Spaces:
Runtime error
Runtime error
update token map
Browse files- app.py +202 -100
- models/attention.py +20 -8
- models/region_diffusion.py +222 -31
- models/unet_2d_blocks.py +244 -59
- utils/attention_utils.py +147 -25
- utils/richtext_utils.py +8 -8
app.py
CHANGED
|
@@ -22,18 +22,17 @@ from share_btn import community_icon_html, loading_icon_html, share_js, css
|
|
| 22 |
help_text = """
|
| 23 |
If you are encountering an error or not achieving your desired outcome, here are some potential reasons and recommendations to consider:
|
| 24 |
1. If you format only a portion of a word rather than the complete word, an error may occur.
|
| 25 |
-
2.
|
| 26 |
-
3.
|
| 27 |
-
4. Consider using a different seed.
|
| 28 |
"""
|
| 29 |
|
| 30 |
|
| 31 |
canvas_html = """<iframe id='rich-text-root' style='width:100%' height='360px' src='file=rich-text-to-json-iframe.html' frameborder='0' scrolling='no'></iframe>"""
|
| 32 |
get_js_data = """
|
| 33 |
-
async (text_input, negative_prompt, height, width, seed, steps, guidance_weight, color_guidance_weight, rich_text_input) => {
|
| 34 |
const richEl = document.getElementById("rich-text-root");
|
| 35 |
const data = richEl? richEl.contentDocument.body._data : {};
|
| 36 |
-
return [text_input, negative_prompt, height, width, seed, steps, guidance_weight, color_guidance_weight, JSON.stringify(data)];
|
| 37 |
}
|
| 38 |
"""
|
| 39 |
set_js_data = """
|
|
@@ -71,9 +70,13 @@ def main():
|
|
| 71 |
width: int,
|
| 72 |
seed: int,
|
| 73 |
steps: int,
|
|
|
|
|
|
|
|
|
|
| 74 |
guidance_weight: float,
|
| 75 |
color_guidance_weight: float,
|
| 76 |
-
rich_text_input: str
|
|
|
|
| 77 |
):
|
| 78 |
run_dir = 'results/'
|
| 79 |
# Load region diffusion model.
|
|
@@ -88,7 +91,7 @@ def main():
|
|
| 88 |
# parse json to span attributes
|
| 89 |
base_text_prompt, style_text_prompts, footnote_text_prompts, footnote_target_tokens,\
|
| 90 |
color_text_prompts, color_names, color_rgbs, size_text_prompts_and_sizes, use_grad_guidance = parse_json(
|
| 91 |
-
json.loads(text_input)
|
| 92 |
|
| 93 |
# create control input for region diffusion
|
| 94 |
region_text_prompts, region_target_token_ids, base_tokens = get_region_diffusion_input(
|
|
@@ -108,7 +111,7 @@ def main():
|
|
| 108 |
# get token maps from plain text to image generation.
|
| 109 |
begin_time = time.time()
|
| 110 |
if model.attention_maps is None:
|
| 111 |
-
model.
|
| 112 |
else:
|
| 113 |
model.reset_attention_maps()
|
| 114 |
plain_img = model.produce_attn_maps([base_text_prompt], [negative_text],
|
|
@@ -116,27 +119,38 @@ def main():
|
|
| 116 |
guidance_scale=guidance_weight)
|
| 117 |
print('time lapses to get attention maps: %.4f' %
|
| 118 |
(time.time()-begin_time))
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
color_obj_masks = [transforms.functional.resize(color_obj_mask, (height, width),
|
| 124 |
interpolation=transforms.InterpolationMode.BICUBIC,
|
| 125 |
antialias=True)
|
| 126 |
for color_obj_mask in color_obj_masks]
|
| 127 |
text_format_dict['color_obj_atten'] = color_obj_masks
|
| 128 |
-
model.
|
| 129 |
|
| 130 |
# generate image from rich text
|
| 131 |
begin_time = time.time()
|
| 132 |
seed_everything(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
rich_img = model.prompt_to_img(region_text_prompts, [negative_text],
|
| 134 |
height=height, width=width, num_inference_steps=steps,
|
| 135 |
-
guidance_scale=guidance_weight,
|
| 136 |
-
text_format_dict=text_format_dict
|
|
|
|
| 137 |
print('time lapses to generate image from rich text: %.4f' %
|
| 138 |
(time.time()-begin_time))
|
| 139 |
-
return [plain_img[0], rich_img[0], token_maps]
|
| 140 |
|
| 141 |
with gr.Blocks(css=css) as demo:
|
| 142 |
url_params = gr.JSON({}, visible=False, label="URL Params")
|
|
@@ -162,6 +176,29 @@ def main():
|
|
| 162 |
placeholder='Example: poor quality, blurry, dark, low resolution, low quality, worst quality',
|
| 163 |
elem_id="negative_prompt"
|
| 164 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
seed = gr.Slider(label='Seed',
|
| 166 |
minimum=0,
|
| 167 |
maximum=100000,
|
|
@@ -169,15 +206,14 @@ def main():
|
|
| 169 |
value=6,
|
| 170 |
elem_id="seed"
|
| 171 |
)
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
value=0.5)
|
| 177 |
with gr.Accordion('Other Parameters', open=False):
|
| 178 |
steps = gr.Slider(label='Number of Steps',
|
| 179 |
minimum=0,
|
| 180 |
-
maximum=
|
| 181 |
step=1,
|
| 182 |
value=41)
|
| 183 |
guidance_weight = gr.Slider(label='CFG weight',
|
|
@@ -206,6 +242,8 @@ def main():
|
|
| 206 |
with gr.Row():
|
| 207 |
plaintext_result = gr.Image(
|
| 208 |
label='Plain-text', elem_id="plain-text-image")
|
|
|
|
|
|
|
| 209 |
token_map = gr.Image(label='Token Maps')
|
| 210 |
with gr.Row(visible=False) as share_row:
|
| 211 |
with gr.Group(elem_id="share-btn-container"):
|
|
@@ -218,181 +256,238 @@ def main():
|
|
| 218 |
gr.Markdown(help_text)
|
| 219 |
|
| 220 |
with gr.Row():
|
| 221 |
-
|
| 222 |
[
|
| 223 |
-
'{"ops":[{"insert":"a "},{"attributes":{"
|
| 224 |
'',
|
| 225 |
-
|
| 226 |
-
|
|
|
|
| 227 |
6,
|
| 228 |
1,
|
| 229 |
-
None
|
|
|
|
| 230 |
],
|
| 231 |
[
|
| 232 |
-
'{"ops":[{"insert":"
|
| 233 |
'',
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
|
|
|
| 237 |
1,
|
| 238 |
-
None
|
|
|
|
| 239 |
],
|
| 240 |
[
|
| 241 |
-
'{"ops":[{"attributes":{"link":"
|
| 242 |
-
'
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
|
|
|
| 246 |
1,
|
| 247 |
-
None
|
|
|
|
| 248 |
],
|
| 249 |
]
|
| 250 |
-
|
| 251 |
-
|
|
|
|
| 252 |
inputs=[
|
| 253 |
text_input,
|
| 254 |
negative_prompt,
|
| 255 |
-
|
| 256 |
-
|
|
|
|
| 257 |
seed,
|
| 258 |
color_guidance_weight,
|
| 259 |
rich_text_input,
|
|
|
|
| 260 |
],
|
| 261 |
outputs=[
|
| 262 |
plaintext_result,
|
| 263 |
richtext_result,
|
|
|
|
| 264 |
token_map,
|
| 265 |
],
|
| 266 |
fn=generate,
|
| 267 |
# cache_examples=True,
|
| 268 |
examples_per_page=20)
|
| 269 |
with gr.Row():
|
| 270 |
-
|
| 271 |
[
|
| 272 |
-
'{"ops":[{"insert":"
|
| 273 |
-
'',
|
| 274 |
-
|
| 275 |
-
|
|
|
|
| 276 |
6,
|
| 277 |
-
|
| 278 |
-
None
|
|
|
|
| 279 |
],
|
| 280 |
[
|
| 281 |
-
'{"ops":[{"insert":"
|
| 282 |
-
'',
|
| 283 |
-
|
| 284 |
-
|
|
|
|
| 285 |
6,
|
| 286 |
-
1,
|
| 287 |
-
None
|
|
|
|
| 288 |
],
|
| 289 |
[
|
| 290 |
-
'{"ops":[{"insert":"
|
| 291 |
'',
|
| 292 |
-
|
| 293 |
-
|
|
|
|
| 294 |
6,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
1,
|
| 296 |
-
None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
],
|
| 298 |
]
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
label='Footnote examples',
|
| 302 |
inputs=[
|
| 303 |
text_input,
|
| 304 |
negative_prompt,
|
| 305 |
-
|
| 306 |
-
|
|
|
|
| 307 |
seed,
|
| 308 |
color_guidance_weight,
|
| 309 |
rich_text_input,
|
|
|
|
| 310 |
],
|
| 311 |
outputs=[
|
| 312 |
plaintext_result,
|
| 313 |
richtext_result,
|
|
|
|
| 314 |
token_map,
|
| 315 |
],
|
| 316 |
fn=generate,
|
| 317 |
# cache_examples=True,
|
| 318 |
examples_per_page=20)
|
|
|
|
| 319 |
with gr.Row():
|
| 320 |
-
|
| 321 |
[
|
| 322 |
-
'{"ops":[{"insert":"a
|
| 323 |
'',
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
|
|
|
|
|
|
| 329 |
],
|
| 330 |
[
|
| 331 |
-
'{"ops":[{"
|
| 332 |
-
'',
|
| 333 |
-
|
| 334 |
-
|
|
|
|
| 335 |
9,
|
| 336 |
-
|
| 337 |
-
None
|
|
|
|
| 338 |
],
|
| 339 |
[
|
| 340 |
-
'{"ops":[{"insert":"
|
| 341 |
'',
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
|
|
|
|
|
|
| 347 |
],
|
| 348 |
]
|
| 349 |
-
gr.Examples(examples=
|
| 350 |
-
label='Font
|
| 351 |
inputs=[
|
| 352 |
text_input,
|
| 353 |
negative_prompt,
|
| 354 |
-
|
| 355 |
-
|
|
|
|
| 356 |
seed,
|
| 357 |
color_guidance_weight,
|
| 358 |
rich_text_input,
|
|
|
|
| 359 |
],
|
| 360 |
outputs=[
|
| 361 |
plaintext_result,
|
| 362 |
richtext_result,
|
|
|
|
| 363 |
token_map,
|
| 364 |
],
|
| 365 |
fn=generate,
|
| 366 |
# cache_examples=True,
|
| 367 |
examples_per_page=20)
|
|
|
|
| 368 |
with gr.Row():
|
| 369 |
size_examples = [
|
| 370 |
[
|
| 371 |
'{"ops": [{"insert": "A pizza with "}, {"attributes": {"size": "60px"}, "insert": "pineapple"}, {"insert": ", pepperoni, and mushroom on the top, 4k, photorealistic"}]}',
|
| 372 |
'blurry, art, painting, rendering, drawing, sketch, ugly, duplicate, morbid, mutilated, mutated, deformed, disfigured low quality, worst quality',
|
| 373 |
-
|
| 374 |
-
|
|
|
|
| 375 |
13,
|
| 376 |
1,
|
| 377 |
-
None
|
|
|
|
| 378 |
],
|
| 379 |
[
|
| 380 |
'{"ops": [{"insert": "A pizza with pineapple, "}, {"attributes": {"size": "20px"}, "insert": "pepperoni"}, {"insert": ", and mushroom on the top, 4k, photorealistic"}]}',
|
| 381 |
'blurry, art, painting, rendering, drawing, sketch, ugly, duplicate, morbid, mutilated, mutated, deformed, disfigured low quality, worst quality',
|
| 382 |
-
|
| 383 |
-
|
|
|
|
| 384 |
13,
|
| 385 |
1,
|
| 386 |
-
None
|
|
|
|
| 387 |
],
|
| 388 |
[
|
| 389 |
'{"ops": [{"insert": "A pizza with pineapple, pepperoni, and "}, {"attributes": {"size": "70px"}, "insert": "mushroom"}, {"insert": " on the top, 4k, photorealistic"}]}',
|
| 390 |
'blurry, art, painting, rendering, drawing, sketch, ugly, duplicate, morbid, mutilated, mutated, deformed, disfigured low quality, worst quality',
|
| 391 |
-
|
| 392 |
-
|
|
|
|
| 393 |
13,
|
| 394 |
1,
|
| 395 |
-
None
|
|
|
|
| 396 |
],
|
| 397 |
]
|
| 398 |
gr.Examples(examples=size_examples,
|
|
@@ -400,15 +495,18 @@ def main():
|
|
| 400 |
inputs=[
|
| 401 |
text_input,
|
| 402 |
negative_prompt,
|
| 403 |
-
|
| 404 |
-
|
|
|
|
| 405 |
seed,
|
| 406 |
color_guidance_weight,
|
| 407 |
rich_text_input,
|
|
|
|
| 408 |
],
|
| 409 |
outputs=[
|
| 410 |
plaintext_result,
|
| 411 |
richtext_result,
|
|
|
|
| 412 |
token_map,
|
| 413 |
],
|
| 414 |
fn=generate,
|
|
@@ -423,11 +521,15 @@ def main():
|
|
| 423 |
width,
|
| 424 |
seed,
|
| 425 |
steps,
|
|
|
|
|
|
|
|
|
|
| 426 |
guidance_weight,
|
| 427 |
color_guidance_weight,
|
| 428 |
-
rich_text_input
|
|
|
|
| 429 |
],
|
| 430 |
-
outputs=[plaintext_result, richtext_result, token_map],
|
| 431 |
_js=get_js_data
|
| 432 |
).then(
|
| 433 |
fn=lambda: gr.update(visible=True), inputs=None, outputs=share_row, queue=False)
|
|
|
|
| 22 |
help_text = """
|
| 23 |
If you are encountering an error or not achieving your desired outcome, here are some potential reasons and recommendations to consider:
|
| 24 |
1. If you format only a portion of a word rather than the complete word, an error may occur.
|
| 25 |
+
2. If you use font color and get completely corrupted results, you may consider decrease the color weight lambda.
|
| 26 |
+
3. Consider using a different seed.
|
|
|
|
| 27 |
"""
|
| 28 |
|
| 29 |
|
| 30 |
canvas_html = """<iframe id='rich-text-root' style='width:100%' height='360px' src='file=rich-text-to-json-iframe.html' frameborder='0' scrolling='no'></iframe>"""
|
| 31 |
get_js_data = """
|
| 32 |
+
async (text_input, negative_prompt, height, width, seed, steps, num_segments, segment_threshold, inject_interval, guidance_weight, color_guidance_weight, rich_text_input, background_aug) => {
|
| 33 |
const richEl = document.getElementById("rich-text-root");
|
| 34 |
const data = richEl? richEl.contentDocument.body._data : {};
|
| 35 |
+
return [text_input, negative_prompt, height, width, seed, steps, num_segments, segment_threshold, inject_interval, guidance_weight, color_guidance_weight, JSON.stringify(data), background_aug];
|
| 36 |
}
|
| 37 |
"""
|
| 38 |
set_js_data = """
|
|
|
|
| 70 |
width: int,
|
| 71 |
seed: int,
|
| 72 |
steps: int,
|
| 73 |
+
num_segments: int,
|
| 74 |
+
segment_threshold: float,
|
| 75 |
+
inject_interval: float,
|
| 76 |
guidance_weight: float,
|
| 77 |
color_guidance_weight: float,
|
| 78 |
+
rich_text_input: str,
|
| 79 |
+
background_aug: bool,
|
| 80 |
):
|
| 81 |
run_dir = 'results/'
|
| 82 |
# Load region diffusion model.
|
|
|
|
| 91 |
# parse json to span attributes
|
| 92 |
base_text_prompt, style_text_prompts, footnote_text_prompts, footnote_target_tokens,\
|
| 93 |
color_text_prompts, color_names, color_rgbs, size_text_prompts_and_sizes, use_grad_guidance = parse_json(
|
| 94 |
+
json.loads(text_input))
|
| 95 |
|
| 96 |
# create control input for region diffusion
|
| 97 |
region_text_prompts, region_target_token_ids, base_tokens = get_region_diffusion_input(
|
|
|
|
| 111 |
# get token maps from plain text to image generation.
|
| 112 |
begin_time = time.time()
|
| 113 |
if model.attention_maps is None:
|
| 114 |
+
model.register_tokenmap_hooks()
|
| 115 |
else:
|
| 116 |
model.reset_attention_maps()
|
| 117 |
plain_img = model.produce_attn_maps([base_text_prompt], [negative_text],
|
|
|
|
| 119 |
guidance_scale=guidance_weight)
|
| 120 |
print('time lapses to get attention maps: %.4f' %
|
| 121 |
(time.time()-begin_time))
|
| 122 |
+
seed_everything(seed)
|
| 123 |
+
color_obj_masks, segments_vis, token_maps = get_token_maps(model.selfattn_maps, model.crossattn_maps, model.n_maps, run_dir,
|
| 124 |
+
512//8, 512//8, color_target_token_ids[:-1], seed,
|
| 125 |
+
base_tokens, segment_threshold=segment_threshold, num_segments=num_segments,
|
| 126 |
+
return_vis=True)
|
| 127 |
+
seed_everything(seed)
|
| 128 |
+
model.masks, segments_vis, token_maps = get_token_maps(model.selfattn_maps, model.crossattn_maps, model.n_maps, run_dir,
|
| 129 |
+
512//8, 512//8, region_target_token_ids[:-1], seed,
|
| 130 |
+
base_tokens, segment_threshold=segment_threshold, num_segments=num_segments,
|
| 131 |
+
return_vis=True)
|
| 132 |
color_obj_masks = [transforms.functional.resize(color_obj_mask, (height, width),
|
| 133 |
interpolation=transforms.InterpolationMode.BICUBIC,
|
| 134 |
antialias=True)
|
| 135 |
for color_obj_mask in color_obj_masks]
|
| 136 |
text_format_dict['color_obj_atten'] = color_obj_masks
|
| 137 |
+
model.remove_tokenmap_hooks()
|
| 138 |
|
| 139 |
# generate image from rich text
|
| 140 |
begin_time = time.time()
|
| 141 |
seed_everything(seed)
|
| 142 |
+
if background_aug:
|
| 143 |
+
bg_aug_end = 500
|
| 144 |
+
else:
|
| 145 |
+
bg_aug_end = 1000
|
| 146 |
rich_img = model.prompt_to_img(region_text_prompts, [negative_text],
|
| 147 |
height=height, width=width, num_inference_steps=steps,
|
| 148 |
+
guidance_scale=guidance_weight, use_guidance=use_grad_guidance,
|
| 149 |
+
text_format_dict=text_format_dict, inject_selfattn=inject_interval,
|
| 150 |
+
bg_aug_end=bg_aug_end)
|
| 151 |
print('time lapses to generate image from rich text: %.4f' %
|
| 152 |
(time.time()-begin_time))
|
| 153 |
+
return [plain_img[0], rich_img[0], segments_vis, token_maps]
|
| 154 |
|
| 155 |
with gr.Blocks(css=css) as demo:
|
| 156 |
url_params = gr.JSON({}, visible=False, label="URL Params")
|
|
|
|
| 176 |
placeholder='Example: poor quality, blurry, dark, low resolution, low quality, worst quality',
|
| 177 |
elem_id="negative_prompt"
|
| 178 |
)
|
| 179 |
+
segment_threshold = gr.Slider(label='Token map threshold',
|
| 180 |
+
info='(See less area in token maps? Decrease this. See too much area? Increase this.)',
|
| 181 |
+
minimum=0,
|
| 182 |
+
maximum=1,
|
| 183 |
+
step=0.01,
|
| 184 |
+
value=0.25)
|
| 185 |
+
inject_interval = gr.Slider(label='Detail preservation',
|
| 186 |
+
info='(To preserve more structure from plain-text generation, increase this. To see more rich-text attributes, decrease this.)',
|
| 187 |
+
minimum=0,
|
| 188 |
+
maximum=1,
|
| 189 |
+
step=0.01,
|
| 190 |
+
value=0.)
|
| 191 |
+
color_guidance_weight = gr.Slider(label='Color weight',
|
| 192 |
+
info='(To obtain more precise color, increase this, while too large value may cause artifacts.)',
|
| 193 |
+
minimum=0,
|
| 194 |
+
maximum=2,
|
| 195 |
+
step=0.1,
|
| 196 |
+
value=0.5)
|
| 197 |
+
num_segments = gr.Slider(label='Number of segments',
|
| 198 |
+
minimum=2,
|
| 199 |
+
maximum=20,
|
| 200 |
+
step=1,
|
| 201 |
+
value=9)
|
| 202 |
seed = gr.Slider(label='Seed',
|
| 203 |
minimum=0,
|
| 204 |
maximum=100000,
|
|
|
|
| 206 |
value=6,
|
| 207 |
elem_id="seed"
|
| 208 |
)
|
| 209 |
+
background_aug = gr.Checkbox(
|
| 210 |
+
label='Precise region alignment',
|
| 211 |
+
info='(For strict region alignment, select this option, but beware of potential artifacts when using with style.)',
|
| 212 |
+
value=True)
|
|
|
|
| 213 |
with gr.Accordion('Other Parameters', open=False):
|
| 214 |
steps = gr.Slider(label='Number of Steps',
|
| 215 |
minimum=0,
|
| 216 |
+
maximum=500,
|
| 217 |
step=1,
|
| 218 |
value=41)
|
| 219 |
guidance_weight = gr.Slider(label='CFG weight',
|
|
|
|
| 242 |
with gr.Row():
|
| 243 |
plaintext_result = gr.Image(
|
| 244 |
label='Plain-text', elem_id="plain-text-image")
|
| 245 |
+
segments = gr.Image(label='Segmentation')
|
| 246 |
+
with gr.Row():
|
| 247 |
token_map = gr.Image(label='Token Maps')
|
| 248 |
with gr.Row(visible=False) as share_row:
|
| 249 |
with gr.Group(elem_id="share-btn-container"):
|
|
|
|
| 256 |
gr.Markdown(help_text)
|
| 257 |
|
| 258 |
with gr.Row():
|
| 259 |
+
footnote_examples = [
|
| 260 |
[
|
| 261 |
+
'{"ops":[{"insert":"A close-up 4k dslr photo of a "},{"attributes":{"link":"A cat wearing sunglasses and a bandana around its neck."},"insert":"cat"},{"insert":" riding a scooter. Palm trees in the background."}]}',
|
| 262 |
'',
|
| 263 |
+
5,
|
| 264 |
+
0.3,
|
| 265 |
+
0,
|
| 266 |
6,
|
| 267 |
1,
|
| 268 |
+
None,
|
| 269 |
+
True
|
| 270 |
],
|
| 271 |
[
|
| 272 |
+
'{"ops":[{"insert":"A "},{"attributes":{"link":"kitchen island with a stove with gas burners and a built-in oven "},"insert":"kitchen island"},{"insert":" next to a "},{"attributes":{"link":"an open refrigerator stocked with fresh produce, dairy products, and beverages. "},"insert":"refrigerator"},{"insert":", by James McDonald and Joarc Architects, home, interior, octane render, deviantart, cinematic, key art, hyperrealism, sun light, sunrays, canon eos c 300, ƒ 1.8, 35 mm, 8k, medium - format print"}]}',
|
| 273 |
'',
|
| 274 |
+
6,
|
| 275 |
+
0.5,
|
| 276 |
+
0,
|
| 277 |
+
6,
|
| 278 |
1,
|
| 279 |
+
None,
|
| 280 |
+
True
|
| 281 |
],
|
| 282 |
[
|
| 283 |
+
'{"ops":[{"insert":"A "},{"attributes":{"link":"Happy Kung fu panda art, elder, asian art, volumetric lighting, dramatic scene, ultra detailed, realism, chinese"},"insert":"panda"},{"insert":" standing on a cliff by a waterfall, wildlife photography, photograph, high quality, wildlife, f 1.8, soft focus, 8k, national geographic, award - winning photograph by nick nichols"}]}',
|
| 284 |
+
'',
|
| 285 |
+
4,
|
| 286 |
+
0.3,
|
| 287 |
+
0,
|
| 288 |
+
4,
|
| 289 |
1,
|
| 290 |
+
None,
|
| 291 |
+
True
|
| 292 |
],
|
| 293 |
]
|
| 294 |
+
|
| 295 |
+
gr.Examples(examples=footnote_examples,
|
| 296 |
+
label='Footnote examples',
|
| 297 |
inputs=[
|
| 298 |
text_input,
|
| 299 |
negative_prompt,
|
| 300 |
+
num_segments,
|
| 301 |
+
segment_threshold,
|
| 302 |
+
inject_interval,
|
| 303 |
seed,
|
| 304 |
color_guidance_weight,
|
| 305 |
rich_text_input,
|
| 306 |
+
background_aug,
|
| 307 |
],
|
| 308 |
outputs=[
|
| 309 |
plaintext_result,
|
| 310 |
richtext_result,
|
| 311 |
+
segments,
|
| 312 |
token_map,
|
| 313 |
],
|
| 314 |
fn=generate,
|
| 315 |
# cache_examples=True,
|
| 316 |
examples_per_page=20)
|
| 317 |
with gr.Row():
|
| 318 |
+
color_examples = [
|
| 319 |
[
|
| 320 |
+
'{"ops":[{"insert":"a beautifule girl with big eye, skin, and long "},{"attributes":{"color":"#00ffff"},"insert":"hair"},{"insert":", t-shirt, bursting with vivid color, intricate, elegant, highly detailed, photorealistic, digital painting, artstation, illustration, concept art."}]}',
|
| 321 |
+
'lowres, had anatomy, bad hands, cropped, worst quality',
|
| 322 |
+
9,
|
| 323 |
+
0.25,
|
| 324 |
+
0.3,
|
| 325 |
6,
|
| 326 |
+
0.5,
|
| 327 |
+
None,
|
| 328 |
+
True
|
| 329 |
],
|
| 330 |
[
|
| 331 |
+
'{"ops":[{"insert":"a beautifule girl with big eye, skin, and long "},{"attributes":{"color":"#eeeeee"},"insert":"hair"},{"insert":", t-shirt, bursting with vivid color, intricate, elegant, highly detailed, photorealistic, digital painting, artstation, illustration, concept art."}]}',
|
| 332 |
+
'lowres, had anatomy, bad hands, cropped, worst quality',
|
| 333 |
+
9,
|
| 334 |
+
0.25,
|
| 335 |
+
0.3,
|
| 336 |
6,
|
| 337 |
+
0.1,
|
| 338 |
+
None,
|
| 339 |
+
True
|
| 340 |
],
|
| 341 |
[
|
| 342 |
+
'{"ops":[{"insert":"a Gothic "},{"attributes":{"color":"#FD6C9E"},"insert":"church"},{"insert":" in a the sunset with a beautiful landscape in the background."}]}',
|
| 343 |
'',
|
| 344 |
+
5,
|
| 345 |
+
0.3,
|
| 346 |
+
0.3,
|
| 347 |
6,
|
| 348 |
+
0.5,
|
| 349 |
+
None,
|
| 350 |
+
False
|
| 351 |
+
],
|
| 352 |
+
[
|
| 353 |
+
'{"ops":[{"insert":"A mesmerizing sight that captures the beauty of a "},{"attributes":{"color":"#4775fc"},"insert":"rose"},{"insert":" blooming, close up"}]}',
|
| 354 |
+
'',
|
| 355 |
+
3,
|
| 356 |
+
0.3,
|
| 357 |
+
0,
|
| 358 |
+
9,
|
| 359 |
1,
|
| 360 |
+
None,
|
| 361 |
+
False
|
| 362 |
+
],
|
| 363 |
+
[
|
| 364 |
+
'{"ops":[{"insert":"A "},{"attributes":{"color":"#FFD700"},"insert":"marble statue of a wolf\'s head and shoulder"},{"insert":", surrounded by colorful flowers michelangelo, detailed, intricate, full of color, led lighting, trending on artstation, 4 k, hyperrealistic, 3 5 mm, focused, extreme details, unreal engine 5, masterpiece "}]}',
|
| 365 |
+
'',
|
| 366 |
+
5,
|
| 367 |
+
0.3,
|
| 368 |
+
0,
|
| 369 |
+
5,
|
| 370 |
+
0.6,
|
| 371 |
+
None,
|
| 372 |
+
False
|
| 373 |
],
|
| 374 |
]
|
| 375 |
+
gr.Examples(examples=color_examples,
|
| 376 |
+
label='Font color examples',
|
|
|
|
| 377 |
inputs=[
|
| 378 |
text_input,
|
| 379 |
negative_prompt,
|
| 380 |
+
num_segments,
|
| 381 |
+
segment_threshold,
|
| 382 |
+
inject_interval,
|
| 383 |
seed,
|
| 384 |
color_guidance_weight,
|
| 385 |
rich_text_input,
|
| 386 |
+
background_aug,
|
| 387 |
],
|
| 388 |
outputs=[
|
| 389 |
plaintext_result,
|
| 390 |
richtext_result,
|
| 391 |
+
segments,
|
| 392 |
token_map,
|
| 393 |
],
|
| 394 |
fn=generate,
|
| 395 |
# cache_examples=True,
|
| 396 |
examples_per_page=20)
|
| 397 |
+
|
| 398 |
with gr.Row():
|
| 399 |
+
style_examples = [
|
| 400 |
[
|
| 401 |
+
'{"ops":[{"insert":"a "},{"attributes":{"font":"mirza"},"insert":"beautiful garden"},{"insert":" with a "},{"attributes":{"font":"roboto"},"insert":"snow mountain in the background"},{"insert":""}]}',
|
| 402 |
'',
|
| 403 |
+
5,
|
| 404 |
+
0.3,
|
| 405 |
+
0.2,
|
| 406 |
+
3,
|
| 407 |
+
0.5,
|
| 408 |
+
None,
|
| 409 |
+
False
|
| 410 |
],
|
| 411 |
[
|
| 412 |
+
'{"ops":[{"attributes":{"link":"the awe-inspiring sky and ocean in the style of J.M.W. Turner"},"insert":"the awe-inspiring sky and sea"},{"insert":" by "},{"attributes":{"font":"mirza"},"insert":"a coast with flowers and grasses in spring"}]}',
|
| 413 |
+
'worst quality, dark, poor quality',
|
| 414 |
+
5,
|
| 415 |
+
0.3,
|
| 416 |
+
0,
|
| 417 |
9,
|
| 418 |
+
0.5,
|
| 419 |
+
None,
|
| 420 |
+
False
|
| 421 |
],
|
| 422 |
[
|
| 423 |
+
'{"ops":[{"insert":"a "},{"attributes":{"font":"slabo"},"insert":"night sky filled with stars"},{"insert":" above a "},{"attributes":{"font":"roboto"},"insert":"turbulent sea with giant waves"}]}',
|
| 424 |
'',
|
| 425 |
+
2,
|
| 426 |
+
0.4,
|
| 427 |
+
0,
|
| 428 |
+
6,
|
| 429 |
+
0.5,
|
| 430 |
+
None,
|
| 431 |
+
False
|
| 432 |
],
|
| 433 |
]
|
| 434 |
+
gr.Examples(examples=style_examples,
|
| 435 |
+
label='Font style examples',
|
| 436 |
inputs=[
|
| 437 |
text_input,
|
| 438 |
negative_prompt,
|
| 439 |
+
num_segments,
|
| 440 |
+
segment_threshold,
|
| 441 |
+
inject_interval,
|
| 442 |
seed,
|
| 443 |
color_guidance_weight,
|
| 444 |
rich_text_input,
|
| 445 |
+
background_aug,
|
| 446 |
],
|
| 447 |
outputs=[
|
| 448 |
plaintext_result,
|
| 449 |
richtext_result,
|
| 450 |
+
segments,
|
| 451 |
token_map,
|
| 452 |
],
|
| 453 |
fn=generate,
|
| 454 |
# cache_examples=True,
|
| 455 |
examples_per_page=20)
|
| 456 |
+
|
| 457 |
with gr.Row():
|
| 458 |
size_examples = [
|
| 459 |
[
|
| 460 |
'{"ops": [{"insert": "A pizza with "}, {"attributes": {"size": "60px"}, "insert": "pineapple"}, {"insert": ", pepperoni, and mushroom on the top, 4k, photorealistic"}]}',
|
| 461 |
'blurry, art, painting, rendering, drawing, sketch, ugly, duplicate, morbid, mutilated, mutated, deformed, disfigured low quality, worst quality',
|
| 462 |
+
5,
|
| 463 |
+
0.3,
|
| 464 |
+
0,
|
| 465 |
13,
|
| 466 |
1,
|
| 467 |
+
None,
|
| 468 |
+
False
|
| 469 |
],
|
| 470 |
[
|
| 471 |
'{"ops": [{"insert": "A pizza with pineapple, "}, {"attributes": {"size": "20px"}, "insert": "pepperoni"}, {"insert": ", and mushroom on the top, 4k, photorealistic"}]}',
|
| 472 |
'blurry, art, painting, rendering, drawing, sketch, ugly, duplicate, morbid, mutilated, mutated, deformed, disfigured low quality, worst quality',
|
| 473 |
+
5,
|
| 474 |
+
0.3,
|
| 475 |
+
0,
|
| 476 |
13,
|
| 477 |
1,
|
| 478 |
+
None,
|
| 479 |
+
False
|
| 480 |
],
|
| 481 |
[
|
| 482 |
'{"ops": [{"insert": "A pizza with pineapple, pepperoni, and "}, {"attributes": {"size": "70px"}, "insert": "mushroom"}, {"insert": " on the top, 4k, photorealistic"}]}',
|
| 483 |
'blurry, art, painting, rendering, drawing, sketch, ugly, duplicate, morbid, mutilated, mutated, deformed, disfigured low quality, worst quality',
|
| 484 |
+
5,
|
| 485 |
+
0.3,
|
| 486 |
+
0,
|
| 487 |
13,
|
| 488 |
1,
|
| 489 |
+
None,
|
| 490 |
+
False
|
| 491 |
],
|
| 492 |
]
|
| 493 |
gr.Examples(examples=size_examples,
|
|
|
|
| 495 |
inputs=[
|
| 496 |
text_input,
|
| 497 |
negative_prompt,
|
| 498 |
+
num_segments,
|
| 499 |
+
segment_threshold,
|
| 500 |
+
inject_interval,
|
| 501 |
seed,
|
| 502 |
color_guidance_weight,
|
| 503 |
rich_text_input,
|
| 504 |
+
background_aug,
|
| 505 |
],
|
| 506 |
outputs=[
|
| 507 |
plaintext_result,
|
| 508 |
richtext_result,
|
| 509 |
+
segments,
|
| 510 |
token_map,
|
| 511 |
],
|
| 512 |
fn=generate,
|
|
|
|
| 521 |
width,
|
| 522 |
seed,
|
| 523 |
steps,
|
| 524 |
+
num_segments,
|
| 525 |
+
segment_threshold,
|
| 526 |
+
inject_interval,
|
| 527 |
guidance_weight,
|
| 528 |
color_guidance_weight,
|
| 529 |
+
rich_text_input,
|
| 530 |
+
background_aug
|
| 531 |
],
|
| 532 |
+
outputs=[plaintext_result, richtext_result, segments, token_map],
|
| 533 |
_js=get_js_data
|
| 534 |
).then(
|
| 535 |
fn=lambda: gr.update(visible=True), inputs=None, outputs=share_row, queue=False)
|
models/attention.py
CHANGED
|
@@ -492,7 +492,7 @@ class BasicTransformerBlock(nn.Module):
|
|
| 492 |
|
| 493 |
if self.only_cross_attention:
|
| 494 |
attn_out, _ = self.attn1(
|
| 495 |
-
norm_hidden_states, context, text_format_dict=text_format_dict) + hidden_states
|
| 496 |
hidden_states = attn_out + hidden_states
|
| 497 |
else:
|
| 498 |
attn_out, _ = self.attn1(norm_hidden_states)
|
|
@@ -583,7 +583,7 @@ class CrossAttention(nn.Module):
|
|
| 583 |
head_size, seq_len, seq_len2)
|
| 584 |
return tensor.mean(1)
|
| 585 |
|
| 586 |
-
def forward(self, hidden_states, context=None, mask=None, text_format_dict={}):
|
| 587 |
batch_size, sequence_length, _ = hidden_states.shape
|
| 588 |
|
| 589 |
query = self.to_q(hidden_states)
|
|
@@ -607,7 +607,7 @@ class CrossAttention(nn.Module):
|
|
| 607 |
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
|
| 608 |
# only this attention function is used
|
| 609 |
hidden_states, attn_probs = self._attention(
|
| 610 |
-
query, key, value, **text_format_dict)
|
| 611 |
|
| 612 |
# linear proj
|
| 613 |
hidden_states = self.to_out[0](hidden_states)
|
|
@@ -625,11 +625,11 @@ class CrossAttention(nn.Module):
|
|
| 625 |
alpha=self.scale,
|
| 626 |
)
|
| 627 |
|
| 628 |
-
def _attention(self, query, key, value, word_pos=None, font_size=None,
|
| 629 |
**kwargs):
|
| 630 |
attention_scores = self._qk(query, key)
|
| 631 |
|
| 632 |
-
# Font size:
|
| 633 |
if self.is_cross_attn and word_pos is not None and font_size is not None:
|
| 634 |
assert key.shape[1] == 77
|
| 635 |
attention_score_exp = attention_scores.exp()
|
|
@@ -642,13 +642,25 @@ class CrossAttention(nn.Module):
|
|
| 642 |
else:
|
| 643 |
attention_probs = attention_scores.softmax(dim=-1)
|
| 644 |
|
| 645 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 646 |
|
| 647 |
# reshape hidden_states
|
| 648 |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
| 649 |
-
|
|
|
|
|
|
|
| 650 |
attention_probs)
|
| 651 |
-
return hidden_states, attention_probs
|
| 652 |
|
| 653 |
def _memory_efficient_attention_xformers(self, query, key, value):
|
| 654 |
query = query.contiguous()
|
|
|
|
| 492 |
|
| 493 |
if self.only_cross_attention:
|
| 494 |
attn_out, _ = self.attn1(
|
| 495 |
+
norm_hidden_states, context=context, text_format_dict=text_format_dict) + hidden_states
|
| 496 |
hidden_states = attn_out + hidden_states
|
| 497 |
else:
|
| 498 |
attn_out, _ = self.attn1(norm_hidden_states)
|
|
|
|
| 583 |
head_size, seq_len, seq_len2)
|
| 584 |
return tensor.mean(1)
|
| 585 |
|
| 586 |
+
def forward(self, hidden_states, real_attn_probs=None, context=None, mask=None, text_format_dict={}):
|
| 587 |
batch_size, sequence_length, _ = hidden_states.shape
|
| 588 |
|
| 589 |
query = self.to_q(hidden_states)
|
|
|
|
| 607 |
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
|
| 608 |
# only this attention function is used
|
| 609 |
hidden_states, attn_probs = self._attention(
|
| 610 |
+
query, key, value, real_attn_probs, **text_format_dict)
|
| 611 |
|
| 612 |
# linear proj
|
| 613 |
hidden_states = self.to_out[0](hidden_states)
|
|
|
|
| 625 |
alpha=self.scale,
|
| 626 |
)
|
| 627 |
|
| 628 |
+
def _attention(self, query, key, value, real_attn_probs=None, word_pos=None, font_size=None,
|
| 629 |
**kwargs):
|
| 630 |
attention_scores = self._qk(query, key)
|
| 631 |
|
| 632 |
+
# Font size V2:
|
| 633 |
if self.is_cross_attn and word_pos is not None and font_size is not None:
|
| 634 |
assert key.shape[1] == 77
|
| 635 |
attention_score_exp = attention_scores.exp()
|
|
|
|
| 642 |
else:
|
| 643 |
attention_probs = attention_scores.softmax(dim=-1)
|
| 644 |
|
| 645 |
+
# compute attention output
|
| 646 |
+
if real_attn_probs is None:
|
| 647 |
+
hidden_states = torch.bmm(attention_probs, value)
|
| 648 |
+
else:
|
| 649 |
+
if isinstance(real_attn_probs, dict):
|
| 650 |
+
for pos1, pos2 in zip(real_attn_probs['inject_pos'][0], real_attn_probs['inject_pos'][1]):
|
| 651 |
+
attention_probs[:, :,
|
| 652 |
+
pos2] = real_attn_probs['reference'][:, :, pos1]
|
| 653 |
+
hidden_states = torch.bmm(attention_probs, value)
|
| 654 |
+
else:
|
| 655 |
+
hidden_states = torch.bmm(real_attn_probs, value)
|
| 656 |
|
| 657 |
# reshape hidden_states
|
| 658 |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
| 659 |
+
|
| 660 |
+
# we also return the map averaged over heads to save memory footprint
|
| 661 |
+
attention_probs_avg = self.reshape_batch_dim_to_heads_and_average(
|
| 662 |
attention_probs)
|
| 663 |
+
return hidden_states, [attention_probs_avg, attention_probs]
|
| 664 |
|
| 665 |
def _memory_efficient_attention_xformers(self, query, key, value):
|
| 666 |
query = query.contiguous()
|
models/region_diffusion.py
CHANGED
|
@@ -6,6 +6,7 @@ from functools import partial
|
|
| 6 |
from transformers import CLIPTextModel, CLIPTokenizer, logging
|
| 7 |
from diffusers import AutoencoderKL, PNDMScheduler, EulerDiscreteScheduler, DPMSolverMultistepScheduler
|
| 8 |
from models.unet_2d_condition import UNet2DConditionModel
|
|
|
|
| 9 |
|
| 10 |
# suppress partial model loading warning
|
| 11 |
logging.set_verbosity_error()
|
|
@@ -38,6 +39,7 @@ class RegionDiffusion(nn.Module):
|
|
| 38 |
self.masks = []
|
| 39 |
self.attention_maps = None
|
| 40 |
self.color_loss = torch.nn.functional.mse_loss
|
|
|
|
| 41 |
|
| 42 |
print(f'[INFO] loaded stable diffusion!')
|
| 43 |
|
|
@@ -79,47 +81,83 @@ class RegionDiffusion(nn.Module):
|
|
| 79 |
return text_embeddings
|
| 80 |
|
| 81 |
def produce_latents(self, text_embeddings, height=512, width=512, num_inference_steps=50, guidance_scale=7.5,
|
| 82 |
-
latents=None,
|
| 83 |
|
| 84 |
if latents is None:
|
| 85 |
latents = torch.randn(
|
| 86 |
(1, self.unet.in_channels, height // 8, width // 8), device=self.device)
|
| 87 |
|
|
|
|
|
|
|
| 88 |
self.scheduler.set_timesteps(num_inference_steps)
|
| 89 |
n_styles = text_embeddings.shape[0]-1
|
| 90 |
assert n_styles == len(self.masks)
|
| 91 |
-
|
| 92 |
with torch.autocast('cuda'):
|
| 93 |
for i, t in enumerate(self.scheduler.timesteps):
|
| 94 |
|
| 95 |
# predict the noise residual
|
| 96 |
with torch.no_grad():
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
| 104 |
text_format_dict={})['sample']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
else:
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
|
|
|
| 112 |
|
| 113 |
# perform classifier-free guidance
|
| 114 |
noise_pred = noise_pred_uncond + guidance_scale * \
|
| 115 |
(noise_pred_text - noise_pred_uncond)
|
| 116 |
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
# apply
|
| 122 |
-
if
|
| 123 |
with torch.enable_grad():
|
| 124 |
if not latents.requires_grad:
|
| 125 |
latents.requires_grad = True
|
|
@@ -137,7 +175,7 @@ class RegionDiffusion(nn.Module):
|
|
| 137 |
loss_total += loss
|
| 138 |
loss_total.backward()
|
| 139 |
latents = (
|
| 140 |
-
latents - latents.grad * text_format_dict['color_guidance_weight']).detach().clone()
|
| 141 |
|
| 142 |
return latents
|
| 143 |
|
|
@@ -162,6 +200,7 @@ class RegionDiffusion(nn.Module):
|
|
| 162 |
(text_embeddings.shape[0] // 2, self.unet.in_channels, height // 8, width // 8), device=self.device)
|
| 163 |
|
| 164 |
self.scheduler.set_timesteps(num_inference_steps)
|
|
|
|
| 165 |
|
| 166 |
with torch.autocast('cuda'):
|
| 167 |
for i, t in enumerate(self.scheduler.timesteps):
|
|
@@ -202,8 +241,18 @@ class RegionDiffusion(nn.Module):
|
|
| 202 |
|
| 203 |
return imgs
|
| 204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
def prompt_to_img(self, prompts, negative_prompts='', height=512, width=512, num_inference_steps=50,
|
| 206 |
-
guidance_scale=7.5, latents=None, text_format_dict={},
|
| 207 |
|
| 208 |
if isinstance(prompts, str):
|
| 209 |
prompts = [prompts]
|
|
@@ -215,18 +264,11 @@ class RegionDiffusion(nn.Module):
|
|
| 215 |
text_embeds = self.get_text_embeds(
|
| 216 |
prompts, negative_prompts) # [2, 77, 768]
|
| 217 |
|
| 218 |
-
if len(text_format_dict) > 0:
|
| 219 |
-
if 'font_styles' in text_format_dict and text_format_dict['font_styles'] is not None:
|
| 220 |
-
text_format_dict['font_styles_embs'] = self.get_text_embeds_list(
|
| 221 |
-
text_format_dict['font_styles']) # [2, 77, 768]
|
| 222 |
-
else:
|
| 223 |
-
text_format_dict['font_styles_embs'] = None
|
| 224 |
-
|
| 225 |
# else:
|
| 226 |
latents = self.produce_latents(text_embeds, height=height, width=width, latents=latents,
|
| 227 |
num_inference_steps=num_inference_steps, guidance_scale=guidance_scale,
|
| 228 |
-
|
| 229 |
-
|
| 230 |
# Img latents -> imgs
|
| 231 |
imgs = self.decode_latents(latents) # [1, 3, 512, 512]
|
| 232 |
|
|
@@ -272,7 +314,156 @@ class RegionDiffusion(nn.Module):
|
|
| 272 |
# attention_dict is a dictionary containing attention maps for every attention layer
|
| 273 |
self.attention_maps = attention_dict
|
| 274 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
def remove_evaluation_hooks(self):
|
| 276 |
for hook in self.forward_hooks:
|
| 277 |
hook.remove()
|
| 278 |
self.attention_maps = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from transformers import CLIPTextModel, CLIPTokenizer, logging
|
| 7 |
from diffusers import AutoencoderKL, PNDMScheduler, EulerDiscreteScheduler, DPMSolverMultistepScheduler
|
| 8 |
from models.unet_2d_condition import UNet2DConditionModel
|
| 9 |
+
from utils.attention_utils import CrossAttentionLayers, SelfAttentionLayers
|
| 10 |
|
| 11 |
# suppress partial model loading warning
|
| 12 |
logging.set_verbosity_error()
|
|
|
|
| 39 |
self.masks = []
|
| 40 |
self.attention_maps = None
|
| 41 |
self.color_loss = torch.nn.functional.mse_loss
|
| 42 |
+
self.forward_replacement_hooks = []
|
| 43 |
|
| 44 |
print(f'[INFO] loaded stable diffusion!')
|
| 45 |
|
|
|
|
| 81 |
return text_embeddings
|
| 82 |
|
| 83 |
def produce_latents(self, text_embeddings, height=512, width=512, num_inference_steps=50, guidance_scale=7.5,
|
| 84 |
+
latents=None, use_guidance=False, text_format_dict={}, inject_selfattn=0, bg_aug_end=1000):
|
| 85 |
|
| 86 |
if latents is None:
|
| 87 |
latents = torch.randn(
|
| 88 |
(1, self.unet.in_channels, height // 8, width // 8), device=self.device)
|
| 89 |
|
| 90 |
+
if inject_selfattn > 0:
|
| 91 |
+
latents_reference = latents.clone().detach()
|
| 92 |
self.scheduler.set_timesteps(num_inference_steps)
|
| 93 |
n_styles = text_embeddings.shape[0]-1
|
| 94 |
assert n_styles == len(self.masks)
|
|
|
|
| 95 |
with torch.autocast('cuda'):
|
| 96 |
for i, t in enumerate(self.scheduler.timesteps):
|
| 97 |
|
| 98 |
# predict the noise residual
|
| 99 |
with torch.no_grad():
|
| 100 |
+
# tokens without any attributes
|
| 101 |
+
feat_inject_step = t > (1-inject_selfattn) * 1000
|
| 102 |
+
noise_pred_uncond_cur = self.unet(latents, t, encoder_hidden_states=text_embeddings[:1],
|
| 103 |
+
text_format_dict={})['sample']
|
| 104 |
+
noise_pred_text_cur = self.unet(latents, t, encoder_hidden_states=text_embeddings[-1:],
|
| 105 |
+
text_format_dict=text_format_dict)['sample']
|
| 106 |
+
if inject_selfattn > 0:
|
| 107 |
+
noise_pred_uncond_refer = self.unet(latents_reference, t, encoder_hidden_states=text_embeddings[:1],
|
| 108 |
text_format_dict={})['sample']
|
| 109 |
+
self.register_selfattn_hooks(feat_inject_step)
|
| 110 |
+
noise_pred_text_refer = self.unet(latents_reference, t, encoder_hidden_states=text_embeddings[-1:],
|
| 111 |
+
text_format_dict={})['sample']
|
| 112 |
+
self.remove_selfattn_hooks()
|
| 113 |
+
noise_pred_uncond = noise_pred_uncond_cur * self.masks[-1]
|
| 114 |
+
noise_pred_text = noise_pred_text_cur * self.masks[-1]
|
| 115 |
+
# tokens with attributes
|
| 116 |
+
for style_i, mask in enumerate(self.masks[:-1]):
|
| 117 |
+
if t > bg_aug_end:
|
| 118 |
+
rand_rgb = torch.rand([1, 3, 1, 1]).cuda()
|
| 119 |
+
black_background = torch.ones(
|
| 120 |
+
[1, 3, height, width]).cuda()*rand_rgb
|
| 121 |
+
black_latent = self.encode_imgs(
|
| 122 |
+
black_background)
|
| 123 |
+
noise = torch.randn_like(black_latent)
|
| 124 |
+
black_latent_noisy = self.scheduler.add_noise(
|
| 125 |
+
black_latent, noise, t)
|
| 126 |
+
masked_latent = (
|
| 127 |
+
mask > 0.001) * latents + (mask < 0.001) * black_latent_noisy
|
| 128 |
+
noise_pred_uncond_cur = self.unet(masked_latent, t, encoder_hidden_states=text_embeddings[:1],
|
| 129 |
+
text_format_dict={})['sample']
|
| 130 |
else:
|
| 131 |
+
masked_latent = latents
|
| 132 |
+
self.register_replacement_hooks(feat_inject_step)
|
| 133 |
+
noise_pred_text_cur = self.unet(masked_latent, t, encoder_hidden_states=text_embeddings[style_i+1:style_i+2],
|
| 134 |
+
text_format_dict={})['sample']
|
| 135 |
+
self.remove_replacement_hooks()
|
| 136 |
+
noise_pred_uncond = noise_pred_uncond + noise_pred_uncond_cur*mask
|
| 137 |
+
noise_pred_text = noise_pred_text + noise_pred_text_cur*mask
|
| 138 |
|
| 139 |
# perform classifier-free guidance
|
| 140 |
noise_pred = noise_pred_uncond + guidance_scale * \
|
| 141 |
(noise_pred_text - noise_pred_uncond)
|
| 142 |
|
| 143 |
+
if inject_selfattn > 0:
|
| 144 |
+
noise_pred_refer = noise_pred_uncond_refer + guidance_scale * \
|
| 145 |
+
(noise_pred_text_refer - noise_pred_uncond_refer)
|
| 146 |
+
|
| 147 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 148 |
+
latents_reference = self.scheduler.step(torch.cat([noise_pred, noise_pred_refer]), t,
|
| 149 |
+
torch.cat([latents, latents_reference]))[
|
| 150 |
+
'prev_sample']
|
| 151 |
+
latents, latents_reference = torch.chunk(
|
| 152 |
+
latents_reference, 2, dim=0)
|
| 153 |
+
|
| 154 |
+
else:
|
| 155 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 156 |
+
latents = self.scheduler.step(noise_pred, t, latents)[
|
| 157 |
+
'prev_sample']
|
| 158 |
|
| 159 |
+
# apply guidance
|
| 160 |
+
if use_guidance and t < text_format_dict['guidance_start_step']:
|
| 161 |
with torch.enable_grad():
|
| 162 |
if not latents.requires_grad:
|
| 163 |
latents.requires_grad = True
|
|
|
|
| 175 |
loss_total += loss
|
| 176 |
loss_total.backward()
|
| 177 |
latents = (
|
| 178 |
+
latents - latents.grad * text_format_dict['color_guidance_weight'] * self.masks[0]).detach().clone()
|
| 179 |
|
| 180 |
return latents
|
| 181 |
|
|
|
|
| 200 |
(text_embeddings.shape[0] // 2, self.unet.in_channels, height // 8, width // 8), device=self.device)
|
| 201 |
|
| 202 |
self.scheduler.set_timesteps(num_inference_steps)
|
| 203 |
+
self.remove_replacement_hooks()
|
| 204 |
|
| 205 |
with torch.autocast('cuda'):
|
| 206 |
for i, t in enumerate(self.scheduler.timesteps):
|
|
|
|
| 241 |
|
| 242 |
return imgs
|
| 243 |
|
| 244 |
+
def encode_imgs(self, imgs):
|
| 245 |
+
# imgs: [B, 3, H, W]
|
| 246 |
+
|
| 247 |
+
imgs = 2 * imgs - 1
|
| 248 |
+
|
| 249 |
+
posterior = self.vae.encode(imgs).latent_dist
|
| 250 |
+
latents = posterior.sample() * 0.18215
|
| 251 |
+
|
| 252 |
+
return latents
|
| 253 |
+
|
| 254 |
def prompt_to_img(self, prompts, negative_prompts='', height=512, width=512, num_inference_steps=50,
|
| 255 |
+
guidance_scale=7.5, latents=None, text_format_dict={}, use_guidance=False, inject_selfattn=0, bg_aug_end=1000):
|
| 256 |
|
| 257 |
if isinstance(prompts, str):
|
| 258 |
prompts = [prompts]
|
|
|
|
| 264 |
text_embeds = self.get_text_embeds(
|
| 265 |
prompts, negative_prompts) # [2, 77, 768]
|
| 266 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
# else:
|
| 268 |
latents = self.produce_latents(text_embeds, height=height, width=width, latents=latents,
|
| 269 |
num_inference_steps=num_inference_steps, guidance_scale=guidance_scale,
|
| 270 |
+
use_guidance=use_guidance, text_format_dict=text_format_dict,
|
| 271 |
+
inject_selfattn=inject_selfattn, bg_aug_end=bg_aug_end) # [1, 4, 64, 64]
|
| 272 |
# Img latents -> imgs
|
| 273 |
imgs = self.decode_latents(latents) # [1, 3, 512, 512]
|
| 274 |
|
|
|
|
| 314 |
# attention_dict is a dictionary containing attention maps for every attention layer
|
| 315 |
self.attention_maps = attention_dict
|
| 316 |
|
| 317 |
+
def register_selfattn_hooks(self, feat_inject_step=False):
|
| 318 |
+
r"""Function for registering hooks during evaluation.
|
| 319 |
+
We mainly store activation maps averaged over queries.
|
| 320 |
+
"""
|
| 321 |
+
self.selfattn_forward_hooks = []
|
| 322 |
+
|
| 323 |
+
def save_activations(activations, name, module, inp, out):
|
| 324 |
+
r"""
|
| 325 |
+
PyTorch Forward hook to save outputs at each forward pass.
|
| 326 |
+
"""
|
| 327 |
+
# out[0] - final output of attention layer
|
| 328 |
+
# out[1] - attention probability matrix
|
| 329 |
+
if 'attn2' in name:
|
| 330 |
+
assert out[1][1].shape[-1] == 77
|
| 331 |
+
# cross attention injection
|
| 332 |
+
# activations[name] = out[1][1].detach()
|
| 333 |
+
else:
|
| 334 |
+
assert out[1][1].shape[-1] != 77
|
| 335 |
+
activations[name] = out[1][1].detach()
|
| 336 |
+
|
| 337 |
+
def save_resnet_activations(activations, name, module, inp, out):
|
| 338 |
+
r"""
|
| 339 |
+
PyTorch Forward hook to save outputs at each forward pass.
|
| 340 |
+
"""
|
| 341 |
+
# out[0] - final output of residual layer
|
| 342 |
+
# out[1] - residual hidden feature
|
| 343 |
+
# import ipdb
|
| 344 |
+
# ipdb.set_trace()
|
| 345 |
+
assert out[1].shape[-1] == 16
|
| 346 |
+
activations[name] = out[1].detach()
|
| 347 |
+
attention_dict = collections.defaultdict(list)
|
| 348 |
+
for name, module in self.unet.named_modules():
|
| 349 |
+
leaf_name = name.split('.')[-1]
|
| 350 |
+
if 'attn' in leaf_name and feat_inject_step:
|
| 351 |
+
# Register hook to obtain outputs at every attention layer.
|
| 352 |
+
self.selfattn_forward_hooks.append(module.register_forward_hook(
|
| 353 |
+
partial(save_activations, attention_dict, name)
|
| 354 |
+
))
|
| 355 |
+
if name == 'up_blocks.1.resnets.1' and feat_inject_step:
|
| 356 |
+
self.selfattn_forward_hooks.append(module.register_forward_hook(
|
| 357 |
+
partial(save_resnet_activations, attention_dict, name)
|
| 358 |
+
))
|
| 359 |
+
# attention_dict is a dictionary containing attention maps for every attention layer
|
| 360 |
+
self.self_attention_maps_cur = attention_dict
|
| 361 |
+
|
| 362 |
+
def register_replacement_hooks(self, feat_inject_step=False):
|
| 363 |
+
r"""Function for registering hooks to replace self attention.
|
| 364 |
+
"""
|
| 365 |
+
self.forward_replacement_hooks = []
|
| 366 |
+
|
| 367 |
+
def replace_activations(name, module, args):
|
| 368 |
+
r"""
|
| 369 |
+
PyTorch Forward hook to save outputs at each forward pass.
|
| 370 |
+
"""
|
| 371 |
+
if 'attn1' in name:
|
| 372 |
+
modified_args = (args[0], self.self_attention_maps_cur[name])
|
| 373 |
+
return modified_args
|
| 374 |
+
# cross attention injection
|
| 375 |
+
# elif 'attn2' in name:
|
| 376 |
+
# modified_map = {
|
| 377 |
+
# 'reference': self.self_attention_maps_cur[name],
|
| 378 |
+
# 'inject_pos': self.inject_pos,
|
| 379 |
+
# }
|
| 380 |
+
# modified_args = (args[0], modified_map)
|
| 381 |
+
# return modified_args
|
| 382 |
+
|
| 383 |
+
def replace_resnet_activations(name, module, args):
|
| 384 |
+
r"""
|
| 385 |
+
PyTorch Forward hook to save outputs at each forward pass.
|
| 386 |
+
"""
|
| 387 |
+
modified_args = (args[0], args[1],
|
| 388 |
+
self.self_attention_maps_cur[name])
|
| 389 |
+
return modified_args
|
| 390 |
+
for name, module in self.unet.named_modules():
|
| 391 |
+
leaf_name = name.split('.')[-1]
|
| 392 |
+
if 'attn' in leaf_name and feat_inject_step:
|
| 393 |
+
# Register hook to obtain outputs at every attention layer.
|
| 394 |
+
self.forward_replacement_hooks.append(module.register_forward_pre_hook(
|
| 395 |
+
partial(replace_activations, name)
|
| 396 |
+
))
|
| 397 |
+
if name == 'up_blocks.1.resnets.1' and feat_inject_step:
|
| 398 |
+
# Register hook to obtain outputs at every attention layer.
|
| 399 |
+
self.forward_replacement_hooks.append(module.register_forward_pre_hook(
|
| 400 |
+
partial(replace_resnet_activations, name)
|
| 401 |
+
))
|
| 402 |
+
|
| 403 |
+
def register_tokenmap_hooks(self):
|
| 404 |
+
r"""Function for registering hooks during evaluation.
|
| 405 |
+
We mainly store activation maps averaged over queries.
|
| 406 |
+
"""
|
| 407 |
+
self.forward_hooks = []
|
| 408 |
+
|
| 409 |
+
def save_activations(selfattn_maps, crossattn_maps, n_maps, name, module, inp, out):
|
| 410 |
+
r"""
|
| 411 |
+
PyTorch Forward hook to save outputs at each forward pass.
|
| 412 |
+
"""
|
| 413 |
+
# out[0] - final output of attention layer
|
| 414 |
+
# out[1] - attention probability matrices
|
| 415 |
+
if name in n_maps:
|
| 416 |
+
n_maps[name] += 1
|
| 417 |
+
else:
|
| 418 |
+
n_maps[name] = 1
|
| 419 |
+
if 'attn2' in name:
|
| 420 |
+
assert out[1][0].shape[-1] == 77
|
| 421 |
+
if name in CrossAttentionLayers and n_maps[name] > 10:
|
| 422 |
+
if name in crossattn_maps:
|
| 423 |
+
crossattn_maps[name] += out[1][0].detach().cpu()[1:2]
|
| 424 |
+
else:
|
| 425 |
+
crossattn_maps[name] = out[1][0].detach().cpu()[1:2]
|
| 426 |
+
else:
|
| 427 |
+
assert out[1][0].shape[-1] != 77
|
| 428 |
+
if name in SelfAttentionLayers and n_maps[name] > 10:
|
| 429 |
+
if name in crossattn_maps:
|
| 430 |
+
selfattn_maps[name] += out[1][0].detach().cpu()[1:2]
|
| 431 |
+
else:
|
| 432 |
+
selfattn_maps[name] = out[1][0].detach().cpu()[1:2]
|
| 433 |
+
|
| 434 |
+
selfattn_maps = collections.defaultdict(list)
|
| 435 |
+
crossattn_maps = collections.defaultdict(list)
|
| 436 |
+
n_maps = collections.defaultdict(list)
|
| 437 |
+
|
| 438 |
+
for name, module in self.unet.named_modules():
|
| 439 |
+
leaf_name = name.split('.')[-1]
|
| 440 |
+
if 'attn' in leaf_name:
|
| 441 |
+
# Register hook to obtain outputs at every attention layer.
|
| 442 |
+
self.forward_hooks.append(module.register_forward_hook(
|
| 443 |
+
partial(save_activations, selfattn_maps,
|
| 444 |
+
crossattn_maps, n_maps, name)
|
| 445 |
+
))
|
| 446 |
+
# attention_dict is a dictionary containing attention maps for every attention layer
|
| 447 |
+
self.selfattn_maps = selfattn_maps
|
| 448 |
+
self.crossattn_maps = crossattn_maps
|
| 449 |
+
self.n_maps = n_maps
|
| 450 |
+
|
| 451 |
+
def remove_tokenmap_hooks(self):
|
| 452 |
+
for hook in self.forward_hooks:
|
| 453 |
+
hook.remove()
|
| 454 |
+
self.selfattn_maps = None
|
| 455 |
+
self.crossattn_maps = None
|
| 456 |
+
self.n_maps = None
|
| 457 |
+
|
| 458 |
def remove_evaluation_hooks(self):
|
| 459 |
for hook in self.forward_hooks:
|
| 460 |
hook.remove()
|
| 461 |
self.attention_maps = None
|
| 462 |
+
|
| 463 |
+
def remove_replacement_hooks(self):
|
| 464 |
+
for hook in self.forward_replacement_hooks:
|
| 465 |
+
hook.remove()
|
| 466 |
+
|
| 467 |
+
def remove_selfattn_hooks(self):
|
| 468 |
+
for hook in self.selfattn_forward_hooks:
|
| 469 |
+
hook.remove()
|
models/unet_2d_blocks.py
CHANGED
|
@@ -16,7 +16,7 @@ import torch
|
|
| 16 |
from torch import nn
|
| 17 |
|
| 18 |
from .attention import AttentionBlock, DualTransformer2DModel, Transformer2DModel
|
| 19 |
-
from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D,
|
| 20 |
|
| 21 |
|
| 22 |
def get_down_block(
|
|
@@ -36,7 +36,8 @@ def get_down_block(
|
|
| 36 |
use_linear_projection=False,
|
| 37 |
only_cross_attention=False,
|
| 38 |
):
|
| 39 |
-
down_block_type = down_block_type[7:] if down_block_type.startswith(
|
|
|
|
| 40 |
if down_block_type == "DownBlock2D":
|
| 41 |
return DownBlock2D(
|
| 42 |
num_layers=num_layers,
|
|
@@ -64,7 +65,8 @@ def get_down_block(
|
|
| 64 |
)
|
| 65 |
elif down_block_type == "CrossAttnDownBlock2D":
|
| 66 |
if cross_attention_dim is None:
|
| 67 |
-
raise ValueError(
|
|
|
|
| 68 |
return CrossAttnDownBlock2D(
|
| 69 |
num_layers=num_layers,
|
| 70 |
in_channels=in_channels,
|
|
@@ -147,7 +149,8 @@ def get_up_block(
|
|
| 147 |
use_linear_projection=False,
|
| 148 |
only_cross_attention=False,
|
| 149 |
):
|
| 150 |
-
up_block_type = up_block_type[7:] if up_block_type.startswith(
|
|
|
|
| 151 |
if up_block_type == "UpBlock2D":
|
| 152 |
return UpBlock2D(
|
| 153 |
num_layers=num_layers,
|
|
@@ -162,7 +165,8 @@ def get_up_block(
|
|
| 162 |
)
|
| 163 |
elif up_block_type == "CrossAttnUpBlock2D":
|
| 164 |
if cross_attention_dim is None:
|
| 165 |
-
raise ValueError(
|
|
|
|
| 166 |
return CrossAttnUpBlock2D(
|
| 167 |
num_layers=num_layers,
|
| 168 |
in_channels=in_channels,
|
|
@@ -258,7 +262,8 @@ class UNetMidBlock2D(nn.Module):
|
|
| 258 |
super().__init__()
|
| 259 |
|
| 260 |
self.attention_type = attention_type
|
| 261 |
-
resnet_groups = resnet_groups if resnet_groups is not None else min(
|
|
|
|
| 262 |
|
| 263 |
# there is always at least one resnet
|
| 264 |
resnets = [
|
|
@@ -312,7 +317,7 @@ class UNetMidBlock2D(nn.Module):
|
|
| 312 |
hidden_states = attn(hidden_states)
|
| 313 |
else:
|
| 314 |
hidden_states = attn(hidden_states, encoder_states)
|
| 315 |
-
hidden_states = resnet(hidden_states, temb)
|
| 316 |
|
| 317 |
return hidden_states
|
| 318 |
|
|
@@ -340,7 +345,8 @@ class UNetMidBlock2DCrossAttn(nn.Module):
|
|
| 340 |
|
| 341 |
self.attention_type = attention_type
|
| 342 |
self.attn_num_head_channels = attn_num_head_channels
|
| 343 |
-
resnet_groups = resnet_groups if resnet_groups is not None else min(
|
|
|
|
| 344 |
|
| 345 |
# there is always at least one resnet
|
| 346 |
resnets = [
|
|
@@ -420,15 +426,16 @@ class UNetMidBlock2DCrossAttn(nn.Module):
|
|
| 420 |
|
| 421 |
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
| 422 |
for attn in self.attentions:
|
| 423 |
-
attn._set_use_memory_efficient_attention_xformers(
|
|
|
|
| 424 |
|
| 425 |
def forward(self, hidden_states, temb=None, encoder_hidden_states=None,
|
| 426 |
text_format_dict={}):
|
| 427 |
-
hidden_states = self.resnets[0](hidden_states, temb)
|
| 428 |
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
| 429 |
-
hidden_states = attn(hidden_states, encoder_hidden_states,
|
| 430 |
text_format_dict).sample
|
| 431 |
-
hidden_states = resnet(hidden_states, temb)
|
| 432 |
|
| 433 |
return hidden_states
|
| 434 |
|
|
@@ -502,7 +509,7 @@ class AttnDownBlock2D(nn.Module):
|
|
| 502 |
output_states = ()
|
| 503 |
|
| 504 |
for resnet, attn in zip(self.resnets, self.attentions):
|
| 505 |
-
hidden_states = resnet(hidden_states, temb)
|
| 506 |
hidden_states = attn(hidden_states)
|
| 507 |
output_states += (hidden_states,)
|
| 508 |
|
|
@@ -620,7 +627,8 @@ class CrossAttnDownBlock2D(nn.Module):
|
|
| 620 |
|
| 621 |
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
| 622 |
for attn in self.attentions:
|
| 623 |
-
attn._set_use_memory_efficient_attention_xformers(
|
|
|
|
| 624 |
|
| 625 |
def forward(self, hidden_states, temb=None, encoder_hidden_states=None,
|
| 626 |
text_format_dict={}):
|
|
@@ -638,13 +646,15 @@ class CrossAttnDownBlock2D(nn.Module):
|
|
| 638 |
|
| 639 |
return custom_forward
|
| 640 |
|
| 641 |
-
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
| 642 |
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 643 |
-
create_custom_forward(
|
| 644 |
-
|
|
|
|
|
|
|
|
|
|
| 645 |
)[0]
|
| 646 |
else:
|
| 647 |
-
hidden_states = resnet(hidden_states, temb)
|
| 648 |
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states,
|
| 649 |
text_format_dict=text_format_dict).sample
|
| 650 |
|
|
@@ -723,9 +733,10 @@ class DownBlock2D(nn.Module):
|
|
| 723 |
|
| 724 |
return custom_forward
|
| 725 |
|
| 726 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
|
|
| 727 |
else:
|
| 728 |
-
hidden_states = resnet(hidden_states, temb)
|
| 729 |
|
| 730 |
output_states += (hidden_states,)
|
| 731 |
|
|
@@ -789,7 +800,7 @@ class DownEncoderBlock2D(nn.Module):
|
|
| 789 |
|
| 790 |
def forward(self, hidden_states):
|
| 791 |
for resnet in self.resnets:
|
| 792 |
-
hidden_states = resnet(hidden_states, temb=None)
|
| 793 |
|
| 794 |
if self.downsamplers is not None:
|
| 795 |
for downsampler in self.downsamplers:
|
|
@@ -861,7 +872,7 @@ class AttnDownEncoderBlock2D(nn.Module):
|
|
| 861 |
|
| 862 |
def forward(self, hidden_states):
|
| 863 |
for resnet, attn in zip(self.resnets, self.attentions):
|
| 864 |
-
hidden_states = resnet(hidden_states, temb=None)
|
| 865 |
hidden_states = attn(hidden_states)
|
| 866 |
|
| 867 |
if self.downsamplers is not None:
|
|
@@ -937,8 +948,10 @@ class AttnSkipDownBlock2D(nn.Module):
|
|
| 937 |
down=True,
|
| 938 |
kernel="fir",
|
| 939 |
)
|
| 940 |
-
self.downsamplers = nn.ModuleList(
|
| 941 |
-
|
|
|
|
|
|
|
| 942 |
else:
|
| 943 |
self.resnet_down = None
|
| 944 |
self.downsamplers = None
|
|
@@ -948,7 +961,7 @@ class AttnSkipDownBlock2D(nn.Module):
|
|
| 948 |
output_states = ()
|
| 949 |
|
| 950 |
for resnet, attn in zip(self.resnets, self.attentions):
|
| 951 |
-
hidden_states = resnet(hidden_states, temb)
|
| 952 |
hidden_states = attn(hidden_states)
|
| 953 |
output_states += (hidden_states,)
|
| 954 |
|
|
@@ -1017,8 +1030,10 @@ class SkipDownBlock2D(nn.Module):
|
|
| 1017 |
down=True,
|
| 1018 |
kernel="fir",
|
| 1019 |
)
|
| 1020 |
-
self.downsamplers = nn.ModuleList(
|
| 1021 |
-
|
|
|
|
|
|
|
| 1022 |
else:
|
| 1023 |
self.resnet_down = None
|
| 1024 |
self.downsamplers = None
|
|
@@ -1028,7 +1043,7 @@ class SkipDownBlock2D(nn.Module):
|
|
| 1028 |
output_states = ()
|
| 1029 |
|
| 1030 |
for resnet in self.resnets:
|
| 1031 |
-
hidden_states = resnet(hidden_states, temb)
|
| 1032 |
output_states += (hidden_states,)
|
| 1033 |
|
| 1034 |
if self.downsamplers is not None:
|
|
@@ -1069,7 +1084,8 @@ class AttnUpBlock2D(nn.Module):
|
|
| 1069 |
self.attention_type = attention_type
|
| 1070 |
|
| 1071 |
for i in range(num_layers):
|
| 1072 |
-
res_skip_channels = in_channels if (
|
|
|
|
| 1073 |
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 1074 |
|
| 1075 |
resnets.append(
|
|
@@ -1100,7 +1116,8 @@ class AttnUpBlock2D(nn.Module):
|
|
| 1100 |
self.resnets = nn.ModuleList(resnets)
|
| 1101 |
|
| 1102 |
if add_upsample:
|
| 1103 |
-
self.upsamplers = nn.ModuleList(
|
|
|
|
| 1104 |
else:
|
| 1105 |
self.upsamplers = None
|
| 1106 |
|
|
@@ -1109,9 +1126,10 @@ class AttnUpBlock2D(nn.Module):
|
|
| 1109 |
# pop res hidden states
|
| 1110 |
res_hidden_states = res_hidden_states_tuple[-1]
|
| 1111 |
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 1112 |
-
hidden_states = torch.cat(
|
|
|
|
| 1113 |
|
| 1114 |
-
hidden_states = resnet(hidden_states, temb)
|
| 1115 |
hidden_states = attn(hidden_states)
|
| 1116 |
|
| 1117 |
if self.upsamplers is not None:
|
|
@@ -1152,7 +1170,8 @@ class CrossAttnUpBlock2D(nn.Module):
|
|
| 1152 |
self.attn_num_head_channels = attn_num_head_channels
|
| 1153 |
|
| 1154 |
for i in range(num_layers):
|
| 1155 |
-
res_skip_channels = in_channels if (
|
|
|
|
| 1156 |
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 1157 |
|
| 1158 |
resnets.append(
|
|
@@ -1197,7 +1216,8 @@ class CrossAttnUpBlock2D(nn.Module):
|
|
| 1197 |
self.resnets = nn.ModuleList(resnets)
|
| 1198 |
|
| 1199 |
if add_upsample:
|
| 1200 |
-
self.upsamplers = nn.ModuleList(
|
|
|
|
| 1201 |
else:
|
| 1202 |
self.upsamplers = None
|
| 1203 |
|
|
@@ -1224,7 +1244,8 @@ class CrossAttnUpBlock2D(nn.Module):
|
|
| 1224 |
|
| 1225 |
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
| 1226 |
for attn in self.attentions:
|
| 1227 |
-
attn._set_use_memory_efficient_attention_xformers(
|
|
|
|
| 1228 |
|
| 1229 |
def forward(
|
| 1230 |
self,
|
|
@@ -1239,7 +1260,8 @@ class CrossAttnUpBlock2D(nn.Module):
|
|
| 1239 |
# pop res hidden states
|
| 1240 |
res_hidden_states = res_hidden_states_tuple[-1]
|
| 1241 |
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 1242 |
-
hidden_states = torch.cat(
|
|
|
|
| 1243 |
|
| 1244 |
if self.training and self.gradient_checkpointing:
|
| 1245 |
|
|
@@ -1252,13 +1274,15 @@ class CrossAttnUpBlock2D(nn.Module):
|
|
| 1252 |
|
| 1253 |
return custom_forward
|
| 1254 |
|
| 1255 |
-
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
| 1256 |
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 1257 |
-
create_custom_forward(
|
| 1258 |
-
|
|
|
|
|
|
|
|
|
|
| 1259 |
)[0]
|
| 1260 |
else:
|
| 1261 |
-
hidden_states = resnet(hidden_states, temb)
|
| 1262 |
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states,
|
| 1263 |
text_format_dict=text_format_dict).sample
|
| 1264 |
|
|
@@ -1290,7 +1314,8 @@ class UpBlock2D(nn.Module):
|
|
| 1290 |
resnets = []
|
| 1291 |
|
| 1292 |
for i in range(num_layers):
|
| 1293 |
-
res_skip_channels = in_channels if (
|
|
|
|
| 1294 |
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 1295 |
|
| 1296 |
resnets.append(
|
|
@@ -1311,7 +1336,8 @@ class UpBlock2D(nn.Module):
|
|
| 1311 |
self.resnets = nn.ModuleList(resnets)
|
| 1312 |
|
| 1313 |
if add_upsample:
|
| 1314 |
-
self.upsamplers = nn.ModuleList(
|
|
|
|
| 1315 |
else:
|
| 1316 |
self.upsamplers = None
|
| 1317 |
|
|
@@ -1322,7 +1348,8 @@ class UpBlock2D(nn.Module):
|
|
| 1322 |
# pop res hidden states
|
| 1323 |
res_hidden_states = res_hidden_states_tuple[-1]
|
| 1324 |
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 1325 |
-
hidden_states = torch.cat(
|
|
|
|
| 1326 |
|
| 1327 |
if self.training and self.gradient_checkpointing:
|
| 1328 |
|
|
@@ -1332,9 +1359,10 @@ class UpBlock2D(nn.Module):
|
|
| 1332 |
|
| 1333 |
return custom_forward
|
| 1334 |
|
| 1335 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
|
|
| 1336 |
else:
|
| 1337 |
-
hidden_states = resnet(hidden_states, temb)
|
| 1338 |
|
| 1339 |
if self.upsamplers is not None:
|
| 1340 |
for upsampler in self.upsamplers:
|
|
@@ -1382,13 +1410,14 @@ class UpDecoderBlock2D(nn.Module):
|
|
| 1382 |
self.resnets = nn.ModuleList(resnets)
|
| 1383 |
|
| 1384 |
if add_upsample:
|
| 1385 |
-
self.upsamplers = nn.ModuleList(
|
|
|
|
| 1386 |
else:
|
| 1387 |
self.upsamplers = None
|
| 1388 |
|
| 1389 |
def forward(self, hidden_states):
|
| 1390 |
for resnet in self.resnets:
|
| 1391 |
-
hidden_states = resnet(hidden_states, temb=None)
|
| 1392 |
|
| 1393 |
if self.upsamplers is not None:
|
| 1394 |
for upsampler in self.upsamplers:
|
|
@@ -1448,13 +1477,14 @@ class AttnUpDecoderBlock2D(nn.Module):
|
|
| 1448 |
self.resnets = nn.ModuleList(resnets)
|
| 1449 |
|
| 1450 |
if add_upsample:
|
| 1451 |
-
self.upsamplers = nn.ModuleList(
|
|
|
|
| 1452 |
else:
|
| 1453 |
self.upsamplers = None
|
| 1454 |
|
| 1455 |
def forward(self, hidden_states):
|
| 1456 |
for resnet, attn in zip(self.resnets, self.attentions):
|
| 1457 |
-
hidden_states = resnet(hidden_states, temb=None)
|
| 1458 |
hidden_states = attn(hidden_states)
|
| 1459 |
|
| 1460 |
if self.upsamplers is not None:
|
|
@@ -1490,7 +1520,8 @@ class AttnSkipUpBlock2D(nn.Module):
|
|
| 1490 |
self.attention_type = attention_type
|
| 1491 |
|
| 1492 |
for i in range(num_layers):
|
| 1493 |
-
res_skip_channels = in_channels if (
|
|
|
|
| 1494 |
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 1495 |
|
| 1496 |
self.resnets.append(
|
|
@@ -1499,7 +1530,8 @@ class AttnSkipUpBlock2D(nn.Module):
|
|
| 1499 |
out_channels=out_channels,
|
| 1500 |
temb_channels=temb_channels,
|
| 1501 |
eps=resnet_eps,
|
| 1502 |
-
groups=min(resnet_in_channels +
|
|
|
|
| 1503 |
groups_out=min(out_channels // 4, 32),
|
| 1504 |
dropout=dropout,
|
| 1505 |
time_embedding_norm=resnet_time_scale_shift,
|
|
@@ -1536,7 +1568,8 @@ class AttnSkipUpBlock2D(nn.Module):
|
|
| 1536 |
up=True,
|
| 1537 |
kernel="fir",
|
| 1538 |
)
|
| 1539 |
-
self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(
|
|
|
|
| 1540 |
self.skip_norm = torch.nn.GroupNorm(
|
| 1541 |
num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
|
| 1542 |
)
|
|
@@ -1552,9 +1585,10 @@ class AttnSkipUpBlock2D(nn.Module):
|
|
| 1552 |
# pop res hidden states
|
| 1553 |
res_hidden_states = res_hidden_states_tuple[-1]
|
| 1554 |
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 1555 |
-
hidden_states = torch.cat(
|
|
|
|
| 1556 |
|
| 1557 |
-
hidden_states = resnet(hidden_states, temb)
|
| 1558 |
|
| 1559 |
hidden_states = self.attentions[0](hidden_states)
|
| 1560 |
|
|
@@ -1596,7 +1630,8 @@ class SkipUpBlock2D(nn.Module):
|
|
| 1596 |
self.resnets = nn.ModuleList([])
|
| 1597 |
|
| 1598 |
for i in range(num_layers):
|
| 1599 |
-
res_skip_channels = in_channels if (
|
|
|
|
| 1600 |
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 1601 |
|
| 1602 |
self.resnets.append(
|
|
@@ -1605,7 +1640,8 @@ class SkipUpBlock2D(nn.Module):
|
|
| 1605 |
out_channels=out_channels,
|
| 1606 |
temb_channels=temb_channels,
|
| 1607 |
eps=resnet_eps,
|
| 1608 |
-
groups=min(
|
|
|
|
| 1609 |
groups_out=min(out_channels // 4, 32),
|
| 1610 |
dropout=dropout,
|
| 1611 |
time_embedding_norm=resnet_time_scale_shift,
|
|
@@ -1633,7 +1669,8 @@ class SkipUpBlock2D(nn.Module):
|
|
| 1633 |
up=True,
|
| 1634 |
kernel="fir",
|
| 1635 |
)
|
| 1636 |
-
self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(
|
|
|
|
| 1637 |
self.skip_norm = torch.nn.GroupNorm(
|
| 1638 |
num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
|
| 1639 |
)
|
|
@@ -1649,9 +1686,10 @@ class SkipUpBlock2D(nn.Module):
|
|
| 1649 |
# pop res hidden states
|
| 1650 |
res_hidden_states = res_hidden_states_tuple[-1]
|
| 1651 |
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 1652 |
-
hidden_states = torch.cat(
|
|
|
|
| 1653 |
|
| 1654 |
-
hidden_states = resnet(hidden_states, temb)
|
| 1655 |
|
| 1656 |
if skip_sample is not None:
|
| 1657 |
skip_sample = self.upsampler(skip_sample)
|
|
@@ -1668,3 +1706,150 @@ class SkipUpBlock2D(nn.Module):
|
|
| 1668 |
hidden_states = self.resnet_up(hidden_states, temb)
|
| 1669 |
|
| 1670 |
return hidden_states, skip_sample
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
from torch import nn
|
| 17 |
|
| 18 |
from .attention import AttentionBlock, DualTransformer2DModel, Transformer2DModel
|
| 19 |
+
from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, Upsample2D
|
| 20 |
|
| 21 |
|
| 22 |
def get_down_block(
|
|
|
|
| 36 |
use_linear_projection=False,
|
| 37 |
only_cross_attention=False,
|
| 38 |
):
|
| 39 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith(
|
| 40 |
+
"UNetRes") else down_block_type
|
| 41 |
if down_block_type == "DownBlock2D":
|
| 42 |
return DownBlock2D(
|
| 43 |
num_layers=num_layers,
|
|
|
|
| 65 |
)
|
| 66 |
elif down_block_type == "CrossAttnDownBlock2D":
|
| 67 |
if cross_attention_dim is None:
|
| 68 |
+
raise ValueError(
|
| 69 |
+
"cross_attention_dim must be specified for CrossAttnDownBlock2D")
|
| 70 |
return CrossAttnDownBlock2D(
|
| 71 |
num_layers=num_layers,
|
| 72 |
in_channels=in_channels,
|
|
|
|
| 149 |
use_linear_projection=False,
|
| 150 |
only_cross_attention=False,
|
| 151 |
):
|
| 152 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith(
|
| 153 |
+
"UNetRes") else up_block_type
|
| 154 |
if up_block_type == "UpBlock2D":
|
| 155 |
return UpBlock2D(
|
| 156 |
num_layers=num_layers,
|
|
|
|
| 165 |
)
|
| 166 |
elif up_block_type == "CrossAttnUpBlock2D":
|
| 167 |
if cross_attention_dim is None:
|
| 168 |
+
raise ValueError(
|
| 169 |
+
"cross_attention_dim must be specified for CrossAttnUpBlock2D")
|
| 170 |
return CrossAttnUpBlock2D(
|
| 171 |
num_layers=num_layers,
|
| 172 |
in_channels=in_channels,
|
|
|
|
| 262 |
super().__init__()
|
| 263 |
|
| 264 |
self.attention_type = attention_type
|
| 265 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(
|
| 266 |
+
in_channels // 4, 32)
|
| 267 |
|
| 268 |
# there is always at least one resnet
|
| 269 |
resnets = [
|
|
|
|
| 317 |
hidden_states = attn(hidden_states)
|
| 318 |
else:
|
| 319 |
hidden_states = attn(hidden_states, encoder_states)
|
| 320 |
+
hidden_states, _ = resnet(hidden_states, temb)
|
| 321 |
|
| 322 |
return hidden_states
|
| 323 |
|
|
|
|
| 345 |
|
| 346 |
self.attention_type = attention_type
|
| 347 |
self.attn_num_head_channels = attn_num_head_channels
|
| 348 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(
|
| 349 |
+
in_channels // 4, 32)
|
| 350 |
|
| 351 |
# there is always at least one resnet
|
| 352 |
resnets = [
|
|
|
|
| 426 |
|
| 427 |
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
| 428 |
for attn in self.attentions:
|
| 429 |
+
attn._set_use_memory_efficient_attention_xformers(
|
| 430 |
+
use_memory_efficient_attention_xformers)
|
| 431 |
|
| 432 |
def forward(self, hidden_states, temb=None, encoder_hidden_states=None,
|
| 433 |
text_format_dict={}):
|
| 434 |
+
hidden_states, _ = self.resnets[0](hidden_states, temb)
|
| 435 |
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
| 436 |
+
hidden_states = attn(hidden_states, encoder_hidden_states,
|
| 437 |
text_format_dict).sample
|
| 438 |
+
hidden_states, _ = resnet(hidden_states, temb)
|
| 439 |
|
| 440 |
return hidden_states
|
| 441 |
|
|
|
|
| 509 |
output_states = ()
|
| 510 |
|
| 511 |
for resnet, attn in zip(self.resnets, self.attentions):
|
| 512 |
+
hidden_states, _ = resnet(hidden_states, temb)
|
| 513 |
hidden_states = attn(hidden_states)
|
| 514 |
output_states += (hidden_states,)
|
| 515 |
|
|
|
|
| 627 |
|
| 628 |
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
| 629 |
for attn in self.attentions:
|
| 630 |
+
attn._set_use_memory_efficient_attention_xformers(
|
| 631 |
+
use_memory_efficient_attention_xformers)
|
| 632 |
|
| 633 |
def forward(self, hidden_states, temb=None, encoder_hidden_states=None,
|
| 634 |
text_format_dict={}):
|
|
|
|
| 646 |
|
| 647 |
return custom_forward
|
| 648 |
|
|
|
|
| 649 |
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 650 |
+
create_custom_forward(resnet), hidden_states, temb)
|
| 651 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 652 |
+
create_custom_forward(
|
| 653 |
+
attn, return_dict=False), hidden_states, encoder_hidden_states,
|
| 654 |
+
text_format_dict
|
| 655 |
)[0]
|
| 656 |
else:
|
| 657 |
+
hidden_states, _ = resnet(hidden_states, temb)
|
| 658 |
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states,
|
| 659 |
text_format_dict=text_format_dict).sample
|
| 660 |
|
|
|
|
| 733 |
|
| 734 |
return custom_forward
|
| 735 |
|
| 736 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 737 |
+
create_custom_forward(resnet), hidden_states, temb)
|
| 738 |
else:
|
| 739 |
+
hidden_states, _ = resnet(hidden_states, temb)
|
| 740 |
|
| 741 |
output_states += (hidden_states,)
|
| 742 |
|
|
|
|
| 800 |
|
| 801 |
def forward(self, hidden_states):
|
| 802 |
for resnet in self.resnets:
|
| 803 |
+
hidden_states, _ = resnet(hidden_states, temb=None)
|
| 804 |
|
| 805 |
if self.downsamplers is not None:
|
| 806 |
for downsampler in self.downsamplers:
|
|
|
|
| 872 |
|
| 873 |
def forward(self, hidden_states):
|
| 874 |
for resnet, attn in zip(self.resnets, self.attentions):
|
| 875 |
+
hidden_states, _ = resnet(hidden_states, temb=None)
|
| 876 |
hidden_states = attn(hidden_states)
|
| 877 |
|
| 878 |
if self.downsamplers is not None:
|
|
|
|
| 948 |
down=True,
|
| 949 |
kernel="fir",
|
| 950 |
)
|
| 951 |
+
self.downsamplers = nn.ModuleList(
|
| 952 |
+
[FirDownsample2D(out_channels, out_channels=out_channels)])
|
| 953 |
+
self.skip_conv = nn.Conv2d(
|
| 954 |
+
3, out_channels, kernel_size=(1, 1), stride=(1, 1))
|
| 955 |
else:
|
| 956 |
self.resnet_down = None
|
| 957 |
self.downsamplers = None
|
|
|
|
| 961 |
output_states = ()
|
| 962 |
|
| 963 |
for resnet, attn in zip(self.resnets, self.attentions):
|
| 964 |
+
hidden_states, _ = resnet(hidden_states, temb)
|
| 965 |
hidden_states = attn(hidden_states)
|
| 966 |
output_states += (hidden_states,)
|
| 967 |
|
|
|
|
| 1030 |
down=True,
|
| 1031 |
kernel="fir",
|
| 1032 |
)
|
| 1033 |
+
self.downsamplers = nn.ModuleList(
|
| 1034 |
+
[FirDownsample2D(out_channels, out_channels=out_channels)])
|
| 1035 |
+
self.skip_conv = nn.Conv2d(
|
| 1036 |
+
3, out_channels, kernel_size=(1, 1), stride=(1, 1))
|
| 1037 |
else:
|
| 1038 |
self.resnet_down = None
|
| 1039 |
self.downsamplers = None
|
|
|
|
| 1043 |
output_states = ()
|
| 1044 |
|
| 1045 |
for resnet in self.resnets:
|
| 1046 |
+
hidden_states, _ = resnet(hidden_states, temb)
|
| 1047 |
output_states += (hidden_states,)
|
| 1048 |
|
| 1049 |
if self.downsamplers is not None:
|
|
|
|
| 1084 |
self.attention_type = attention_type
|
| 1085 |
|
| 1086 |
for i in range(num_layers):
|
| 1087 |
+
res_skip_channels = in_channels if (
|
| 1088 |
+
i == num_layers - 1) else out_channels
|
| 1089 |
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 1090 |
|
| 1091 |
resnets.append(
|
|
|
|
| 1116 |
self.resnets = nn.ModuleList(resnets)
|
| 1117 |
|
| 1118 |
if add_upsample:
|
| 1119 |
+
self.upsamplers = nn.ModuleList(
|
| 1120 |
+
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
| 1121 |
else:
|
| 1122 |
self.upsamplers = None
|
| 1123 |
|
|
|
|
| 1126 |
# pop res hidden states
|
| 1127 |
res_hidden_states = res_hidden_states_tuple[-1]
|
| 1128 |
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 1129 |
+
hidden_states = torch.cat(
|
| 1130 |
+
[hidden_states, res_hidden_states], dim=1)
|
| 1131 |
|
| 1132 |
+
hidden_states, _ = resnet(hidden_states, temb)
|
| 1133 |
hidden_states = attn(hidden_states)
|
| 1134 |
|
| 1135 |
if self.upsamplers is not None:
|
|
|
|
| 1170 |
self.attn_num_head_channels = attn_num_head_channels
|
| 1171 |
|
| 1172 |
for i in range(num_layers):
|
| 1173 |
+
res_skip_channels = in_channels if (
|
| 1174 |
+
i == num_layers - 1) else out_channels
|
| 1175 |
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 1176 |
|
| 1177 |
resnets.append(
|
|
|
|
| 1216 |
self.resnets = nn.ModuleList(resnets)
|
| 1217 |
|
| 1218 |
if add_upsample:
|
| 1219 |
+
self.upsamplers = nn.ModuleList(
|
| 1220 |
+
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
| 1221 |
else:
|
| 1222 |
self.upsamplers = None
|
| 1223 |
|
|
|
|
| 1244 |
|
| 1245 |
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
| 1246 |
for attn in self.attentions:
|
| 1247 |
+
attn._set_use_memory_efficient_attention_xformers(
|
| 1248 |
+
use_memory_efficient_attention_xformers)
|
| 1249 |
|
| 1250 |
def forward(
|
| 1251 |
self,
|
|
|
|
| 1260 |
# pop res hidden states
|
| 1261 |
res_hidden_states = res_hidden_states_tuple[-1]
|
| 1262 |
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 1263 |
+
hidden_states = torch.cat(
|
| 1264 |
+
[hidden_states, res_hidden_states], dim=1)
|
| 1265 |
|
| 1266 |
if self.training and self.gradient_checkpointing:
|
| 1267 |
|
|
|
|
| 1274 |
|
| 1275 |
return custom_forward
|
| 1276 |
|
|
|
|
| 1277 |
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 1278 |
+
create_custom_forward(resnet), hidden_states, temb)
|
| 1279 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 1280 |
+
create_custom_forward(
|
| 1281 |
+
attn, return_dict=False), hidden_states, encoder_hidden_states,
|
| 1282 |
+
text_format_dict
|
| 1283 |
)[0]
|
| 1284 |
else:
|
| 1285 |
+
hidden_states, _ = resnet(hidden_states, temb)
|
| 1286 |
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states,
|
| 1287 |
text_format_dict=text_format_dict).sample
|
| 1288 |
|
|
|
|
| 1314 |
resnets = []
|
| 1315 |
|
| 1316 |
for i in range(num_layers):
|
| 1317 |
+
res_skip_channels = in_channels if (
|
| 1318 |
+
i == num_layers - 1) else out_channels
|
| 1319 |
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 1320 |
|
| 1321 |
resnets.append(
|
|
|
|
| 1336 |
self.resnets = nn.ModuleList(resnets)
|
| 1337 |
|
| 1338 |
if add_upsample:
|
| 1339 |
+
self.upsamplers = nn.ModuleList(
|
| 1340 |
+
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
| 1341 |
else:
|
| 1342 |
self.upsamplers = None
|
| 1343 |
|
|
|
|
| 1348 |
# pop res hidden states
|
| 1349 |
res_hidden_states = res_hidden_states_tuple[-1]
|
| 1350 |
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 1351 |
+
hidden_states = torch.cat(
|
| 1352 |
+
[hidden_states, res_hidden_states], dim=1)
|
| 1353 |
|
| 1354 |
if self.training and self.gradient_checkpointing:
|
| 1355 |
|
|
|
|
| 1359 |
|
| 1360 |
return custom_forward
|
| 1361 |
|
| 1362 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 1363 |
+
create_custom_forward(resnet), hidden_states, temb)
|
| 1364 |
else:
|
| 1365 |
+
hidden_states, _ = resnet(hidden_states, temb)
|
| 1366 |
|
| 1367 |
if self.upsamplers is not None:
|
| 1368 |
for upsampler in self.upsamplers:
|
|
|
|
| 1410 |
self.resnets = nn.ModuleList(resnets)
|
| 1411 |
|
| 1412 |
if add_upsample:
|
| 1413 |
+
self.upsamplers = nn.ModuleList(
|
| 1414 |
+
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
| 1415 |
else:
|
| 1416 |
self.upsamplers = None
|
| 1417 |
|
| 1418 |
def forward(self, hidden_states):
|
| 1419 |
for resnet in self.resnets:
|
| 1420 |
+
hidden_states, _ = resnet(hidden_states, temb=None)
|
| 1421 |
|
| 1422 |
if self.upsamplers is not None:
|
| 1423 |
for upsampler in self.upsamplers:
|
|
|
|
| 1477 |
self.resnets = nn.ModuleList(resnets)
|
| 1478 |
|
| 1479 |
if add_upsample:
|
| 1480 |
+
self.upsamplers = nn.ModuleList(
|
| 1481 |
+
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
| 1482 |
else:
|
| 1483 |
self.upsamplers = None
|
| 1484 |
|
| 1485 |
def forward(self, hidden_states):
|
| 1486 |
for resnet, attn in zip(self.resnets, self.attentions):
|
| 1487 |
+
hidden_states, _ = resnet(hidden_states, temb=None)
|
| 1488 |
hidden_states = attn(hidden_states)
|
| 1489 |
|
| 1490 |
if self.upsamplers is not None:
|
|
|
|
| 1520 |
self.attention_type = attention_type
|
| 1521 |
|
| 1522 |
for i in range(num_layers):
|
| 1523 |
+
res_skip_channels = in_channels if (
|
| 1524 |
+
i == num_layers - 1) else out_channels
|
| 1525 |
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 1526 |
|
| 1527 |
self.resnets.append(
|
|
|
|
| 1530 |
out_channels=out_channels,
|
| 1531 |
temb_channels=temb_channels,
|
| 1532 |
eps=resnet_eps,
|
| 1533 |
+
groups=min(resnet_in_channels +
|
| 1534 |
+
res_skip_channels // 4, 32),
|
| 1535 |
groups_out=min(out_channels // 4, 32),
|
| 1536 |
dropout=dropout,
|
| 1537 |
time_embedding_norm=resnet_time_scale_shift,
|
|
|
|
| 1568 |
up=True,
|
| 1569 |
kernel="fir",
|
| 1570 |
)
|
| 1571 |
+
self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(
|
| 1572 |
+
3, 3), stride=(1, 1), padding=(1, 1))
|
| 1573 |
self.skip_norm = torch.nn.GroupNorm(
|
| 1574 |
num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
|
| 1575 |
)
|
|
|
|
| 1585 |
# pop res hidden states
|
| 1586 |
res_hidden_states = res_hidden_states_tuple[-1]
|
| 1587 |
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 1588 |
+
hidden_states = torch.cat(
|
| 1589 |
+
[hidden_states, res_hidden_states], dim=1)
|
| 1590 |
|
| 1591 |
+
hidden_states, _ = resnet(hidden_states, temb)
|
| 1592 |
|
| 1593 |
hidden_states = self.attentions[0](hidden_states)
|
| 1594 |
|
|
|
|
| 1630 |
self.resnets = nn.ModuleList([])
|
| 1631 |
|
| 1632 |
for i in range(num_layers):
|
| 1633 |
+
res_skip_channels = in_channels if (
|
| 1634 |
+
i == num_layers - 1) else out_channels
|
| 1635 |
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 1636 |
|
| 1637 |
self.resnets.append(
|
|
|
|
| 1640 |
out_channels=out_channels,
|
| 1641 |
temb_channels=temb_channels,
|
| 1642 |
eps=resnet_eps,
|
| 1643 |
+
groups=min(
|
| 1644 |
+
(resnet_in_channels + res_skip_channels) // 4, 32),
|
| 1645 |
groups_out=min(out_channels // 4, 32),
|
| 1646 |
dropout=dropout,
|
| 1647 |
time_embedding_norm=resnet_time_scale_shift,
|
|
|
|
| 1669 |
up=True,
|
| 1670 |
kernel="fir",
|
| 1671 |
)
|
| 1672 |
+
self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(
|
| 1673 |
+
3, 3), stride=(1, 1), padding=(1, 1))
|
| 1674 |
self.skip_norm = torch.nn.GroupNorm(
|
| 1675 |
num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
|
| 1676 |
)
|
|
|
|
| 1686 |
# pop res hidden states
|
| 1687 |
res_hidden_states = res_hidden_states_tuple[-1]
|
| 1688 |
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 1689 |
+
hidden_states = torch.cat(
|
| 1690 |
+
[hidden_states, res_hidden_states], dim=1)
|
| 1691 |
|
| 1692 |
+
hidden_states, _ = resnet(hidden_states, temb)
|
| 1693 |
|
| 1694 |
if skip_sample is not None:
|
| 1695 |
skip_sample = self.upsampler(skip_sample)
|
|
|
|
| 1706 |
hidden_states = self.resnet_up(hidden_states, temb)
|
| 1707 |
|
| 1708 |
return hidden_states, skip_sample
|
| 1709 |
+
|
| 1710 |
+
|
| 1711 |
+
class ResnetBlock2D(nn.Module):
|
| 1712 |
+
def __init__(
|
| 1713 |
+
self,
|
| 1714 |
+
*,
|
| 1715 |
+
in_channels,
|
| 1716 |
+
out_channels=None,
|
| 1717 |
+
conv_shortcut=False,
|
| 1718 |
+
dropout=0.0,
|
| 1719 |
+
temb_channels=512,
|
| 1720 |
+
groups=32,
|
| 1721 |
+
groups_out=None,
|
| 1722 |
+
pre_norm=True,
|
| 1723 |
+
eps=1e-6,
|
| 1724 |
+
non_linearity="swish",
|
| 1725 |
+
time_embedding_norm="default",
|
| 1726 |
+
kernel=None,
|
| 1727 |
+
output_scale_factor=1.0,
|
| 1728 |
+
use_in_shortcut=None,
|
| 1729 |
+
up=False,
|
| 1730 |
+
down=False,
|
| 1731 |
+
):
|
| 1732 |
+
super().__init__()
|
| 1733 |
+
self.pre_norm = pre_norm
|
| 1734 |
+
self.pre_norm = True
|
| 1735 |
+
self.in_channels = in_channels
|
| 1736 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 1737 |
+
self.out_channels = out_channels
|
| 1738 |
+
self.use_conv_shortcut = conv_shortcut
|
| 1739 |
+
self.time_embedding_norm = time_embedding_norm
|
| 1740 |
+
self.up = up
|
| 1741 |
+
self.down = down
|
| 1742 |
+
self.output_scale_factor = output_scale_factor
|
| 1743 |
+
|
| 1744 |
+
if groups_out is None:
|
| 1745 |
+
groups_out = groups
|
| 1746 |
+
|
| 1747 |
+
self.norm1 = torch.nn.GroupNorm(
|
| 1748 |
+
num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
| 1749 |
+
|
| 1750 |
+
self.conv1 = torch.nn.Conv2d(
|
| 1751 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 1752 |
+
|
| 1753 |
+
if temb_channels is not None:
|
| 1754 |
+
if self.time_embedding_norm == "default":
|
| 1755 |
+
time_emb_proj_out_channels = out_channels
|
| 1756 |
+
elif self.time_embedding_norm == "scale_shift":
|
| 1757 |
+
time_emb_proj_out_channels = out_channels * 2
|
| 1758 |
+
else:
|
| 1759 |
+
raise ValueError(
|
| 1760 |
+
f"unknown time_embedding_norm : {self.time_embedding_norm} ")
|
| 1761 |
+
|
| 1762 |
+
self.time_emb_proj = torch.nn.Linear(
|
| 1763 |
+
temb_channels, time_emb_proj_out_channels)
|
| 1764 |
+
else:
|
| 1765 |
+
self.time_emb_proj = None
|
| 1766 |
+
|
| 1767 |
+
self.norm2 = torch.nn.GroupNorm(
|
| 1768 |
+
num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
| 1769 |
+
self.dropout = torch.nn.Dropout(dropout)
|
| 1770 |
+
self.conv2 = torch.nn.Conv2d(
|
| 1771 |
+
out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 1772 |
+
|
| 1773 |
+
if non_linearity == "swish":
|
| 1774 |
+
self.nonlinearity = lambda x: F.silu(x)
|
| 1775 |
+
elif non_linearity == "mish":
|
| 1776 |
+
self.nonlinearity = Mish()
|
| 1777 |
+
elif non_linearity == "silu":
|
| 1778 |
+
self.nonlinearity = nn.SiLU()
|
| 1779 |
+
|
| 1780 |
+
self.upsample = self.downsample = None
|
| 1781 |
+
if self.up:
|
| 1782 |
+
if kernel == "fir":
|
| 1783 |
+
fir_kernel = (1, 3, 3, 1)
|
| 1784 |
+
self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel)
|
| 1785 |
+
elif kernel == "sde_vp":
|
| 1786 |
+
self.upsample = partial(
|
| 1787 |
+
F.interpolate, scale_factor=2.0, mode="nearest")
|
| 1788 |
+
else:
|
| 1789 |
+
self.upsample = Upsample2D(in_channels, use_conv=False)
|
| 1790 |
+
elif self.down:
|
| 1791 |
+
if kernel == "fir":
|
| 1792 |
+
fir_kernel = (1, 3, 3, 1)
|
| 1793 |
+
self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel)
|
| 1794 |
+
elif kernel == "sde_vp":
|
| 1795 |
+
self.downsample = partial(
|
| 1796 |
+
F.avg_pool2d, kernel_size=2, stride=2)
|
| 1797 |
+
else:
|
| 1798 |
+
self.downsample = Downsample2D(
|
| 1799 |
+
in_channels, use_conv=False, padding=1, name="op")
|
| 1800 |
+
|
| 1801 |
+
self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
|
| 1802 |
+
|
| 1803 |
+
self.conv_shortcut = None
|
| 1804 |
+
if self.use_in_shortcut:
|
| 1805 |
+
self.conv_shortcut = torch.nn.Conv2d(
|
| 1806 |
+
in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
| 1807 |
+
|
| 1808 |
+
def forward(self, input_tensor, temb, inject_states=None):
|
| 1809 |
+
hidden_states = input_tensor
|
| 1810 |
+
|
| 1811 |
+
hidden_states = self.norm1(hidden_states)
|
| 1812 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 1813 |
+
|
| 1814 |
+
if self.upsample is not None:
|
| 1815 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
| 1816 |
+
if hidden_states.shape[0] >= 64:
|
| 1817 |
+
input_tensor = input_tensor.contiguous()
|
| 1818 |
+
hidden_states = hidden_states.contiguous()
|
| 1819 |
+
input_tensor = self.upsample(input_tensor)
|
| 1820 |
+
hidden_states = self.upsample(hidden_states)
|
| 1821 |
+
elif self.downsample is not None:
|
| 1822 |
+
input_tensor = self.downsample(input_tensor)
|
| 1823 |
+
hidden_states = self.downsample(hidden_states)
|
| 1824 |
+
|
| 1825 |
+
hidden_states = self.conv1(hidden_states)
|
| 1826 |
+
|
| 1827 |
+
if temb is not None:
|
| 1828 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))[
|
| 1829 |
+
:, :, None, None]
|
| 1830 |
+
|
| 1831 |
+
if temb is not None and self.time_embedding_norm == "default":
|
| 1832 |
+
hidden_states = hidden_states + temb
|
| 1833 |
+
|
| 1834 |
+
hidden_states = self.norm2(hidden_states)
|
| 1835 |
+
|
| 1836 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
| 1837 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
| 1838 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
| 1839 |
+
|
| 1840 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 1841 |
+
|
| 1842 |
+
hidden_states = self.dropout(hidden_states)
|
| 1843 |
+
hidden_states = self.conv2(hidden_states)
|
| 1844 |
+
|
| 1845 |
+
if self.conv_shortcut is not None:
|
| 1846 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
| 1847 |
+
|
| 1848 |
+
if inject_states is not None:
|
| 1849 |
+
output_tensor = (input_tensor + inject_states) / \
|
| 1850 |
+
self.output_scale_factor
|
| 1851 |
+
else:
|
| 1852 |
+
output_tensor = (input_tensor + hidden_states) / \
|
| 1853 |
+
self.output_scale_factor
|
| 1854 |
+
|
| 1855 |
+
return output_tensor, hidden_states
|
utils/attention_utils.py
CHANGED
|
@@ -6,7 +6,46 @@ import seaborn as sns
|
|
| 6 |
import torch
|
| 7 |
import torchvision
|
| 8 |
|
| 9 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
def split_attention_maps_over_steps(attention_maps):
|
|
@@ -37,7 +76,7 @@ def split_attention_maps_over_steps(attention_maps):
|
|
| 37 |
|
| 38 |
def plot_attention_maps(atten_map_list, obj_tokens, save_dir, seed, tokens_vis=None):
|
| 39 |
atten_names = ['presoftmax', 'postsoftmax', 'postsoftmax_erosion']
|
| 40 |
-
for i,
|
| 41 |
n_obj = len(attn_map)
|
| 42 |
plt.figure()
|
| 43 |
plt.clf()
|
|
@@ -63,6 +102,7 @@ def plot_attention_maps(atten_map_list, obj_tokens, save_dir, seed, tokens_vis=N
|
|
| 63 |
cmap=cmap, vmin=vmin, vmax=vmax
|
| 64 |
)
|
| 65 |
axs[tid].set_axis_off()
|
|
|
|
| 66 |
if tokens_vis is not None:
|
| 67 |
if tid == n_obj-1:
|
| 68 |
axs_xlabel = 'other tokens'
|
|
@@ -79,13 +119,14 @@ def plot_attention_maps(atten_map_list, obj_tokens, save_dir, seed, tokens_vis=N
|
|
| 79 |
canvas = fig.canvas
|
| 80 |
canvas.draw()
|
| 81 |
width, height = canvas.get_width_height()
|
| 82 |
-
img = np.frombuffer(canvas.tostring_rgb(),
|
|
|
|
| 83 |
|
| 84 |
fig.tight_layout()
|
| 85 |
return img
|
| 86 |
|
| 87 |
|
| 88 |
-
def
|
| 89 |
r"""Function to visualize attention maps.
|
| 90 |
Args:
|
| 91 |
save_dir (str): Path to save attention maps
|
|
@@ -98,25 +139,6 @@ def get_token_maps(attention_maps, save_dir, width, height, obj_tokens, seed=0,
|
|
| 98 |
attention_maps
|
| 99 |
)
|
| 100 |
|
| 101 |
-
selected_layers = [
|
| 102 |
-
# 'down_blocks.0.attentions.0.transformer_blocks.0.attn2',
|
| 103 |
-
# 'down_blocks.0.attentions.1.transformer_blocks.0.attn2',
|
| 104 |
-
'down_blocks.1.attentions.0.transformer_blocks.0.attn2',
|
| 105 |
-
# 'down_blocks.1.attentions.1.transformer_blocks.0.attn2',
|
| 106 |
-
'down_blocks.2.attentions.0.transformer_blocks.0.attn2',
|
| 107 |
-
'down_blocks.2.attentions.1.transformer_blocks.0.attn2',
|
| 108 |
-
'mid_block.attentions.0.transformer_blocks.0.attn2',
|
| 109 |
-
'up_blocks.1.attentions.0.transformer_blocks.0.attn2',
|
| 110 |
-
'up_blocks.1.attentions.1.transformer_blocks.0.attn2',
|
| 111 |
-
'up_blocks.1.attentions.2.transformer_blocks.0.attn2',
|
| 112 |
-
# 'up_blocks.2.attentions.0.transformer_blocks.0.attn2',
|
| 113 |
-
'up_blocks.2.attentions.1.transformer_blocks.0.attn2',
|
| 114 |
-
# 'up_blocks.2.attentions.2.transformer_blocks.0.attn2',
|
| 115 |
-
# 'up_blocks.3.attentions.0.transformer_blocks.0.attn2',
|
| 116 |
-
# 'up_blocks.3.attentions.1.transformer_blocks.0.attn2',
|
| 117 |
-
# 'up_blocks.3.attentions.2.transformer_blocks.0.attn2'
|
| 118 |
-
]
|
| 119 |
-
|
| 120 |
nsteps = len(attention_maps_cond)
|
| 121 |
hw_ori = width * height
|
| 122 |
|
|
@@ -128,7 +150,7 @@ def get_token_maps(attention_maps, save_dir, width, height, obj_tokens, seed=0,
|
|
| 128 |
attention_maps_cur = attention_maps_cond[step_num]
|
| 129 |
|
| 130 |
for layer in attention_maps_cur.keys():
|
| 131 |
-
if step_num < 10 or layer not in
|
| 132 |
continue
|
| 133 |
|
| 134 |
attention_ind = attention_maps_cur[layer].cpu()
|
|
@@ -179,7 +201,107 @@ def get_token_maps(attention_maps, save_dir, width, height, obj_tokens, seed=0,
|
|
| 179 |
attention_maps_averaged_normalized[i:i+1] for i in range(attention_maps_averaged_normalized.shape[0])]
|
| 180 |
|
| 181 |
token_maps_vis = plot_attention_maps([attention_maps_averaged, attention_maps_averaged_normalized],
|
| 182 |
-
|
| 183 |
attention_maps_averaged_normalized = [attn_mask.unsqueeze(1).repeat(
|
| 184 |
[1, 4, 1, 1]).cuda() for attn_mask in attention_maps_averaged_normalized]
|
| 185 |
return attention_maps_averaged_normalized, token_maps_vis
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import torch
|
| 7 |
import torchvision
|
| 8 |
|
| 9 |
+
from sklearn.cluster import KMeans
|
| 10 |
+
|
| 11 |
+
SelfAttentionLayers = [
|
| 12 |
+
# 'down_blocks.0.attentions.0.transformer_blocks.0.attn1',
|
| 13 |
+
# 'down_blocks.0.attentions.1.transformer_blocks.0.attn1',
|
| 14 |
+
'down_blocks.1.attentions.0.transformer_blocks.0.attn1',
|
| 15 |
+
# 'down_blocks.1.attentions.1.transformer_blocks.0.attn1',
|
| 16 |
+
'down_blocks.2.attentions.0.transformer_blocks.0.attn1',
|
| 17 |
+
'down_blocks.2.attentions.1.transformer_blocks.0.attn1',
|
| 18 |
+
'mid_block.attentions.0.transformer_blocks.0.attn1',
|
| 19 |
+
'up_blocks.1.attentions.0.transformer_blocks.0.attn1',
|
| 20 |
+
'up_blocks.1.attentions.1.transformer_blocks.0.attn1',
|
| 21 |
+
'up_blocks.1.attentions.2.transformer_blocks.0.attn1',
|
| 22 |
+
# 'up_blocks.2.attentions.0.transformer_blocks.0.attn1',
|
| 23 |
+
'up_blocks.2.attentions.1.transformer_blocks.0.attn1',
|
| 24 |
+
# 'up_blocks.2.attentions.2.transformer_blocks.0.attn1',
|
| 25 |
+
# 'up_blocks.3.attentions.0.transformer_blocks.0.attn1',
|
| 26 |
+
# 'up_blocks.3.attentions.1.transformer_blocks.0.attn1',
|
| 27 |
+
# 'up_blocks.3.attentions.2.transformer_blocks.0.attn1',
|
| 28 |
+
]
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
CrossAttentionLayers = [
|
| 32 |
+
# 'down_blocks.0.attentions.0.transformer_blocks.0.attn2',
|
| 33 |
+
# 'down_blocks.0.attentions.1.transformer_blocks.0.attn2',
|
| 34 |
+
'down_blocks.1.attentions.0.transformer_blocks.0.attn2',
|
| 35 |
+
# 'down_blocks.1.attentions.1.transformer_blocks.0.attn2',
|
| 36 |
+
'down_blocks.2.attentions.0.transformer_blocks.0.attn2',
|
| 37 |
+
'down_blocks.2.attentions.1.transformer_blocks.0.attn2',
|
| 38 |
+
'mid_block.attentions.0.transformer_blocks.0.attn2',
|
| 39 |
+
'up_blocks.1.attentions.0.transformer_blocks.0.attn2',
|
| 40 |
+
'up_blocks.1.attentions.1.transformer_blocks.0.attn2',
|
| 41 |
+
'up_blocks.1.attentions.2.transformer_blocks.0.attn2',
|
| 42 |
+
# 'up_blocks.2.attentions.0.transformer_blocks.0.attn2',
|
| 43 |
+
'up_blocks.2.attentions.1.transformer_blocks.0.attn2',
|
| 44 |
+
# 'up_blocks.2.attentions.2.transformer_blocks.0.attn2',
|
| 45 |
+
# 'up_blocks.3.attentions.0.transformer_blocks.0.attn2',
|
| 46 |
+
# 'up_blocks.3.attentions.1.transformer_blocks.0.attn2',
|
| 47 |
+
# 'up_blocks.3.attentions.2.transformer_blocks.0.attn2'
|
| 48 |
+
]
|
| 49 |
|
| 50 |
|
| 51 |
def split_attention_maps_over_steps(attention_maps):
|
|
|
|
| 76 |
|
| 77 |
def plot_attention_maps(atten_map_list, obj_tokens, save_dir, seed, tokens_vis=None):
|
| 78 |
atten_names = ['presoftmax', 'postsoftmax', 'postsoftmax_erosion']
|
| 79 |
+
for i, attn_map in enumerate(atten_map_list):
|
| 80 |
n_obj = len(attn_map)
|
| 81 |
plt.figure()
|
| 82 |
plt.clf()
|
|
|
|
| 102 |
cmap=cmap, vmin=vmin, vmax=vmax
|
| 103 |
)
|
| 104 |
axs[tid].set_axis_off()
|
| 105 |
+
|
| 106 |
if tokens_vis is not None:
|
| 107 |
if tid == n_obj-1:
|
| 108 |
axs_xlabel = 'other tokens'
|
|
|
|
| 119 |
canvas = fig.canvas
|
| 120 |
canvas.draw()
|
| 121 |
width, height = canvas.get_width_height()
|
| 122 |
+
img = np.frombuffer(canvas.tostring_rgb(),
|
| 123 |
+
dtype='uint8').reshape((height, width, 3))
|
| 124 |
|
| 125 |
fig.tight_layout()
|
| 126 |
return img
|
| 127 |
|
| 128 |
|
| 129 |
+
def get_token_maps_deprecated(attention_maps, save_dir, width, height, obj_tokens, seed=0, tokens_vis=None):
|
| 130 |
r"""Function to visualize attention maps.
|
| 131 |
Args:
|
| 132 |
save_dir (str): Path to save attention maps
|
|
|
|
| 139 |
attention_maps
|
| 140 |
)
|
| 141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
nsteps = len(attention_maps_cond)
|
| 143 |
hw_ori = width * height
|
| 144 |
|
|
|
|
| 150 |
attention_maps_cur = attention_maps_cond[step_num]
|
| 151 |
|
| 152 |
for layer in attention_maps_cur.keys():
|
| 153 |
+
if step_num < 10 or layer not in CrossAttentionLayers:
|
| 154 |
continue
|
| 155 |
|
| 156 |
attention_ind = attention_maps_cur[layer].cpu()
|
|
|
|
| 201 |
attention_maps_averaged_normalized[i:i+1] for i in range(attention_maps_averaged_normalized.shape[0])]
|
| 202 |
|
| 203 |
token_maps_vis = plot_attention_maps([attention_maps_averaged, attention_maps_averaged_normalized],
|
| 204 |
+
obj_tokens, save_dir, seed, tokens_vis)
|
| 205 |
attention_maps_averaged_normalized = [attn_mask.unsqueeze(1).repeat(
|
| 206 |
[1, 4, 1, 1]).cuda() for attn_mask in attention_maps_averaged_normalized]
|
| 207 |
return attention_maps_averaged_normalized, token_maps_vis
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def get_token_maps(selfattn_maps, crossattn_maps, n_maps, save_dir, width, height, obj_tokens, kmeans_seed=0, tokens_vis=None,
|
| 211 |
+
preprocess=False, segment_threshold=0.30, num_segments=9, return_vis=False):
|
| 212 |
+
r"""Function to visualize attention maps.
|
| 213 |
+
Args:
|
| 214 |
+
save_dir (str): Path to save attention maps
|
| 215 |
+
batch_size (int): Batch size
|
| 216 |
+
sampler_order (int): Sampler order
|
| 217 |
+
"""
|
| 218 |
+
|
| 219 |
+
# create the segmentation mask using self-attention maps
|
| 220 |
+
resolution = 32
|
| 221 |
+
attn_maps_1024 = {8: [], 16: [], 32: []}
|
| 222 |
+
for attn_map in selfattn_maps.values():
|
| 223 |
+
resolution_map = np.sqrt(attn_map.shape[1]).astype(int)
|
| 224 |
+
attn_map = attn_map.reshape(
|
| 225 |
+
1, resolution_map, resolution_map, resolution_map**2).permute([3, 0, 1, 2])
|
| 226 |
+
attn_map = torch.nn.functional.interpolate(attn_map, (resolution, resolution),
|
| 227 |
+
mode='bicubic', antialias=True)
|
| 228 |
+
attn_maps_1024[resolution_map].append(attn_map.permute([1, 2, 3, 0]).reshape(
|
| 229 |
+
1, resolution**2, resolution_map**2))
|
| 230 |
+
attn_maps_1024 = torch.cat([torch.cat(v).mean(0).cpu()
|
| 231 |
+
for v in attn_maps_1024.values()], -1).numpy()
|
| 232 |
+
kmeans = KMeans(n_clusters=num_segments,
|
| 233 |
+
n_init=10).fit(attn_maps_1024)
|
| 234 |
+
clusters = kmeans.labels_
|
| 235 |
+
clusters = clusters.reshape(resolution, resolution)
|
| 236 |
+
fig = plt.figure()
|
| 237 |
+
plt.imshow(clusters)
|
| 238 |
+
plt.axis('off')
|
| 239 |
+
plt.savefig(os.path.join(save_dir, 'segmentation_k%d.jpg' % (num_segments)),
|
| 240 |
+
bbox_inches='tight', pad_inches=0)
|
| 241 |
+
if return_vis:
|
| 242 |
+
canvas = fig.canvas
|
| 243 |
+
canvas.draw()
|
| 244 |
+
cav_width, cav_height = canvas.get_width_height()
|
| 245 |
+
segments_vis = np.frombuffer(canvas.tostring_rgb(),
|
| 246 |
+
dtype='uint8').reshape((cav_height, cav_width, 3))
|
| 247 |
+
|
| 248 |
+
plt.close()
|
| 249 |
+
|
| 250 |
+
# label the segmentation mask using cross-attention maps
|
| 251 |
+
cross_attn_maps_1024 = []
|
| 252 |
+
for attn_map in crossattn_maps.values():
|
| 253 |
+
resolution_map = np.sqrt(attn_map.shape[1]).astype(int)
|
| 254 |
+
attn_map = attn_map.reshape(
|
| 255 |
+
1, resolution_map, resolution_map, -1).permute([0, 3, 1, 2])
|
| 256 |
+
attn_map = torch.nn.functional.interpolate(attn_map, (resolution, resolution),
|
| 257 |
+
mode='bicubic', antialias=True)
|
| 258 |
+
cross_attn_maps_1024.append(attn_map.permute([0, 2, 3, 1]))
|
| 259 |
+
|
| 260 |
+
cross_attn_maps_1024 = torch.cat(
|
| 261 |
+
cross_attn_maps_1024).mean(0).cpu().numpy()
|
| 262 |
+
normalized_span_maps = []
|
| 263 |
+
for token_ids in obj_tokens:
|
| 264 |
+
span_token_maps = cross_attn_maps_1024[:, :, token_ids.numpy()]
|
| 265 |
+
normalized_span_map = np.zeros_like(span_token_maps)
|
| 266 |
+
for i in range(span_token_maps.shape[-1]):
|
| 267 |
+
curr_noun_map = span_token_maps[:, :, i]
|
| 268 |
+
normalized_span_map[:, :, i] = (
|
| 269 |
+
curr_noun_map - np.abs(curr_noun_map.min())) / curr_noun_map.max()
|
| 270 |
+
normalized_span_maps.append(normalized_span_map)
|
| 271 |
+
foreground_token_maps = [np.zeros([clusters.shape[0], clusters.shape[1]]).squeeze(
|
| 272 |
+
) for normalized_span_map in normalized_span_maps]
|
| 273 |
+
background_map = np.zeros([clusters.shape[0], clusters.shape[1]]).squeeze()
|
| 274 |
+
for c in range(num_segments):
|
| 275 |
+
cluster_mask = np.zeros_like(clusters)
|
| 276 |
+
cluster_mask[clusters == c] = 1.
|
| 277 |
+
is_foreground = False
|
| 278 |
+
for normalized_span_map, foreground_nouns_map, token_ids in zip(normalized_span_maps, foreground_token_maps, obj_tokens):
|
| 279 |
+
score_maps = [cluster_mask * normalized_span_map[:, :, i]
|
| 280 |
+
for i in range(len(token_ids))]
|
| 281 |
+
scores = [score_map.sum() / cluster_mask.sum()
|
| 282 |
+
for score_map in score_maps]
|
| 283 |
+
if max(scores) > segment_threshold:
|
| 284 |
+
foreground_nouns_map += cluster_mask
|
| 285 |
+
is_foreground = True
|
| 286 |
+
if not is_foreground:
|
| 287 |
+
background_map += cluster_mask
|
| 288 |
+
foreground_token_maps.append(background_map)
|
| 289 |
+
|
| 290 |
+
# resize the token maps and visualization
|
| 291 |
+
resized_token_maps = torch.cat([torch.nn.functional.interpolate(torch.from_numpy(token_map).unsqueeze(0).unsqueeze(
|
| 292 |
+
0), (height, width), mode='bicubic', antialias=True)[0] for token_map in foreground_token_maps]).clamp(0, 1)
|
| 293 |
+
|
| 294 |
+
resized_token_maps = resized_token_maps / \
|
| 295 |
+
(resized_token_maps.sum(0, True)+1e-8)
|
| 296 |
+
resized_token_maps = [token_map.unsqueeze(
|
| 297 |
+
0) for token_map in resized_token_maps]
|
| 298 |
+
foreground_token_maps = [token_map[None, :, :]
|
| 299 |
+
for token_map in foreground_token_maps]
|
| 300 |
+
token_maps_vis = plot_attention_maps([foreground_token_maps, resized_token_maps], obj_tokens,
|
| 301 |
+
save_dir, kmeans_seed, tokens_vis)
|
| 302 |
+
resized_token_maps = [token_map.unsqueeze(1).repeat(
|
| 303 |
+
[1, 4, 1, 1]).to(attn_map.dtype).cuda() for token_map in resized_token_maps]
|
| 304 |
+
if return_vis:
|
| 305 |
+
return resized_token_maps, segments_vis, token_maps_vis
|
| 306 |
+
else:
|
| 307 |
+
return resized_token_maps
|
utils/richtext_utils.py
CHANGED
|
@@ -27,7 +27,7 @@ def seed_everything(seed):
|
|
| 27 |
torch.cuda.manual_seed(seed)
|
| 28 |
|
| 29 |
|
| 30 |
-
def hex_to_rgb(hex_string, return_nearest_color=False
|
| 31 |
r"""
|
| 32 |
Covert Hex triplet to RGB triplet.
|
| 33 |
"""
|
|
@@ -40,8 +40,8 @@ def hex_to_rgb(hex_string, return_nearest_color=False, device='cuda'):
|
|
| 40 |
rgb = torch.FloatTensor((red, green, blue))[None, :, None, None]/255.
|
| 41 |
if return_nearest_color:
|
| 42 |
nearest_color = find_nearest_color(rgb)
|
| 43 |
-
return rgb.
|
| 44 |
-
return rgb.
|
| 45 |
|
| 46 |
|
| 47 |
def find_nearest_color(rgb):
|
|
@@ -56,7 +56,7 @@ def find_nearest_color(rgb):
|
|
| 56 |
return nearest_color
|
| 57 |
|
| 58 |
|
| 59 |
-
def font2style(font
|
| 60 |
r"""
|
| 61 |
Convert the font name to the style name.
|
| 62 |
"""
|
|
@@ -71,7 +71,7 @@ def font2style(font, device='cuda'):
|
|
| 71 |
'Akronim': 'Abstract Cubism, Pablo Picasso', }[font]
|
| 72 |
|
| 73 |
|
| 74 |
-
def parse_json(json_str
|
| 75 |
r"""
|
| 76 |
Convert the JSON string to attributes.
|
| 77 |
"""
|
|
@@ -121,7 +121,7 @@ def parse_json(json_str, device):
|
|
| 121 |
if 'color' in span['attributes']:
|
| 122 |
use_grad_guidance = True
|
| 123 |
color_rgb, nearest_color = hex_to_rgb(
|
| 124 |
-
span['attributes']['color'], True
|
| 125 |
if prev_color_rgb == color_rgb:
|
| 126 |
prev_text_prompt = color_text_prompts[-1]
|
| 127 |
color_text_prompts[-1] = prev_text_prompt + \
|
|
@@ -197,8 +197,8 @@ def get_attention_control_input(model, base_tokens, size_text_prompts_and_sizes)
|
|
| 197 |
word_pos.append(base_tokens.index(size_token)+1)
|
| 198 |
font_sizes.append(font_size)
|
| 199 |
if len(word_pos) > 0:
|
| 200 |
-
word_pos = torch.LongTensor(word_pos).
|
| 201 |
-
font_sizes = torch.FloatTensor(font_sizes).
|
| 202 |
else:
|
| 203 |
word_pos = None
|
| 204 |
font_sizes = None
|
|
|
|
| 27 |
torch.cuda.manual_seed(seed)
|
| 28 |
|
| 29 |
|
| 30 |
+
def hex_to_rgb(hex_string, return_nearest_color=False):
|
| 31 |
r"""
|
| 32 |
Covert Hex triplet to RGB triplet.
|
| 33 |
"""
|
|
|
|
| 40 |
rgb = torch.FloatTensor((red, green, blue))[None, :, None, None]/255.
|
| 41 |
if return_nearest_color:
|
| 42 |
nearest_color = find_nearest_color(rgb)
|
| 43 |
+
return rgb.cuda(), nearest_color
|
| 44 |
+
return rgb.cuda()
|
| 45 |
|
| 46 |
|
| 47 |
def find_nearest_color(rgb):
|
|
|
|
| 56 |
return nearest_color
|
| 57 |
|
| 58 |
|
| 59 |
+
def font2style(font):
|
| 60 |
r"""
|
| 61 |
Convert the font name to the style name.
|
| 62 |
"""
|
|
|
|
| 71 |
'Akronim': 'Abstract Cubism, Pablo Picasso', }[font]
|
| 72 |
|
| 73 |
|
| 74 |
+
def parse_json(json_str):
|
| 75 |
r"""
|
| 76 |
Convert the JSON string to attributes.
|
| 77 |
"""
|
|
|
|
| 121 |
if 'color' in span['attributes']:
|
| 122 |
use_grad_guidance = True
|
| 123 |
color_rgb, nearest_color = hex_to_rgb(
|
| 124 |
+
span['attributes']['color'], True)
|
| 125 |
if prev_color_rgb == color_rgb:
|
| 126 |
prev_text_prompt = color_text_prompts[-1]
|
| 127 |
color_text_prompts[-1] = prev_text_prompt + \
|
|
|
|
| 197 |
word_pos.append(base_tokens.index(size_token)+1)
|
| 198 |
font_sizes.append(font_size)
|
| 199 |
if len(word_pos) > 0:
|
| 200 |
+
word_pos = torch.LongTensor(word_pos).cuda()
|
| 201 |
+
font_sizes = torch.FloatTensor(font_sizes).cuda()
|
| 202 |
else:
|
| 203 |
word_pos = None
|
| 204 |
font_sizes = None
|