Spaces:
Sleeping
Sleeping
| ''' | |
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from peft import AutoPeftModelForCausalLM | |
| import torch | |
| # Load the model and tokenizer | |
| def load_model(): | |
| # base_model_name = "unsloth/llama-3.2-1b-instruct-bnb-4bit" # Replace with your base model name | |
| lora_model_name = "sreyanghosh/lora_model" # Replace with your LoRA model path | |
| # tokenizer = AutoTokenizer.from_pretrained(base_model_name) | |
| # model = AutoModelForCausalLM.from_pretrained( | |
| # base_model_name, | |
| # device_map="auto" if torch.cuda.is_available() else None, | |
| # load_in_8bit=not torch.cuda.is_available(), | |
| # ) | |
| # model = PeftModel.from_pretrained(model, lora_model_name) | |
| model = AutoPeftModelForCausalLM.from_pretrained( | |
| lora_model_name, # YOUR MODEL YOU USED FOR TRAINING | |
| load_in_4bit = False, # False | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(lora_model_name) | |
| model.eval() | |
| return tokenizer, model | |
| tokenizer, model = load_model() | |
| # Define the respond function | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| # Prepare the conversation history | |
| messages = [{"role": "system", "content": system_message}] | |
| for user_input, bot_response in history: | |
| if user_input: | |
| messages.append({"role": "user", "content": user_input}) | |
| if bot_response: | |
| messages.append({"role": "assistant", "content": bot_response}) | |
| messages.append({"role": "user", "content": message}) | |
| # Format the input for the model | |
| conversation_text = "\n".join( | |
| f"{msg['role']}: {msg['content']}" for msg in messages | |
| ) | |
| inputs = tokenizer(conversation_text, return_tensors="pt", truncation=True) | |
| # Generate the model's response | |
| outputs = model.generate( | |
| inputs.input_ids, | |
| max_length=len(inputs.input_ids[0]) + max_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| pad_token_id=tokenizer.eos_token_id, | |
| ) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Extract the new response | |
| new_response = response[len(conversation_text):].strip() | |
| yield new_response | |
| # Gradio app configuration | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| ''' | |
| import gradio as gr | |
| from transformers import AutoTokenizer | |
| from peft import AutoPeftModelForCausalLM | |
| import torch | |
| # Load the model and tokenizer | |
| def load_model(): | |
| lora_model_name = "sreyanghosh/lora_model" # Replace with your LoRA model path | |
| # Try loading without 4-bit quantization | |
| model = AutoPeftModelForCausalLM.from_pretrained( | |
| lora_model_name, | |
| torch_dtype=torch.float32, # Ensure no low-bit quantization | |
| device_map="auto" if torch.cuda.is_available() else None, # Use standard device mapping | |
| load_in_4bit=False, # Redundant, but safe to explicitly specify | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(lora_model_name) | |
| if tokenizer.pad_token_id is None: | |
| tokenizer.pad_token_id = tokenizer.eos_token_id | |
| model.eval() | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model = model.to(device) | |
| return tokenizer, model | |
| # Define the respond function | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| # Prepare the conversation history | |
| messages = [{"role": "system", "content": system_message}] | |
| for user_input, bot_response in history: | |
| if user_input: | |
| messages.append({"role": "user", "content": user_input}) | |
| if bot_response: | |
| messages.append({"role": "assistant", "content": bot_response}) | |
| messages.append({"role": "user", "content": message}) | |
| # Format the input for the model | |
| conversation_text = "\n".join( | |
| f"{msg['role']}: {msg['content']}" for msg in messages | |
| ) | |
| inputs = tokenizer(conversation_text, return_tensors="pt", truncation=True).to(model.device) | |
| # Generate the model's response | |
| outputs = model.generate( | |
| inputs.input_ids, | |
| max_length=len(inputs.input_ids[0]) + max_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| pad_token_id=tokenizer.eos_token_id, | |
| eos_token_id=tokenizer.eos_token_id, | |
| ) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Extract the new response | |
| new_response = response.split("assistant:")[-1].strip() | |
| yield new_response | |
| # Gradio app configuration | |
| demo = gr.ChatInterface( | |
| fn=respond, | |
| chatbot=gr.Chatbot(label="Assistant"), # Use a Gradio Chatbot component | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |