Spaces:
Runtime error
Runtime error
prova
Browse files- app.py +147 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import json
|
| 3 |
+
import numpy as np
|
| 4 |
+
import nibabel as nib
|
| 5 |
+
import torch
|
| 6 |
+
import scipy.io
|
| 7 |
+
from io import BytesIO
|
| 8 |
+
from transformers import AutoModel
|
| 9 |
+
import os
|
| 10 |
+
import tempfile
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
import pandas as pd
|
| 13 |
+
|
| 14 |
+
# Set page configuration
|
| 15 |
+
st.set_page_config(
|
| 16 |
+
page_title="DS6 | Segmenting vessels in 3D MRA-ToF (ideally, 7T)",
|
| 17 |
+
page_icon="🧠",
|
| 18 |
+
layout="wide",
|
| 19 |
+
initial_sidebar_state="expanded",
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
# Sidebar content
|
| 23 |
+
with st.sidebar:
|
| 24 |
+
st.title("Segmenting vessels in the brain from a 3D Magnetic Resonance Angiograph, ideally acquired at 7T | DS6")
|
| 25 |
+
st.markdown("""
|
| 26 |
+
This application allows you to upload a 3D NIfTI file (dims: H x W x D), process it through a pre-trained 3D model (from DS6 and other related works), and download the output as a `.nii.gz` file containing the vessel segmentation.
|
| 27 |
+
|
| 28 |
+
**Instructions**:
|
| 29 |
+
- Upload your 3D NIfTI file (`.nii` or `.nii.gz`). It should be a single-slice cardiac long-axis dynamic CINE scan, where the first dimension represents time.
|
| 30 |
+
- Select a seed value from the dropdown menu.
|
| 31 |
+
- Click the "Process" button to generate the latent factors.
|
| 32 |
+
""")
|
| 33 |
+
st.markdown("---")
|
| 34 |
+
st.markdown("© 2024 Soumick Chatterjee")
|
| 35 |
+
|
| 36 |
+
# Main content
|
| 37 |
+
st.header("From single-slice cardiac long-axis dynamic CINE scan (3D: HxWxD) to 128 latent factors...")
|
| 38 |
+
|
| 39 |
+
# File uploader
|
| 40 |
+
uploaded_file = st.file_uploader(
|
| 41 |
+
"Please upload a 3D NIfTI file (.nii or .nii.gz)",
|
| 42 |
+
type=["nii", "nii.gz"]
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
# Seed selection
|
| 46 |
+
model_options = ["SMILEUHURA_DS6_CamSVD_UNetMSS3D_wDeform"]
|
| 47 |
+
selected_model = st.selectbox("Select a pretrained model:", model_options)
|
| 48 |
+
|
| 49 |
+
# Process button
|
| 50 |
+
process_button = st.button("Process")
|
| 51 |
+
|
| 52 |
+
if uploaded_file is not None and process_button:
|
| 53 |
+
try:
|
| 54 |
+
# Save the uploaded file to a temporary file
|
| 55 |
+
file_extension = ''.join(Path(uploaded_file.name).suffixes)
|
| 56 |
+
with tempfile.NamedTemporaryFile(suffix=file_extension) as tmp_file:
|
| 57 |
+
tmp_file.write(uploaded_file.read())
|
| 58 |
+
tmp_file.flush()
|
| 59 |
+
|
| 60 |
+
# Load the NIfTI file from the temporary file
|
| 61 |
+
nifti_img = nib.load(tmp_file.name)
|
| 62 |
+
data = nifti_img.get_fdata()
|
| 63 |
+
|
| 64 |
+
# Convert to PyTorch tensor
|
| 65 |
+
tensor = torch.from_numpy(data).float()
|
| 66 |
+
|
| 67 |
+
# Ensure it's 3D
|
| 68 |
+
if tensor.ndim != 3:
|
| 69 |
+
st.error("The uploaded NIfTI file is not a 3D volume. Please upload a valid 3D NIfTI file.")
|
| 70 |
+
else:
|
| 71 |
+
# Display input details
|
| 72 |
+
st.success("File successfully uploaded and read.")
|
| 73 |
+
st.write(f"Input tensor shape: `{tensor.shape}`")
|
| 74 |
+
st.write(f"Selected pretrained model: `{selected_model}`")
|
| 75 |
+
|
| 76 |
+
# Add batch and channel dimensions
|
| 77 |
+
tensor = tensor.unsqueeze(0).unsqueeze(0) # Shape: [1, 1, D, H, W]
|
| 78 |
+
|
| 79 |
+
# Construct the model name based on the selected seed
|
| 80 |
+
model_name = f"soumickmj/{selected_model}"
|
| 81 |
+
|
| 82 |
+
# Load the pre-trained model from Hugging Face
|
| 83 |
+
@st.cache_resource
|
| 84 |
+
def load_model(model_name):
|
| 85 |
+
hf_token = os.environ.get('HF_API_TOKEN')
|
| 86 |
+
if hf_token is None:
|
| 87 |
+
st.error("Hugging Face API token is not set. Please set the 'HF_API_TOKEN' environment variable.")
|
| 88 |
+
return None
|
| 89 |
+
try:
|
| 90 |
+
model = AutoModel.from_pretrained(
|
| 91 |
+
model_name,
|
| 92 |
+
trust_remote_code=True,
|
| 93 |
+
use_auth_token=hf_token
|
| 94 |
+
)
|
| 95 |
+
model.eval()
|
| 96 |
+
return model
|
| 97 |
+
except Exception as e:
|
| 98 |
+
st.error(f"Failed to load model: {e}")
|
| 99 |
+
return None
|
| 100 |
+
|
| 101 |
+
with st.spinner('Loading the pre-trained model...'):
|
| 102 |
+
model = load_model(model_name)
|
| 103 |
+
if model is None:
|
| 104 |
+
st.stop() # Stop the app if the model couldn't be loaded
|
| 105 |
+
|
| 106 |
+
# Move model and tensor to CPU (ensure compatibility with Spaces)
|
| 107 |
+
device = torch.device('cpu')
|
| 108 |
+
model = model.to(device)
|
| 109 |
+
tensor = tensor.to(device)
|
| 110 |
+
|
| 111 |
+
# Process the tensor through the model
|
| 112 |
+
with st.spinner('Processing the tensor through the model...'):
|
| 113 |
+
with torch.no_grad():
|
| 114 |
+
output = model.encode(tensor, use_ema=model.config.test_ema)
|
| 115 |
+
if isinstance(output, tuple):
|
| 116 |
+
output = output[0]
|
| 117 |
+
output = output.squeeze(0)
|
| 118 |
+
|
| 119 |
+
st.success("Processing complete.")
|
| 120 |
+
st.write(f"Output tensor shape: `{output.shape}`")
|
| 121 |
+
|
| 122 |
+
# Convert output to NumPy array
|
| 123 |
+
output_np = output.detach().cpu().numpy()
|
| 124 |
+
|
| 125 |
+
# Save the output as a NIfTI file
|
| 126 |
+
output_img = nib.Nifti1Image(output_np, affine=nifti_img.affine)
|
| 127 |
+
output_path = tempfile.NamedTemporaryFile(suffix='.nii.gz', delete=False).name
|
| 128 |
+
nib.save(output_img, output_path)
|
| 129 |
+
|
| 130 |
+
# Read the saved file for download
|
| 131 |
+
with open(output_path, "rb") as f:
|
| 132 |
+
output_data = f.read()
|
| 133 |
+
|
| 134 |
+
# Download button for NIfTI file
|
| 135 |
+
st.download_button(
|
| 136 |
+
label="Download Segmentation Output",
|
| 137 |
+
data=output_data,
|
| 138 |
+
file_name='segmentation_output.nii.gz',
|
| 139 |
+
mime='application/gzip'
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
except Exception as e:
|
| 143 |
+
st.error(f"An error occurred: {e}")
|
| 144 |
+
elif uploaded_file is None:
|
| 145 |
+
st.info("Awaiting file upload...")
|
| 146 |
+
elif not process_button:
|
| 147 |
+
st.info("Click the 'Process' button to start processing.")
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
nibabel
|
| 2 |
+
torch
|
| 3 |
+
pytorch_lightning
|
| 4 |
+
scipy
|
| 5 |
+
transformers
|
| 6 |
+
torchvision
|