Spaces:
Runtime error
Runtime error
Sam Dobson
commited on
Commit
Β·
c514928
0
Parent(s):
First commit
Browse files- README.md +73 -0
- app.py +151 -0
- requirements.txt +5 -0
README.md
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: TinyStories Story Generator
|
| 3 |
+
emoji: π
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.44.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
tags:
|
| 12 |
+
- text-generation
|
| 13 |
+
- llama
|
| 14 |
+
- tinystories
|
| 15 |
+
- storytelling
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
# TinyStories Story Generator
|
| 19 |
+
|
| 20 |
+
An interactive Gradio Space for generating simple children's stories using a small Llama-architecture model trained on the TinyStories dataset.
|
| 21 |
+
|
| 22 |
+
## About
|
| 23 |
+
|
| 24 |
+
This Space provides a chat-style interface to interact with a ~15M parameter language model that generates simple, coherent children's stories. The model uses vocabulary and concepts that a typical 3-4 year old would understand.
|
| 25 |
+
|
| 26 |
+
## Features
|
| 27 |
+
|
| 28 |
+
- Interactive story generation
|
| 29 |
+
- Adjustable generation parameters (temperature, top-k, top-p, max length)
|
| 30 |
+
- Example prompts to get started
|
| 31 |
+
- Real-time generation
|
| 32 |
+
- Clean, user-friendly interface
|
| 33 |
+
|
| 34 |
+
## Model Details
|
| 35 |
+
|
| 36 |
+
- **Architecture:** Llama 2
|
| 37 |
+
- **Parameters:** ~15M
|
| 38 |
+
- **Layers:** 6
|
| 39 |
+
- **Attention Heads:** 6
|
| 40 |
+
- **Max Context Length:** 256 tokens
|
| 41 |
+
- **Training Dataset:** [TinyStories](https://huggingface.co/datasets/roneneldan/TinyStories)
|
| 42 |
+
|
| 43 |
+
## Usage
|
| 44 |
+
|
| 45 |
+
1. Enter a story prompt (e.g., "Once upon a time, there was a...")
|
| 46 |
+
2. Optionally adjust generation settings
|
| 47 |
+
3. Click "Generate Story"
|
| 48 |
+
4. Enjoy your AI-generated children's story!
|
| 49 |
+
|
| 50 |
+
## Setup Instructions
|
| 51 |
+
|
| 52 |
+
To run this Space:
|
| 53 |
+
|
| 54 |
+
1. Upload your trained model to HuggingFace Hub
|
| 55 |
+
2. Update the `MODEL_REPO` variable in `app.py` with your model repository (format: `username/model-name`)
|
| 56 |
+
3. Or set the `MODEL_REPO` environment variable in the Space settings
|
| 57 |
+
|
| 58 |
+
## Local Development
|
| 59 |
+
|
| 60 |
+
```bash
|
| 61 |
+
pip install -r requirements.txt
|
| 62 |
+
python app.py
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
## License
|
| 66 |
+
|
| 67 |
+
MIT License
|
| 68 |
+
|
| 69 |
+
## Acknowledgments
|
| 70 |
+
|
| 71 |
+
- Model architecture and training code adapted from [llama2.c](https://github.com/karpathy/llama2.c) by Andrej Karpathy
|
| 72 |
+
- Trained on the [TinyStories dataset](https://huggingface.co/datasets/roneneldan/TinyStories) by Ronen Eldan and Yuanzhi Li
|
| 73 |
+
- Based on the Llama 2 architecture by Meta AI
|
app.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Gradio interface for TinyStories Llama model chat.
|
| 3 |
+
"""
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 6 |
+
import torch
|
| 7 |
+
import warnings
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
warnings.filterwarnings('ignore', category=UserWarning)
|
| 11 |
+
|
| 12 |
+
MODEL_REPO = os.environ.get("MODEL_REPO", "sdobson/tinystories-llama-15m")
|
| 13 |
+
|
| 14 |
+
print(f"Loading model and tokenizer from {MODEL_REPO}...")
|
| 15 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_REPO)
|
| 16 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_REPO)
|
| 17 |
+
|
| 18 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
+
model = model.to(device)
|
| 20 |
+
model.eval()
|
| 21 |
+
|
| 22 |
+
print(f"Model loaded on {device}")
|
| 23 |
+
print(f"Model parameters: {sum(p.numel() for p in model.parameters()):,}")
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def generate_story(
|
| 27 |
+
prompt,
|
| 28 |
+
max_length=200,
|
| 29 |
+
temperature=0.8,
|
| 30 |
+
top_k=50,
|
| 31 |
+
top_p=0.9,
|
| 32 |
+
do_sample=True
|
| 33 |
+
):
|
| 34 |
+
"""Generate a story continuation from the prompt."""
|
| 35 |
+
if not prompt.strip():
|
| 36 |
+
return "Please provide a story prompt!"
|
| 37 |
+
|
| 38 |
+
# Tokenize input
|
| 39 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 40 |
+
|
| 41 |
+
# Generate
|
| 42 |
+
with torch.no_grad():
|
| 43 |
+
outputs = model.generate(
|
| 44 |
+
**inputs,
|
| 45 |
+
max_length=max_length,
|
| 46 |
+
temperature=temperature,
|
| 47 |
+
top_k=top_k,
|
| 48 |
+
top_p=top_p,
|
| 49 |
+
do_sample=do_sample,
|
| 50 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 51 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
# Decode and return
|
| 55 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 56 |
+
return generated_text
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
with gr.Blocks(title="TinyStories Story Generator") as demo:
|
| 60 |
+
gr.Markdown(
|
| 61 |
+
"""
|
| 62 |
+
# TinyStories Llama Model Chat
|
| 63 |
+
|
| 64 |
+
This is a small Llama-architecture model trained on the TinyStories dataset.
|
| 65 |
+
It generates simple, coherent children's stories using vocabulary that a typical 3-4 year old would understand.
|
| 66 |
+
|
| 67 |
+
**Try starting your story with:**
|
| 68 |
+
- "Once upon a time, there was a..."
|
| 69 |
+
- "One day, a little boy named..."
|
| 70 |
+
- "In a small town, there lived a..."
|
| 71 |
+
"""
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
with gr.Row():
|
| 75 |
+
with gr.Column():
|
| 76 |
+
prompt_input = gr.Textbox(
|
| 77 |
+
label="Story Prompt",
|
| 78 |
+
placeholder="Once upon a time, there was a",
|
| 79 |
+
lines=3
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
with gr.Accordion("Generation Settings", open=False):
|
| 83 |
+
max_length_slider = gr.Slider(
|
| 84 |
+
minimum=50,
|
| 85 |
+
maximum=256,
|
| 86 |
+
value=200,
|
| 87 |
+
step=10,
|
| 88 |
+
label="Max Length (tokens)"
|
| 89 |
+
)
|
| 90 |
+
temperature_slider = gr.Slider(
|
| 91 |
+
minimum=0.1,
|
| 92 |
+
maximum=2.0,
|
| 93 |
+
value=0.8,
|
| 94 |
+
step=0.1,
|
| 95 |
+
label="Temperature (higher = more creative)"
|
| 96 |
+
)
|
| 97 |
+
top_k_slider = gr.Slider(
|
| 98 |
+
minimum=1,
|
| 99 |
+
maximum=100,
|
| 100 |
+
value=50,
|
| 101 |
+
step=1,
|
| 102 |
+
label="Top-k"
|
| 103 |
+
)
|
| 104 |
+
top_p_slider = gr.Slider(
|
| 105 |
+
minimum=0.1,
|
| 106 |
+
maximum=1.0,
|
| 107 |
+
value=0.9,
|
| 108 |
+
step=0.05,
|
| 109 |
+
label="Top-p (nucleus sampling)"
|
| 110 |
+
)
|
| 111 |
+
do_sample_checkbox = gr.Checkbox(
|
| 112 |
+
label="Use Sampling",
|
| 113 |
+
value=True
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
generate_btn = gr.Button("Generate Story", variant="primary")
|
| 117 |
+
|
| 118 |
+
with gr.Column():
|
| 119 |
+
output_text = gr.Textbox(
|
| 120 |
+
label="Generated Story",
|
| 121 |
+
lines=15,
|
| 122 |
+
show_copy_button=True
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
gr.Examples(
|
| 126 |
+
examples=[
|
| 127 |
+
["Once upon a time, there was a little girl named Lily."],
|
| 128 |
+
["One day, a little boy found a magic"],
|
| 129 |
+
["The little dog was very happy because"],
|
| 130 |
+
["In a small garden, there lived a"],
|
| 131 |
+
["Timmy wanted to play with his friend, but"],
|
| 132 |
+
],
|
| 133 |
+
inputs=prompt_input,
|
| 134 |
+
label="Example Prompts"
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
generate_btn.click(
|
| 138 |
+
fn=generate_story,
|
| 139 |
+
inputs=[
|
| 140 |
+
prompt_input,
|
| 141 |
+
max_length_slider,
|
| 142 |
+
temperature_slider,
|
| 143 |
+
top_k_slider,
|
| 144 |
+
top_p_slider,
|
| 145 |
+
do_sample_checkbox
|
| 146 |
+
],
|
| 147 |
+
outputs=output_text
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
if __name__ == "__main__":
|
| 151 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.0.0
|
| 2 |
+
transformers>=4.46.0
|
| 3 |
+
torch>=2.0.0
|
| 4 |
+
accelerate>=0.20.0
|
| 5 |
+
sentencepiece>=0.1.99
|