Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -88,7 +88,7 @@ def text_to_3d(
|
|
| 88 |
slat_guidance_strength: float,
|
| 89 |
slat_sampling_steps: int,
|
| 90 |
req: gr.Request,
|
| 91 |
-
) ->
|
| 92 |
"""
|
| 93 |
Convert an text prompt to a 3D model.
|
| 94 |
|
|
@@ -109,7 +109,7 @@ def text_to_3d(
|
|
| 109 |
outputs = pipeline.run(
|
| 110 |
prompt,
|
| 111 |
seed=seed,
|
| 112 |
-
formats=["gaussian"
|
| 113 |
sparse_structure_sampler_params={
|
| 114 |
"steps": ss_sampling_steps,
|
| 115 |
"cfg_strength": ss_guidance_strength,
|
|
@@ -119,13 +119,13 @@ def text_to_3d(
|
|
| 119 |
"cfg_strength": slat_guidance_strength,
|
| 120 |
},
|
| 121 |
)
|
| 122 |
-
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
| 123 |
ply_path = os.path.join(user_dir, 'point_cloud.ply')
|
| 124 |
gaussian_data = outputs['gaussian'][0]
|
| 125 |
with open(ply_path, "wb") as f:
|
| 126 |
gaussian_data.save_ply(f)
|
|
|
|
| 127 |
torch.cuda.empty_cache()
|
| 128 |
-
return
|
| 129 |
|
| 130 |
|
| 131 |
def extract_glb(
|
|
@@ -229,7 +229,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 229 |
).then(
|
| 230 |
text_to_3d,
|
| 231 |
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
| 232 |
-
outputs=
|
| 233 |
).then(
|
| 234 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
| 235 |
outputs=[extract_glb_btn, extract_gs_btn],
|
|
@@ -267,7 +267,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 267 |
# Launch the Gradio app
|
| 268 |
if __name__ == "__main__":
|
| 269 |
parser = argparse.ArgumentParser(description="Gradio app with command-line port argument")
|
| 270 |
-
parser.add_argument("--port", type=int, default=
|
| 271 |
args = parser.parse_args()
|
| 272 |
port = args.port
|
| 273 |
pipeline = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge")
|
|
|
|
| 88 |
slat_guidance_strength: float,
|
| 89 |
slat_sampling_steps: int,
|
| 90 |
req: gr.Request,
|
| 91 |
+
) -> str:
|
| 92 |
"""
|
| 93 |
Convert an text prompt to a 3D model.
|
| 94 |
|
|
|
|
| 109 |
outputs = pipeline.run(
|
| 110 |
prompt,
|
| 111 |
seed=seed,
|
| 112 |
+
formats=["gaussian"],
|
| 113 |
sparse_structure_sampler_params={
|
| 114 |
"steps": ss_sampling_steps,
|
| 115 |
"cfg_strength": ss_guidance_strength,
|
|
|
|
| 119 |
"cfg_strength": slat_guidance_strength,
|
| 120 |
},
|
| 121 |
)
|
|
|
|
| 122 |
ply_path = os.path.join(user_dir, 'point_cloud.ply')
|
| 123 |
gaussian_data = outputs['gaussian'][0]
|
| 124 |
with open(ply_path, "wb") as f:
|
| 125 |
gaussian_data.save_ply(f)
|
| 126 |
+
del outputs, gaussian_data
|
| 127 |
torch.cuda.empty_cache()
|
| 128 |
+
return ply_path
|
| 129 |
|
| 130 |
|
| 131 |
def extract_glb(
|
|
|
|
| 229 |
).then(
|
| 230 |
text_to_3d,
|
| 231 |
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
| 232 |
+
outputs=video_output,
|
| 233 |
).then(
|
| 234 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
| 235 |
outputs=[extract_glb_btn, extract_gs_btn],
|
|
|
|
| 267 |
# Launch the Gradio app
|
| 268 |
if __name__ == "__main__":
|
| 269 |
parser = argparse.ArgumentParser(description="Gradio app with command-line port argument")
|
| 270 |
+
parser.add_argument("--port", type=int, default=8000, help="Port to run the Gradio app on")
|
| 271 |
args = parser.parse_args()
|
| 272 |
port = args.port
|
| 273 |
pipeline = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge")
|