Spaces:
Runtime error
Runtime error
patching added for trying
Browse files- app.py +45 -8
- requirements.txt +2 -4
app.py
CHANGED
|
@@ -1,18 +1,15 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import json
|
| 3 |
import math
|
| 4 |
import numpy as np
|
| 5 |
import nibabel as nib
|
| 6 |
import torch
|
| 7 |
import torch.nn.functional as F
|
| 8 |
-
import scipy.io
|
| 9 |
-
from io import BytesIO
|
| 10 |
from transformers import AutoModel
|
| 11 |
import os
|
| 12 |
import tempfile
|
| 13 |
from pathlib import Path
|
| 14 |
-
import pandas as pd
|
| 15 |
from skimage.filters import threshold_otsu
|
|
|
|
| 16 |
|
| 17 |
def infer_full_vol(tensor, model):
|
| 18 |
tensor = torch.movedim(tensor, -1, -3)
|
|
@@ -46,6 +43,37 @@ def infer_full_vol(tensor, model):
|
|
| 46 |
output = torch.movedim(output, -3, -1).type(tensor.type())
|
| 47 |
return output.squeeze().detach().cpu().numpy()
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
# Set page configuration
|
| 50 |
st.set_page_config(
|
| 51 |
page_title="DS6 | Segmenting vessels in 3D MRA-ToF (ideally, 7T)",
|
|
@@ -62,7 +90,7 @@ with st.sidebar:
|
|
| 62 |
|
| 63 |
**Instructions**:
|
| 64 |
- Upload your 3D NIfTI file (`.nii` or `.nii.gz`). It should be a single-slice cardiac long-axis dynamic CINE scan, where the first dimension represents time.
|
| 65 |
-
- Select a
|
| 66 |
- Click the "Process" button to generate the latent factors.
|
| 67 |
""")
|
| 68 |
st.markdown("---")
|
|
@@ -77,10 +105,14 @@ uploaded_file = st.file_uploader(
|
|
| 77 |
type=["nii", "nii.gz"]
|
| 78 |
)
|
| 79 |
|
| 80 |
-
#
|
| 81 |
model_options = ["SMILEUHURA_DS6_CamSVD_UNetMSS3D_wDeform"]
|
| 82 |
selected_model = st.selectbox("Select a pretrained model:", model_options)
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
# Process button
|
| 85 |
process_button = st.button("Process")
|
| 86 |
|
|
@@ -111,7 +143,7 @@ if uploaded_file is not None and process_button:
|
|
| 111 |
# Add batch and channel dimensions
|
| 112 |
tensor = tensor.unsqueeze(0).unsqueeze(0) # Shape: [1, 1, D, H, W]
|
| 113 |
|
| 114 |
-
# Construct the model name based on the selected
|
| 115 |
model_name = f"soumickmj/{selected_model}"
|
| 116 |
|
| 117 |
# Load the pre-trained model from Hugging Face
|
|
@@ -145,7 +177,12 @@ if uploaded_file is not None and process_button:
|
|
| 145 |
|
| 146 |
# Process the tensor through the model
|
| 147 |
with st.spinner('Processing the tensor through the model...'):
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
st.success("Processing complete.")
|
| 151 |
st.write(f"Output tensor shape: `{output.shape}`")
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
| 2 |
import math
|
| 3 |
import numpy as np
|
| 4 |
import nibabel as nib
|
| 5 |
import torch
|
| 6 |
import torch.nn.functional as F
|
|
|
|
|
|
|
| 7 |
from transformers import AutoModel
|
| 8 |
import os
|
| 9 |
import tempfile
|
| 10 |
from pathlib import Path
|
|
|
|
| 11 |
from skimage.filters import threshold_otsu
|
| 12 |
+
import torchio as tio
|
| 13 |
|
| 14 |
def infer_full_vol(tensor, model):
|
| 15 |
tensor = torch.movedim(tensor, -1, -3)
|
|
|
|
| 43 |
output = torch.movedim(output, -3, -1).type(tensor.type())
|
| 44 |
return output.squeeze().detach().cpu().numpy()
|
| 45 |
|
| 46 |
+
def infer_patch_based(tensor, model, patch_size=64, stride_length=32, stride_width=32, stride_depth=16, batch_size=10, num_worker=2):
|
| 47 |
+
test_subject = tio.Subject(img = tio.ScalarImage(tensor=tensor))
|
| 48 |
+
overlap = np.subtract(patch_size, (stride_length, stride_width, stride_depth))
|
| 49 |
+
|
| 50 |
+
with torch.no_grad():
|
| 51 |
+
grid_sampler = tio.inference.GridSampler(
|
| 52 |
+
test_subject,
|
| 53 |
+
patch_size,
|
| 54 |
+
overlap,
|
| 55 |
+
)
|
| 56 |
+
aggregator = tio.inference.GridAggregator(grid_sampler, overlap_mode="average")
|
| 57 |
+
patch_loader = torch.utils.data.DataLoader(grid_sampler, batch_size=batch_size, shuffle=False, num_workers=num_worker)
|
| 58 |
+
for _, patches_batch in enumerate(patch_loader):
|
| 59 |
+
local_batch = patches_batch['img'][tio.DATA].float()
|
| 60 |
+
local_batch = local_batch / local_batch.max()
|
| 61 |
+
locations = patches_batch[tio.LOCATION]
|
| 62 |
+
|
| 63 |
+
local_batch = torch.movedim(local_batch, -1, -3)
|
| 64 |
+
|
| 65 |
+
output = model(local_batch)
|
| 66 |
+
if type(output) is tuple or type(output) is list:
|
| 67 |
+
output = output[0]
|
| 68 |
+
output = torch.sigmoid(output).detach().cpu()
|
| 69 |
+
|
| 70 |
+
output = torch.movedim(output, -3, -1).type(local_batch.type())
|
| 71 |
+
aggregator.add_batch(output, locations)
|
| 72 |
+
|
| 73 |
+
predicted = aggregator.get_output_tensor().squeeze().numpy()
|
| 74 |
+
|
| 75 |
+
return predicted
|
| 76 |
+
|
| 77 |
# Set page configuration
|
| 78 |
st.set_page_config(
|
| 79 |
page_title="DS6 | Segmenting vessels in 3D MRA-ToF (ideally, 7T)",
|
|
|
|
| 90 |
|
| 91 |
**Instructions**:
|
| 92 |
- Upload your 3D NIfTI file (`.nii` or `.nii.gz`). It should be a single-slice cardiac long-axis dynamic CINE scan, where the first dimension represents time.
|
| 93 |
+
- Select a model from the dropdown menu.
|
| 94 |
- Click the "Process" button to generate the latent factors.
|
| 95 |
""")
|
| 96 |
st.markdown("---")
|
|
|
|
| 105 |
type=["nii", "nii.gz"]
|
| 106 |
)
|
| 107 |
|
| 108 |
+
# Model selection
|
| 109 |
model_options = ["SMILEUHURA_DS6_CamSVD_UNetMSS3D_wDeform"]
|
| 110 |
selected_model = st.selectbox("Select a pretrained model:", model_options)
|
| 111 |
|
| 112 |
+
# Mode selection
|
| 113 |
+
mode_options = ["Full volume inference", "Patch-based inference [Default for DS6]"]
|
| 114 |
+
selected_mode = st.selectbox("Select the running mode:", mode_options)
|
| 115 |
+
|
| 116 |
# Process button
|
| 117 |
process_button = st.button("Process")
|
| 118 |
|
|
|
|
| 143 |
# Add batch and channel dimensions
|
| 144 |
tensor = tensor.unsqueeze(0).unsqueeze(0) # Shape: [1, 1, D, H, W]
|
| 145 |
|
| 146 |
+
# Construct the model name based on the selected model
|
| 147 |
model_name = f"soumickmj/{selected_model}"
|
| 148 |
|
| 149 |
# Load the pre-trained model from Hugging Face
|
|
|
|
| 177 |
|
| 178 |
# Process the tensor through the model
|
| 179 |
with st.spinner('Processing the tensor through the model...'):
|
| 180 |
+
if selected_mode == "full volume inference":
|
| 181 |
+
st.info("Running full volume inference...")
|
| 182 |
+
output = infer_full_vol(tensor, model)
|
| 183 |
+
else:
|
| 184 |
+
st.info("Running patch-based inference [Default for DS6]...")
|
| 185 |
+
output = infer_patch_based(tensor, model)
|
| 186 |
|
| 187 |
st.success("Processing complete.")
|
| 188 |
st.write(f"Output tensor shape: `{output.shape}`")
|
requirements.txt
CHANGED
|
@@ -1,7 +1,5 @@
|
|
|
|
|
| 1 |
nibabel
|
| 2 |
torch
|
| 3 |
-
pytorch_lightning
|
| 4 |
-
scipy
|
| 5 |
transformers
|
| 6 |
-
|
| 7 |
-
scikit-image
|
|
|
|
| 1 |
+
scikit-image
|
| 2 |
nibabel
|
| 3 |
torch
|
|
|
|
|
|
|
| 4 |
transformers
|
| 5 |
+
torchio
|
|
|