'],
|
| 128 |
+
'input_ids': text_inputs['input_ids'],
|
| 129 |
+
'attention_mask': text_inputs['attention_mask']
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
# Use streaming to avoid downloading the whole dataset
|
| 133 |
+
dataset = load_dataset(config.DATASET_ID, streaming=True, split="train")
|
| 134 |
+
processed_dataset = dataset.map(preprocess, batched=True, batch_size=config.BATCH_SIZE)
|
| 135 |
+
|
| 136 |
+
# Filter out failed image loads
|
| 137 |
+
processed_dataset = processed_dataset.filter(lambda example: example['pixel_values'] is not None)
|
| 138 |
+
|
| 139 |
+
dataloader = DataLoader(processed_dataset.with_format("torch"), batch_size=config.BATCH_SIZE)
|
| 140 |
+
|
| 141 |
+
# Setup optimizer and scheduler
|
| 142 |
+
optimizer = AdamW(model.projector.parameters(), lr=config.LR)
|
| 143 |
+
scheduler = get_scheduler(
|
| 144 |
+
"linear",
|
| 145 |
+
optimizer=optimizer,
|
| 146 |
+
num_warmup_steps=0,
|
| 147 |
+
num_training_steps=config.NUM_TRAIN_STEPS
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
# Training Loop
|
| 151 |
+
model.projector.train()
|
| 152 |
+
progress(0, desc="Starting Training")
|
| 153 |
+
|
| 154 |
+
global_step = 0
|
| 155 |
+
for batch in tqdm(dataloader, desc="Training Steps"):
|
| 156 |
+
if global_step >= config.NUM_TRAIN_STEPS:
|
| 157 |
+
break
|
| 158 |
+
|
| 159 |
+
pixel_values = batch['pixel_values'].to(device)
|
| 160 |
+
input_ids = batch['input_ids'].to(device)
|
| 161 |
+
|
| 162 |
+
# Prepare labels for language model loss calculation
|
| 163 |
+
labels = input_ids.clone()
|
| 164 |
+
# The visual part doesn't have a label
|
| 165 |
+
image_part_label = torch.full((labels.size(0), 1), -100, dtype=torch.long, device=device)
|
| 166 |
+
labels = torch.cat([image_part_label, labels], dim=1)
|
| 167 |
+
|
| 168 |
+
# Prepare attention mask for combined input
|
| 169 |
+
# We need to add a '1' for the image embedding
|
| 170 |
+
attention_mask = torch.cat([torch.ones_like(image_part_label), batch['attention_mask'].to(device)], dim=1)
|
| 171 |
+
|
| 172 |
+
# Forward pass
|
| 173 |
+
outputs = model(
|
| 174 |
+
pixel_values=pixel_values,
|
| 175 |
+
input_ids=input_ids,
|
| 176 |
+
attention_mask=attention_mask,
|
| 177 |
+
labels=labels
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
loss = outputs.loss
|
| 181 |
+
|
| 182 |
+
# Backward pass
|
| 183 |
+
loss.backward()
|
| 184 |
+
optimizer.step()
|
| 185 |
+
scheduler.step()
|
| 186 |
+
optimizer.zero_grad()
|
| 187 |
+
|
| 188 |
+
if global_step % 10 == 0:
|
| 189 |
+
yield f"Step: {global_step}/{config.NUM_TRAIN_STEPS}, Loss: {loss.item():.4f}"
|
| 190 |
+
progress(global_step / config.NUM_TRAIN_STEPS)
|
| 191 |
+
|
| 192 |
+
global_step += 1
|
| 193 |
+
|
| 194 |
+
yield "Training finished. Saving projector weights..."
|
| 195 |
+
torch.save(model.projector.state_dict(), config.PROJECTOR_WEIGHTS_PATH)
|
| 196 |
+
yield f"Projector weights saved to {config.PROJECTOR_WEIGHTS_PATH}. You can now use the Inference tab."
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
# --- 4. The Inference Function ---
|
| 200 |
+
def run_inference(image_pil):
|
| 201 |
+
if not os.path.exists(Config.PROJECTOR_WEIGHTS_PATH):
|
| 202 |
+
return "Projector weights not found. Please train the model first using the 'Training' tab."
|
| 203 |
+
if image_pil is None:
|
| 204 |
+
return "Please upload an image."
|
| 205 |
+
|
| 206 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 207 |
+
config = Config()
|
| 208 |
+
|
| 209 |
+
# Load all components for inference
|
| 210 |
+
image_processor = AutoProcessor.from_pretrained(config.IMAGE_ENCODER_ID, trust_remote_code=True)
|
| 211 |
+
tokenizer = AutoTokenizer.from_pretrained(config.TEXT_MODEL_ID)
|
| 212 |
+
model = MultimodalModel(config).to(device).eval()
|
| 213 |
+
|
| 214 |
+
# Load our trained projector weights
|
| 215 |
+
model.projector.load_state_dict(torch.load(config.PROJECTOR_WEIGHTS_PATH, map_location=device))
|
| 216 |
+
|
| 217 |
+
# Prepare the image
|
| 218 |
+
image_tensors = image_processor(images=[image_pil], return_tensors="pt")['pixel_values'].to(device)
|
| 219 |
+
|
| 220 |
+
# Prepare the prompt for the language model
|
| 221 |
+
prompt = "Describe this image in one sentence."
|
| 222 |
+
prompt_tokens = tokenizer(prompt, return_tensors="pt")
|
| 223 |
+
|
| 224 |
+
# Get image and text embeddings
|
| 225 |
+
with torch.no_grad():
|
| 226 |
+
image_embeds = model.vision_encoder.get_image_features(pixel_values=image_tensors)
|
| 227 |
+
projected_embeds = model.projector(image_embeds)
|
| 228 |
+
text_embeds = model.language_model.get_input_embeddings()(prompt_tokens.input_ids.to(device))
|
| 229 |
+
|
| 230 |
+
# Combine them to form the input for the generate function
|
| 231 |
+
inputs_embeds = torch.cat([projected_embeds.unsqueeze(1), text_embeds], dim=1)
|
| 232 |
+
|
| 233 |
+
# Generate text
|
| 234 |
+
output_ids = model.language_model.generate(
|
| 235 |
+
inputs_embeds=inputs_embeds,
|
| 236 |
+
max_new_tokens=50,
|
| 237 |
+
do_sample=False
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
# Decode and return the result
|
| 241 |
+
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 242 |
+
|
| 243 |
+
# The output often includes the original prompt, so we can clean it up
|
| 244 |
+
cleaned_text = generated_text.replace(prompt, "").strip()
|
| 245 |
+
return cleaned_text
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
# --- 5. Gradio UI ---
|
| 249 |
+
with gr.Blocks() as demo:
|
| 250 |
+
gr.Markdown("# Image Captioning Model Training and Inference")
|
| 251 |
+
gr.Markdown("Connects `uform3` (Vision) and `Qwen` (Language) by training a projector layer.")
|
| 252 |
+
|
| 253 |
+
with gr.Tab("Training"):
|
| 254 |
+
gr.Markdown("## Step 1: Train the Projector")
|
| 255 |
+
gr.Markdown("This will train a small neural network to translate image features into a format the language model can understand. **This requires a GPU and will take time.**")
|
| 256 |
+
|
| 257 |
+
steps_input = gr.Number(label="Number of Training Steps", value=Config.NUM_TRAIN_STEPS)
|
| 258 |
+
lr_input = gr.Number(label="Learning Rate", value=Config.LR)
|
| 259 |
+
batch_size_input = gr.Number(label="Batch Size (lower if you get OOM errors)", value=Config.BATCH_SIZE)
|
| 260 |
+
|
| 261 |
+
start_training_btn = gr.Button("Start Training")
|
| 262 |
+
training_status = gr.Textbox(label="Training Status", lines=10, interactive=False)
|
| 263 |
+
|
| 264 |
+
with gr.Tab("Inference"):
|
| 265 |
+
gr.Markdown("## Step 2: Describe an Image")
|
| 266 |
+
gr.Markdown("Upload an image to generate a description using your newly trained projector.")
|
| 267 |
+
|
| 268 |
+
with gr.Row():
|
| 269 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
| 270 |
+
caption_output = gr.Textbox(label="Generated Caption")
|
| 271 |
+
|
| 272 |
+
inference_btn = gr.Button("Generate Caption")
|
| 273 |
+
|
| 274 |
+
# Connect UI components to functions
|
| 275 |
+
start_training_btn.click(
|
| 276 |
+
fn=train_projector,
|
| 277 |
+
inputs=[steps_input, lr_input, batch_size_input],
|
| 278 |
+
outputs=[training_status]
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
inference_btn.click(
|
| 282 |
+
fn=run_inference,
|
| 283 |
+
inputs=[image_input],
|
| 284 |
+
outputs=[caption_output]
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
demo.launch()
|