VedaMD-Backend-v2 / src /medical_response_verifier.py
sniro23's picture
VedaMD Enhanced: Clean deployment with 5x Enhanced Medical RAG System
01f0120
#!/usr/bin/env python3
"""
Medical Response Verification Layer
VedaMD Medical RAG - Phase 2: Task 2.2
This module provides comprehensive medical response verification to ensure:
1. 100% source traceability for all medical claims
2. Context adherence validation against provided Sri Lankan guidelines
3. Prevention of medical hallucination and external knowledge injection
4. Regulatory compliance for medical device applications
CRITICAL SAFETY PROTOCOL:
- Every medical fact MUST be traceable to provided source documents
- No medical information allowed without explicit context support
- Strict verification of dosages, procedures, and protocols
- Comprehensive medical claim validation system
"""
import re
import logging
from typing import List, Dict, Set, Tuple, Optional, Any, Union
from dataclasses import dataclass
from enum import Enum
import json
from pathlib import Path
class VerificationStatus(Enum):
"""Verification status for medical claims"""
VERIFIED = "verified"
NOT_FOUND = "not_found"
PARTIAL_MATCH = "partial_match"
CONTRADICTED = "contradicted"
INSUFFICIENT_CONTEXT = "insufficient_context"
class MedicalClaimType(Enum):
"""Types of medical claims to verify"""
DOSAGE = "dosage"
MEDICATION = "medication"
PROCEDURE = "procedure"
CONDITION = "condition"
VITAL_SIGN = "vital_sign"
CONTRAINDICATION = "contraindication"
INDICATION = "indication"
PROTOCOL = "protocol"
EVIDENCE_LEVEL = "evidence_level"
@dataclass
class MedicalClaim:
"""Individual medical claim extracted from LLM response"""
text: str
claim_type: MedicalClaimType
context: str
confidence: float
citation_required: bool = True
extracted_values: Dict[str, str] = None
@dataclass
class VerificationResult:
"""Result of medical claim verification"""
claim: MedicalClaim
status: VerificationStatus
supporting_sources: List[str]
confidence_score: float
verification_details: str
suggested_correction: Optional[str] = None
@dataclass
class MedicalResponseVerification:
"""Complete medical response verification result"""
original_response: str
total_claims: int
verified_claims: int
failed_verifications: List[VerificationResult]
verification_score: float
is_safe_for_medical_use: bool
detailed_results: List[VerificationResult]
safety_warnings: List[str]
class MedicalResponseVerifier:
"""
Medical response verification system for context adherence validation
"""
def __init__(self):
self.setup_logging()
self.medical_claim_patterns = self._initialize_medical_patterns()
def setup_logging(self):
"""Setup logging for medical response verification"""
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
self.logger = logging.getLogger(__name__)
def _initialize_medical_patterns(self) -> Dict[MedicalClaimType, List[str]]:
"""Initialize patterns for extracting medical claims from responses"""
return {
MedicalClaimType.DOSAGE: [
r'(?:administer|give|prescribe|dose of?)\s+(\d+(?:\.\d+)?)\s*(mg|g|ml|units?|tablets?)',
r'(\d+(?:\.\d+)?)\s*(mg|g|ml|units?)\s+(?:of |every |per )',
r'(?:low|moderate|high|maximum|minimum)\s+dose'
],
MedicalClaimType.MEDICATION: [
r'\b(magnesium sulfate|MgSO4|oxytocin|methyldopa|nifedipine|labetalol|hydralazine)\b',
r'\b(ampicillin|gentamicin|ceftriaxone|azithromycin|doxycycline)\b',
r'\b(insulin|metformin|glibenclamide|aspirin|atorvastatin)\b'
],
MedicalClaimType.PROCEDURE: [
r'\b(cesarean section|C-section|vaginal delivery|assisted delivery)\b',
r'\b(IV access|urinary catheter|nasogastric tube|blood transfusion)\b',
r'\b(blood pressure monitoring|fetal monitoring|CTG)\b'
],
MedicalClaimType.CONDITION: [
r'\b(preeclampsia|eclampsia|HELLP syndrome|gestational hypertension)\b',
r'\b(postpartum hemorrhage|PPH|retained placenta|uterine atony)\b',
r'\b(puerperal sepsis|endometritis|wound infection)\b'
],
MedicalClaimType.VITAL_SIGN: [
r'blood pressure.*?(\d+/\d+)\s*mmHg',
r'BP.*?([<>≀β‰₯]?\s*\d+/\d+)\s*mmHg',
r'heart rate.*?(\d+)\s*bpm'
],
MedicalClaimType.CONTRAINDICATION: [
r'contraindicated|avoid|do not use|should not be given',
r'not recommended|prohibited|forbidden'
],
MedicalClaimType.INDICATION: [
r'indicated for|recommended for|used to treat',
r'first-line treatment|treatment of choice'
],
MedicalClaimType.PROTOCOL: [
r'according to protocol|standard protocol|clinical protocol',
r'guideline recommends|evidence-based approach'
]
}
def extract_medical_claims(self, response: str) -> List[MedicalClaim]:
"""
Extract all medical claims from LLM response that need verification
"""
claims = []
sentences = re.split(r'[.!?]+', response)
for sentence_idx, sentence in enumerate(sentences):
sentence = sentence.strip()
if not sentence:
continue
for claim_type, patterns in self.medical_claim_patterns.items():
for pattern in patterns:
matches = re.finditer(pattern, sentence, re.IGNORECASE)
for match in matches:
# Extract specific values if present
extracted_values = {}
if match.groups():
for i, group in enumerate(match.groups()):
extracted_values[f'value_{i}'] = group
claim = MedicalClaim(
text=match.group(),
claim_type=claim_type,
context=sentence,
confidence=self._calculate_claim_confidence(match.group(), sentence),
citation_required=self._requires_citation(claim_type),
extracted_values=extracted_values
)
claims.append(claim)
# Remove duplicate claims
unique_claims = []
seen_claims = set()
for claim in claims:
claim_key = (claim.text.lower(), claim.claim_type)
if claim_key not in seen_claims:
unique_claims.append(claim)
seen_claims.add(claim_key)
self.logger.info(f"Extracted {len(unique_claims)} medical claims for verification")
return unique_claims
def verify_claim_against_context(self, claim: MedicalClaim,
provided_context: List[str]) -> VerificationResult:
"""
Verify a medical claim against provided source documents
"""
supporting_sources = []
verification_details = []
best_match_score = 0.0
# Check each context document for supporting evidence
for source_idx, context_doc in enumerate(provided_context):
context_lower = context_doc.lower()
claim_text_lower = claim.text.lower()
# Direct text match
if claim_text_lower in context_lower:
supporting_sources.append(f"Document_{source_idx + 1}")
verification_details.append(f"Exact match found in source document")
best_match_score = max(best_match_score, 1.0)
continue
# Semantic verification for different claim types
if claim.claim_type == MedicalClaimType.DOSAGE:
score = self._verify_dosage_claim(claim, context_doc)
if score > 0.7:
supporting_sources.append(f"Document_{source_idx + 1}")
verification_details.append(f"Dosage information supported (confidence: {score:.2f})")
best_match_score = max(best_match_score, score)
elif claim.claim_type == MedicalClaimType.MEDICATION:
score = self._verify_medication_claim(claim, context_doc)
if score > 0.8:
supporting_sources.append(f"Document_{source_idx + 1}")
verification_details.append(f"Medication information supported (confidence: {score:.2f})")
best_match_score = max(best_match_score, score)
elif claim.claim_type == MedicalClaimType.PROCEDURE:
score = self._verify_procedure_claim(claim, context_doc)
if score > 0.7:
supporting_sources.append(f"Document_{source_idx + 1}")
verification_details.append(f"Procedure information supported (confidence: {score:.2f})")
best_match_score = max(best_match_score, score)
# Determine verification status
if best_match_score >= 0.9:
status = VerificationStatus.VERIFIED
elif best_match_score >= 0.6:
status = VerificationStatus.PARTIAL_MATCH
elif len(supporting_sources) == 0:
status = VerificationStatus.NOT_FOUND
else:
status = VerificationStatus.INSUFFICIENT_CONTEXT
return VerificationResult(
claim=claim,
status=status,
supporting_sources=supporting_sources,
confidence_score=best_match_score,
verification_details="; ".join(verification_details) if verification_details else "No supporting evidence found",
suggested_correction=self._generate_correction_suggestion(claim, status)
)
def _verify_dosage_claim(self, claim: MedicalClaim, context: str) -> float:
"""Verify dosage claims against context"""
confidence = 0.0
if claim.extracted_values:
for key, value in claim.extracted_values.items():
if re.search(rf'\b{re.escape(value)}\b', context, re.IGNORECASE):
confidence += 0.4
# Check for dosage-related keywords in context
dosage_keywords = ['dose', 'administer', 'give', 'mg', 'g', 'units']
for keyword in dosage_keywords:
if keyword in context.lower():
confidence += 0.1
return min(confidence, 1.0)
def _verify_medication_claim(self, claim: MedicalClaim, context: str) -> float:
"""Verify medication claims against context"""
medication_name = claim.text.lower()
context_lower = context.lower()
# Check for exact medication name
if medication_name in context_lower:
return 1.0
# Check for common medication aliases
medication_aliases = {
'mgso4': 'magnesium sulfate',
'magnesium sulfate': 'mgso4',
'bp': 'blood pressure'
}
for alias, full_name in medication_aliases.items():
if medication_name == alias and full_name in context_lower:
return 0.9
elif medication_name == full_name and alias in context_lower:
return 0.9
return 0.0
def _verify_procedure_claim(self, claim: MedicalClaim, context: str) -> float:
"""Verify procedure claims against context"""
procedure_name = claim.text.lower()
context_lower = context.lower()
if procedure_name in context_lower:
return 1.0
# Check for procedure synonyms
procedure_synonyms = {
'c-section': 'cesarean section',
'cesarean section': 'c-section',
'iv access': 'intravenous access'
}
for synonym, standard_name in procedure_synonyms.items():
if procedure_name == synonym and standard_name in context_lower:
return 0.9
return 0.0
def verify_medical_response(self, response: str,
provided_context: List[str]) -> MedicalResponseVerification:
"""
Comprehensive verification of medical response against provided context
"""
self.logger.info("πŸ” Starting comprehensive medical response verification")
# Extract all medical claims from response
medical_claims = self.extract_medical_claims(response)
# Verify each claim against provided context
verification_results = []
verified_count = 0
failed_verifications = []
safety_warnings = []
for claim in medical_claims:
result = self.verify_claim_against_context(claim, provided_context)
verification_results.append(result)
if result.status == VerificationStatus.VERIFIED:
verified_count += 1
else:
failed_verifications.append(result)
# Generate safety warnings for critical failures
if claim.claim_type in [MedicalClaimType.DOSAGE, MedicalClaimType.MEDICATION,
MedicalClaimType.CONTRAINDICATION]:
safety_warnings.append(f"CRITICAL: {claim.claim_type.value} claim not verified - '{claim.text}'")
# Calculate overall verification score
total_claims = len(medical_claims)
verification_score = (verified_count / total_claims) if total_claims > 0 else 1.0
# Determine if response is safe for medical use
is_safe = verification_score >= 0.9 and len(safety_warnings) == 0
verification_result = MedicalResponseVerification(
original_response=response,
total_claims=total_claims,
verified_claims=verified_count,
failed_verifications=failed_verifications,
verification_score=verification_score,
is_safe_for_medical_use=is_safe,
detailed_results=verification_results,
safety_warnings=safety_warnings
)
self.logger.info(f"βœ… Medical verification complete: {verified_count}/{total_claims} claims verified "
f"(Score: {verification_score:.1%}, Safe: {is_safe})")
return verification_result
def _calculate_claim_confidence(self, claim_text: str, context: str) -> float:
"""Calculate confidence score for extracted medical claim"""
confidence = 0.5
# Higher confidence for claims with specific numerical values
if re.search(r'\d+', claim_text):
confidence += 0.2
# Higher confidence for claims in clinical context
clinical_indicators = ['patient', 'treatment', 'administer', 'protocol', 'guideline']
if any(indicator in context.lower() for indicator in clinical_indicators):
confidence += 0.2
return min(confidence, 1.0)
def _requires_citation(self, claim_type: MedicalClaimType) -> bool:
"""Determine if claim type requires citation"""
critical_types = [
MedicalClaimType.DOSAGE,
MedicalClaimType.MEDICATION,
MedicalClaimType.CONTRAINDICATION,
MedicalClaimType.PROTOCOL
]
return claim_type in critical_types
def _generate_correction_suggestion(self, claim: MedicalClaim,
status: VerificationStatus) -> Optional[str]:
"""Generate correction suggestions for unverified claims"""
if status == VerificationStatus.NOT_FOUND:
return f"Remove claim '{claim.text}' - not supported by provided guidelines"
elif status == VerificationStatus.INSUFFICIENT_CONTEXT:
return f"Add qualification: 'Based on available guidelines, {claim.text.lower()}' or remove if not essential"
return None
def test_medical_response_verifier():
"""Test the medical response verification system"""
print("πŸ§ͺ Testing Medical Response Verification System")
# Test medical response from LLM
test_response = """
For preeclampsia management, administer magnesium sulfate 4g IV bolus for seizure prophylaxis.
Control blood pressure with methyldopa 250mg orally every 8 hours.
Monitor vital signs including blood pressure β‰₯140/90 mmHg.
This medication is contraindicated in patients with myasthenia gravis.
Alternative treatment includes nifedipine 10mg sublingually, though this is not mentioned in current guidelines.
"""
# Provided context from Sri Lankan guidelines
test_context = [
"""
Preeclampsia Management Protocol:
- Administer magnesium sulfate (MgSO4) 4g IV bolus for seizure prophylaxis
- Control BP with methyldopa 250mg orally every 8 hours
- Monitor blood pressure β‰₯140/90 mmHg
- Contraindicated: magnesium sulfate is contraindicated in myasthenia gravis
""",
"""
Additional clinical guidelines for severe preeclampsia:
- Immediate delivery considerations for severe cases
- Laboratory monitoring requirements
- Multidisciplinary team involvement
"""
]
verifier = MedicalResponseVerifier()
# Perform comprehensive verification
verification = verifier.verify_medical_response(test_response, test_context)
print(f"\nπŸ“Š Verification Results:")
print(f" Total Claims: {verification.total_claims}")
print(f" Verified Claims: {verification.verified_claims}")
print(f" Verification Score: {verification.verification_score:.1%}")
print(f" Safe for Medical Use: {verification.is_safe_for_medical_use}")
print(f"\nπŸ” Detailed Results:")
for result in verification.detailed_results:
status_emoji = "βœ…" if result.status == VerificationStatus.VERIFIED else "❌"
print(f" {status_emoji} {result.claim.text} ({result.claim.claim_type.value})")
print(f" Status: {result.status.value} | Confidence: {result.confidence_score:.2f}")
if result.verification_details:
print(f" Details: {result.verification_details}")
if verification.safety_warnings:
print(f"\n⚠️ Safety Warnings:")
for warning in verification.safety_warnings:
print(f" - {warning}")
print(f"\nβœ… Medical Response Verification Test Completed")
if __name__ == "__main__":
test_medical_response_verifier()