Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,7 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
# Get API token from environment variable
|
| 4 |
-
#api_token = os.getenv("HF_TOKEN").strip()
|
| 5 |
-
|
| 6 |
import gradio as gr
|
| 7 |
from transformers import AutoModel, AutoTokenizer
|
| 8 |
import torch
|
|
|
|
| 9 |
|
| 10 |
# Load the model and tokenizer
|
| 11 |
model_name = "ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1"
|
|
@@ -13,20 +9,41 @@ model = AutoModel.from_pretrained(model_name, trust_remote_code=True, device_map
|
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 14 |
|
| 15 |
def process_query(image, question):
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
iface = gr.Interface(
|
| 25 |
fn=process_query,
|
| 26 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
| 27 |
outputs="text",
|
| 28 |
title="Medical Multimodal Assistant",
|
| 29 |
-
description="Upload a medical image and ask
|
| 30 |
)
|
| 31 |
|
| 32 |
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoModel, AutoTokenizer
|
| 3 |
import torch
|
| 4 |
+
from PIL import Image
|
| 5 |
|
| 6 |
# Load the model and tokenizer
|
| 7 |
model_name = "ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1"
|
|
|
|
| 9 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 10 |
|
| 11 |
def process_query(image, question):
|
| 12 |
+
try:
|
| 13 |
+
# Construct the messages for the model
|
| 14 |
+
msgs = [{"role": "user", "content": question}]
|
| 15 |
+
|
| 16 |
+
# Handle cases with and without an image
|
| 17 |
+
if image is not None:
|
| 18 |
+
# Convert the image to the required format
|
| 19 |
+
image_input = [Image.fromarray(image).convert("RGB")]
|
| 20 |
+
response = model.chat(
|
| 21 |
+
image=image_input,
|
| 22 |
+
msgs=msgs,
|
| 23 |
+
tokenizer=tokenizer,
|
| 24 |
+
)
|
| 25 |
+
else:
|
| 26 |
+
# For text-only queries, omit the `image` parameter
|
| 27 |
+
response = model.chat(
|
| 28 |
+
image=None,
|
| 29 |
+
msgs=msgs,
|
| 30 |
+
tokenizer=tokenizer,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
return response
|
| 34 |
+
except Exception as e:
|
| 35 |
+
return f"Error: {str(e)}"
|
| 36 |
+
|
| 37 |
+
# Gradio interface
|
| 38 |
iface = gr.Interface(
|
| 39 |
fn=process_query,
|
| 40 |
+
inputs=[
|
| 41 |
+
gr.Image(type="numpy", label="Upload Medical Image (Optional)"),
|
| 42 |
+
gr.Textbox(label="Enter Your Medical Question"),
|
| 43 |
+
],
|
| 44 |
outputs="text",
|
| 45 |
title="Medical Multimodal Assistant",
|
| 46 |
+
description="Upload a medical image and/or ask a question for AI-powered assistance.",
|
| 47 |
)
|
| 48 |
|
| 49 |
iface.launch()
|