Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,7 +2,7 @@ from threading import Thread
|
|
| 2 |
from typing import Dict
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
-
import spaces
|
| 6 |
import torch
|
| 7 |
from PIL import Image
|
| 8 |
from transformers import AutoModelForVision2Seq, AutoProcessor, AutoTokenizer, TextIteratorStreamer
|
|
@@ -28,7 +28,7 @@ processor = AutoProcessor.from_pretrained(model_id)
|
|
| 28 |
model = AutoModelForVision2Seq.from_pretrained(model_id, torch_dtype="auto", device_map="auto")
|
| 29 |
|
| 30 |
|
| 31 |
-
@spaces.GPU
|
| 32 |
def stream_chat(message: Dict[str, str], history: list):
|
| 33 |
# Turn 1:
|
| 34 |
# {'text': 'what is this', 'files': ['image-xxx.jpg']}
|
|
@@ -39,8 +39,9 @@ def stream_chat(message: Dict[str, str], history: list):
|
|
| 39 |
# [[('image-xxx.jpg',), None], ['what is this', 'a image.']]
|
| 40 |
|
| 41 |
image_path = None
|
| 42 |
-
|
| 43 |
-
|
|
|
|
| 44 |
|
| 45 |
if len(history) != 0 and isinstance(history[0][0], tuple):
|
| 46 |
image_path = history[0][0][0]
|
|
@@ -57,7 +58,7 @@ def stream_chat(message: Dict[str, str], history: list):
|
|
| 57 |
for prompt, answer in history:
|
| 58 |
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
|
| 59 |
|
| 60 |
-
conversation.append({"role": "user", "content": message
|
| 61 |
|
| 62 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
| 63 |
image_token_id = tokenizer.convert_tokens_to_ids("<image>")
|
|
@@ -100,3 +101,4 @@ with gr.Blocks(css=CSS) as demo:
|
|
| 100 |
|
| 101 |
if __name__ == "__main__":
|
| 102 |
demo.launch()
|
|
|
|
|
|
| 2 |
from typing import Dict
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
+
# import spaces
|
| 6 |
import torch
|
| 7 |
from PIL import Image
|
| 8 |
from transformers import AutoModelForVision2Seq, AutoProcessor, AutoTokenizer, TextIteratorStreamer
|
|
|
|
| 28 |
model = AutoModelForVision2Seq.from_pretrained(model_id, torch_dtype="auto", device_map="auto")
|
| 29 |
|
| 30 |
|
| 31 |
+
# @spaces.GPU
|
| 32 |
def stream_chat(message: Dict[str, str], history: list):
|
| 33 |
# Turn 1:
|
| 34 |
# {'text': 'what is this', 'files': ['image-xxx.jpg']}
|
|
|
|
| 39 |
# [[('image-xxx.jpg',), None], ['what is this', 'a image.']]
|
| 40 |
|
| 41 |
image_path = None
|
| 42 |
+
# print(message.files[0].path)
|
| 43 |
+
if len(message.files) != 0:
|
| 44 |
+
image_path = message.files[0].path
|
| 45 |
|
| 46 |
if len(history) != 0 and isinstance(history[0][0], tuple):
|
| 47 |
image_path = history[0][0][0]
|
|
|
|
| 58 |
for prompt, answer in history:
|
| 59 |
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
|
| 60 |
|
| 61 |
+
conversation.append({"role": "user", "content": message.text})
|
| 62 |
|
| 63 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
| 64 |
image_token_id = tokenizer.convert_tokens_to_ids("<image>")
|
|
|
|
| 101 |
|
| 102 |
if __name__ == "__main__":
|
| 103 |
demo.launch()
|
| 104 |
+
|