yangpeng08's picture
add volume-normalization to avoid audio clippig after multiple editing
4620bde
import hashlib
import io
import os
import re
import logging
import numpy as np
import torch
import librosa
import soundfile as sf
from typing import Tuple, Optional
from http import HTTPStatus
import torchaudio
from model_loader import model_loader, ModelSource
from config.prompts import AUDIO_EDIT_CLONE_SYSTEM_PROMPT_TPL, AUDIO_EDIT_SYSTEM_PROMPT
from stepvocoder.cosyvoice2.cli.cosyvoice import CosyVoice
from transformers.generation.logits_process import LogitsProcessor
from transformers.generation.utils import LogitsProcessorList
# Configure logging
logger = logging.getLogger(__name__)
class HTTPException(Exception):
"""Custom HTTP exception for API errors"""
def __init__(self, status_code, detail):
self.status_code = status_code
self.detail = detail
super().__init__(detail)
class RepetitionAwareLogitsProcessor(LogitsProcessor):
"""Logits processor to handle repetition in generation"""
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
) -> torch.FloatTensor:
window_size = 10
threshold = 0.1
window = input_ids[:, -window_size:]
if window.shape[1] < window_size:
return scores
last_tokens = window[:, -1].unsqueeze(-1)
repeat_counts = (window == last_tokens).sum(dim=1)
repeat_ratios = repeat_counts.float() / window_size
mask = repeat_ratios > threshold
scores[mask, last_tokens[mask].squeeze(-1)] = float("-inf")
return scores
class StepAudioTTS:
"""
Step Audio TTS wrapper for voice cloning and audio editing tasks
"""
def __init__(
self,
model_path,
audio_tokenizer,
model_source=ModelSource.AUTO,
tts_model_id=None,
quantization_config=None,
torch_dtype=torch.bfloat16,
device_map="cuda"
):
"""
Initialize StepAudioTTS
Args:
model_path: Model path
audio_tokenizer: Audio tokenizer for wav2token processing
model_source: Model source (auto/local/modelscope/huggingface)
tts_model_id: TTS model ID, if None use model_path
quantization_config: Quantization configuration ('int4', 'int8', or None)
torch_dtype: PyTorch data type for model weights (default: torch.bfloat16)
device_map: Device mapping for model (default: "cuda")
"""
# Determine model ID or path to load
if tts_model_id is None:
tts_model_id = model_path
logger.info("🔧 StepAudioTTS loading configuration:")
logger.info(f" - model_source: {model_source}")
logger.info(f" - model_path: {model_path}")
logger.info(f" - tts_model_id: {tts_model_id}")
self.audio_tokenizer = audio_tokenizer
# Load LLM and tokenizer using model_loader
try:
self.llm, self.tokenizer, model_path = model_loader.load_transformers_model(
tts_model_id,
source=model_source,
quantization_config=quantization_config,
torch_dtype=torch_dtype,
device_map=device_map
)
logger.info(f"✅ Successfully loaded LLM and tokenizer: {tts_model_id}")
except Exception as e:
logger.error(f"❌ Failed to load model: {e}")
raise
# Load CosyVoice model (usually local path)
self.cosy_model = CosyVoice(
os.path.join(model_path, "CosyVoice-300M-25Hz")
)
# Print final GPU memory usage after all models are loaded
logger.info("🎤 CosyVoice model loaded successfully")
# Use system prompts from config module
self.edit_clone_sys_prompt_tpl = AUDIO_EDIT_CLONE_SYSTEM_PROMPT_TPL
self.edit_sys_prompt = AUDIO_EDIT_SYSTEM_PROMPT
def clone(
self,
prompt_wav_path: str,
prompt_text: str,
target_text: str
) -> Tuple[torch.Tensor, int]:
"""
Clone voice from reference audio
Args:
prompt_wav_path: Path to reference audio file
prompt_text: Text content of reference audio
target_text: Text to synthesize with cloned voice
Returns:
Tuple[torch.Tensor, int]: Generated audio tensor and sample rate
"""
try:
logger.debug(f"Starting voice cloning: {prompt_wav_path}")
prompt_wav, _ = torchaudio.load(prompt_wav_path)
vq0206_codes, vq02_codes_ori, vq06_codes_ori, speech_feat, _, speech_embedding = (
self.preprocess_prompt_wav(prompt_wav_path)
)
prompt_speaker = self.generate_clone_voice_id(prompt_text, prompt_wav)
prompt_wav_tokens = self.audio_tokenizer.merge_vq0206_to_token_str(
vq02_codes_ori, vq06_codes_ori
)
token_ids = self._encode_audio_edit_clone_prompt(
target_text,
prompt_text,
prompt_speaker,
prompt_wav_tokens,
)
output_ids = self.llm.generate(
torch.tensor([token_ids]).to(torch.long).to("cuda"),
max_length=8192,
temperature=0.7,
do_sample=True,
logits_processor=LogitsProcessorList([RepetitionAwareLogitsProcessor()]),
)
output_ids = output_ids[:, len(token_ids) : -1] # skip eos token
logger.debug("Voice cloning generation completed")
vq0206_codes_vocoder = torch.tensor([vq0206_codes], dtype=torch.long) - 65536
return (
self.cosy_model.token2wav_nonstream(
output_ids - 65536,
vq0206_codes_vocoder,
speech_feat.to(torch.bfloat16),
speech_embedding.to(torch.bfloat16),
),
24000,
)
except Exception as e:
logger.error(f"Clone failed: {e}")
raise
def edit(
self,
input_audio_path: str,
audio_text: str,
edit_type: str,
edit_info: Optional[str] = None,
text: Optional[str] = None
) -> Tuple[torch.Tensor, int]:
"""
Edit audio based on specified edit type
Args:
input_audio_path: Path to input audio file
audio_text: Text content of input audio
edit_type: Type of edit (emotion, style, speed, etc.)
edit_info: Specific edit information (happy, sad, etc.)
text: Target text for para-linguistic editing
Returns:
Tuple[torch.Tensor, int]: Edited audio tensor and sample rate
"""
try:
logger.debug(f"Starting audio editing: {edit_type} - {edit_info}")
vq0206_codes, vq02_codes_ori, vq06_codes_ori, speech_feat, _, speech_embedding = (
self.preprocess_prompt_wav(input_audio_path)
)
audio_tokens = self.audio_tokenizer.merge_vq0206_to_token_str(
vq02_codes_ori, vq06_codes_ori
)
# Build instruction prefix based on edit type
instruct_prefix = self._build_audio_edit_instruction(audio_text, edit_type, edit_info, text)
# Encode the complete prompt to token sequence
prompt_tokens = self._encode_audio_edit_prompt(
self.edit_sys_prompt, instruct_prefix, audio_tokens
)
logger.debug(f"Edit instruction: {instruct_prefix}")
logger.debug(f"Encoded prompt length: {len(prompt_tokens)}")
output_ids = self.llm.generate(
torch.tensor([prompt_tokens]).to(torch.long).to("cuda"),
max_length=8192,
temperature=0.7,
do_sample=True,
logits_processor=LogitsProcessorList([RepetitionAwareLogitsProcessor()]),
)
output_ids = output_ids[:, len(prompt_tokens) : -1] # skip eos token
vq0206_codes_vocoder = torch.tensor([vq0206_codes], dtype=torch.long) - 65536
logger.debug("Audio editing generation completed")
return (
self.cosy_model.token2wav_nonstream(
output_ids - 65536,
vq0206_codes_vocoder,
speech_feat.to(torch.bfloat16),
speech_embedding.to(torch.bfloat16),
),
24000,
)
except Exception as e:
logger.error(f"Edit failed: {e}")
raise
def _build_audio_edit_instruction(
self,
audio_text: str,
edit_type: str,
edit_info: Optional[str] = None,
text: Optional[str] = None
) -> str:
"""
Build audio editing instruction based on request
Args:
audio_text: Text content of input audio
edit_type: Type of edit
edit_info: Specific edit information
text: Target text for editing
Returns:
str: Instruction prefix
"""
audio_text = audio_text.strip() if audio_text else ""
if edit_type in {"emotion", "speed"}:
if edit_info == "remove":
instruct_prefix = f"Remove any emotion in the following audio and the reference text is: {audio_text}\n"
else:
instruct_prefix=f"Make the following audio more {edit_info}. The text corresponding to the audio is: {audio_text}\n"
elif edit_type == "style":
if edit_info == "remove":
instruct_prefix = f"Remove any speaking styles in the following audio and the reference text is: {audio_text}\n"
else:
instruct_prefix = f"Make the following audio more {edit_info} style. The text corresponding to the audio is: {audio_text}\n"
elif edit_type == "denoise":
instruct_prefix = f"Remove any noise from the given audio while preserving the voice content clearly. Ensure that the speech quality remains intact with minimal distortion, and eliminate all noise from the audio.\n"
elif edit_type == "vad":
instruct_prefix = f"Remove any silent portions from the given audio while preserving the voice content clearly. Ensure that the speech quality remains intact with minimal distortion, and eliminate all silence from the audio.\n"
elif edit_type == "paralinguistic":
instruct_prefix = f"Add some non-verbal sounds to make the audio more natural, the new text is : {text}\n The text corresponding to the audio is: {audio_text}\n"
else:
raise HTTPException(
status_code=HTTPStatus.BAD_REQUEST,
detail=f"Unsupported edit_type: {edit_type}",
)
return instruct_prefix
def _encode_audio_edit_prompt(
self, sys_prompt: str, instruct_prefix: str, audio_token_str: str
) -> list[int]:
"""
Encode audio edit prompt to token sequence
Args:
sys_prompt: System prompt
instruct_prefix: Instruction prefix
audio_token_str: Audio tokens as string
Returns:
list[int]: Encoded token sequence
"""
audio_token_str = audio_token_str.strip()
history = [1]
sys_tokens = self.tokenizer.encode(f"system\n{sys_prompt}")
history.extend([4] + sys_tokens + [3])
qrole_toks = self.tokenizer.encode("human\n")
arole_toks = self.tokenizer.encode("assistant\n")
human_turn_toks = self.tokenizer.encode(
f"{instruct_prefix}\n{audio_token_str}\n"
)
history.extend([4] + qrole_toks + human_turn_toks + [3] + [4] + arole_toks)
return history
def _encode_audio_edit_clone_prompt(
self, text: str, prompt_text: str, prompt_speaker: str, prompt_wav_tokens: str
):
prompt = self.edit_clone_sys_prompt_tpl.format(
speaker=prompt_speaker,
prompt_text=prompt_text,
prompt_wav_tokens=prompt_wav_tokens
)
sys_tokens = self.tokenizer.encode(f"system\n{prompt}")
history = [1]
history.extend([4] + sys_tokens + [3])
_prefix_tokens = self.tokenizer.encode("\n")
target_token_encode = self.tokenizer.encode("\n" + text)
target_tokens = target_token_encode[len(_prefix_tokens) :]
qrole_toks = self.tokenizer.encode("human\n")
arole_toks = self.tokenizer.encode("assistant\n")
history.extend(
[4]
+ qrole_toks
+ target_tokens
+ [3]
+ [4]
+ arole_toks
)
return history
def detect_instruction_name(self, text):
instruction_name = ""
match_group = re.match(r"^([(\(][^\(\)()]*[)\)]).*$", text, re.DOTALL)
if match_group is not None:
instruction = match_group.group(1)
instruction_name = instruction.strip("()()")
return instruction_name
def process_audio_file(self, audio_path: str) -> Tuple[any, int]:
"""
Process audio file and return numpy array and sample rate
Args:
audio_path: Path to audio file
Returns:
Tuple[numpy.ndarray, int]: Audio data and sample rate
"""
try:
audio_data, sample_rate = librosa.load(audio_path)
logger.debug(f"Audio file processed successfully: {audio_path}")
return audio_data, sample_rate
except Exception as e:
logger.error(f"Failed to process audio file: {e}")
raise
def preprocess_prompt_wav(self, prompt_wav_path : str):
prompt_wav, prompt_wav_sr = torchaudio.load(prompt_wav_path)
if prompt_wav.shape[0] > 1:
prompt_wav = prompt_wav.mean(dim=0, keepdim=True) # 将多通道音频转换为单通道
# volume-normalize avoid clipping
norm = torch.max(torch.abs(prompt_wav), dim=1, keepdim=True)[0]
if norm > 0.6: # hard code; max absolute value is 0.6
prompt_wav = prompt_wav / norm * 0.6
speech_feat, speech_feat_len = self.cosy_model.frontend.extract_speech_feat(
prompt_wav, prompt_wav_sr
)
speech_embedding = self.cosy_model.frontend.extract_spk_embedding(
prompt_wav, prompt_wav_sr
)
vq0206_codes, vq02_codes_ori, vq06_codes_ori = self.audio_tokenizer.wav2token(prompt_wav, prompt_wav_sr)
return (
vq0206_codes,
vq02_codes_ori,
vq06_codes_ori,
speech_feat,
speech_feat_len,
speech_embedding,
)
def generate_clone_voice_id(self, prompt_text, prompt_wav):
hasher = hashlib.sha256()
hasher.update(prompt_text.encode('utf-8'))
wav_data = prompt_wav.cpu().numpy()
if wav_data.size > 2000:
audio_sample = np.concatenate([wav_data.flatten()[:1000], wav_data.flatten()[-1000:]])
else:
audio_sample = wav_data.flatten()
hasher.update(audio_sample.tobytes())
voice_hash = hasher.hexdigest()[:16]
return f"clone_{voice_hash}"