Spaces:
Running
on
Zero
Running
on
Zero
| import hashlib | |
| import io | |
| import os | |
| import re | |
| import logging | |
| import numpy as np | |
| import torch | |
| import librosa | |
| import soundfile as sf | |
| from typing import Tuple, Optional | |
| from http import HTTPStatus | |
| import torchaudio | |
| from model_loader import model_loader, ModelSource | |
| from config.prompts import AUDIO_EDIT_CLONE_SYSTEM_PROMPT_TPL, AUDIO_EDIT_SYSTEM_PROMPT | |
| from stepvocoder.cosyvoice2.cli.cosyvoice import CosyVoice | |
| from transformers.generation.logits_process import LogitsProcessor | |
| from transformers.generation.utils import LogitsProcessorList | |
| # Configure logging | |
| logger = logging.getLogger(__name__) | |
| class HTTPException(Exception): | |
| """Custom HTTP exception for API errors""" | |
| def __init__(self, status_code, detail): | |
| self.status_code = status_code | |
| self.detail = detail | |
| super().__init__(detail) | |
| class RepetitionAwareLogitsProcessor(LogitsProcessor): | |
| """Logits processor to handle repetition in generation""" | |
| def __call__( | |
| self, input_ids: torch.LongTensor, scores: torch.FloatTensor | |
| ) -> torch.FloatTensor: | |
| window_size = 10 | |
| threshold = 0.1 | |
| window = input_ids[:, -window_size:] | |
| if window.shape[1] < window_size: | |
| return scores | |
| last_tokens = window[:, -1].unsqueeze(-1) | |
| repeat_counts = (window == last_tokens).sum(dim=1) | |
| repeat_ratios = repeat_counts.float() / window_size | |
| mask = repeat_ratios > threshold | |
| scores[mask, last_tokens[mask].squeeze(-1)] = float("-inf") | |
| return scores | |
| class StepAudioTTS: | |
| """ | |
| Step Audio TTS wrapper for voice cloning and audio editing tasks | |
| """ | |
| def __init__( | |
| self, | |
| model_path, | |
| audio_tokenizer, | |
| model_source=ModelSource.AUTO, | |
| tts_model_id=None, | |
| quantization_config=None, | |
| torch_dtype=torch.bfloat16, | |
| device_map="cuda" | |
| ): | |
| """ | |
| Initialize StepAudioTTS | |
| Args: | |
| model_path: Model path | |
| audio_tokenizer: Audio tokenizer for wav2token processing | |
| model_source: Model source (auto/local/modelscope/huggingface) | |
| tts_model_id: TTS model ID, if None use model_path | |
| quantization_config: Quantization configuration ('int4', 'int8', or None) | |
| torch_dtype: PyTorch data type for model weights (default: torch.bfloat16) | |
| device_map: Device mapping for model (default: "cuda") | |
| """ | |
| # Determine model ID or path to load | |
| if tts_model_id is None: | |
| tts_model_id = model_path | |
| logger.info("🔧 StepAudioTTS loading configuration:") | |
| logger.info(f" - model_source: {model_source}") | |
| logger.info(f" - model_path: {model_path}") | |
| logger.info(f" - tts_model_id: {tts_model_id}") | |
| self.audio_tokenizer = audio_tokenizer | |
| # Load LLM and tokenizer using model_loader | |
| try: | |
| self.llm, self.tokenizer, model_path = model_loader.load_transformers_model( | |
| tts_model_id, | |
| source=model_source, | |
| quantization_config=quantization_config, | |
| torch_dtype=torch_dtype, | |
| device_map=device_map | |
| ) | |
| logger.info(f"✅ Successfully loaded LLM and tokenizer: {tts_model_id}") | |
| except Exception as e: | |
| logger.error(f"❌ Failed to load model: {e}") | |
| raise | |
| # Load CosyVoice model (usually local path) | |
| self.cosy_model = CosyVoice( | |
| os.path.join(model_path, "CosyVoice-300M-25Hz") | |
| ) | |
| # Print final GPU memory usage after all models are loaded | |
| logger.info("🎤 CosyVoice model loaded successfully") | |
| # Use system prompts from config module | |
| self.edit_clone_sys_prompt_tpl = AUDIO_EDIT_CLONE_SYSTEM_PROMPT_TPL | |
| self.edit_sys_prompt = AUDIO_EDIT_SYSTEM_PROMPT | |
| def clone( | |
| self, | |
| prompt_wav_path: str, | |
| prompt_text: str, | |
| target_text: str | |
| ) -> Tuple[torch.Tensor, int]: | |
| """ | |
| Clone voice from reference audio | |
| Args: | |
| prompt_wav_path: Path to reference audio file | |
| prompt_text: Text content of reference audio | |
| target_text: Text to synthesize with cloned voice | |
| Returns: | |
| Tuple[torch.Tensor, int]: Generated audio tensor and sample rate | |
| """ | |
| try: | |
| logger.debug(f"Starting voice cloning: {prompt_wav_path}") | |
| prompt_wav, _ = torchaudio.load(prompt_wav_path) | |
| vq0206_codes, vq02_codes_ori, vq06_codes_ori, speech_feat, _, speech_embedding = ( | |
| self.preprocess_prompt_wav(prompt_wav_path) | |
| ) | |
| prompt_speaker = self.generate_clone_voice_id(prompt_text, prompt_wav) | |
| prompt_wav_tokens = self.audio_tokenizer.merge_vq0206_to_token_str( | |
| vq02_codes_ori, vq06_codes_ori | |
| ) | |
| token_ids = self._encode_audio_edit_clone_prompt( | |
| target_text, | |
| prompt_text, | |
| prompt_speaker, | |
| prompt_wav_tokens, | |
| ) | |
| output_ids = self.llm.generate( | |
| torch.tensor([token_ids]).to(torch.long).to("cuda"), | |
| max_length=8192, | |
| temperature=0.7, | |
| do_sample=True, | |
| logits_processor=LogitsProcessorList([RepetitionAwareLogitsProcessor()]), | |
| ) | |
| output_ids = output_ids[:, len(token_ids) : -1] # skip eos token | |
| logger.debug("Voice cloning generation completed") | |
| vq0206_codes_vocoder = torch.tensor([vq0206_codes], dtype=torch.long) - 65536 | |
| return ( | |
| self.cosy_model.token2wav_nonstream( | |
| output_ids - 65536, | |
| vq0206_codes_vocoder, | |
| speech_feat.to(torch.bfloat16), | |
| speech_embedding.to(torch.bfloat16), | |
| ), | |
| 24000, | |
| ) | |
| except Exception as e: | |
| logger.error(f"Clone failed: {e}") | |
| raise | |
| def edit( | |
| self, | |
| input_audio_path: str, | |
| audio_text: str, | |
| edit_type: str, | |
| edit_info: Optional[str] = None, | |
| text: Optional[str] = None | |
| ) -> Tuple[torch.Tensor, int]: | |
| """ | |
| Edit audio based on specified edit type | |
| Args: | |
| input_audio_path: Path to input audio file | |
| audio_text: Text content of input audio | |
| edit_type: Type of edit (emotion, style, speed, etc.) | |
| edit_info: Specific edit information (happy, sad, etc.) | |
| text: Target text for para-linguistic editing | |
| Returns: | |
| Tuple[torch.Tensor, int]: Edited audio tensor and sample rate | |
| """ | |
| try: | |
| logger.debug(f"Starting audio editing: {edit_type} - {edit_info}") | |
| vq0206_codes, vq02_codes_ori, vq06_codes_ori, speech_feat, _, speech_embedding = ( | |
| self.preprocess_prompt_wav(input_audio_path) | |
| ) | |
| audio_tokens = self.audio_tokenizer.merge_vq0206_to_token_str( | |
| vq02_codes_ori, vq06_codes_ori | |
| ) | |
| # Build instruction prefix based on edit type | |
| instruct_prefix = self._build_audio_edit_instruction(audio_text, edit_type, edit_info, text) | |
| # Encode the complete prompt to token sequence | |
| prompt_tokens = self._encode_audio_edit_prompt( | |
| self.edit_sys_prompt, instruct_prefix, audio_tokens | |
| ) | |
| logger.debug(f"Edit instruction: {instruct_prefix}") | |
| logger.debug(f"Encoded prompt length: {len(prompt_tokens)}") | |
| output_ids = self.llm.generate( | |
| torch.tensor([prompt_tokens]).to(torch.long).to("cuda"), | |
| max_length=8192, | |
| temperature=0.7, | |
| do_sample=True, | |
| logits_processor=LogitsProcessorList([RepetitionAwareLogitsProcessor()]), | |
| ) | |
| output_ids = output_ids[:, len(prompt_tokens) : -1] # skip eos token | |
| vq0206_codes_vocoder = torch.tensor([vq0206_codes], dtype=torch.long) - 65536 | |
| logger.debug("Audio editing generation completed") | |
| return ( | |
| self.cosy_model.token2wav_nonstream( | |
| output_ids - 65536, | |
| vq0206_codes_vocoder, | |
| speech_feat.to(torch.bfloat16), | |
| speech_embedding.to(torch.bfloat16), | |
| ), | |
| 24000, | |
| ) | |
| except Exception as e: | |
| logger.error(f"Edit failed: {e}") | |
| raise | |
| def _build_audio_edit_instruction( | |
| self, | |
| audio_text: str, | |
| edit_type: str, | |
| edit_info: Optional[str] = None, | |
| text: Optional[str] = None | |
| ) -> str: | |
| """ | |
| Build audio editing instruction based on request | |
| Args: | |
| audio_text: Text content of input audio | |
| edit_type: Type of edit | |
| edit_info: Specific edit information | |
| text: Target text for editing | |
| Returns: | |
| str: Instruction prefix | |
| """ | |
| audio_text = audio_text.strip() if audio_text else "" | |
| if edit_type in {"emotion", "speed"}: | |
| if edit_info == "remove": | |
| instruct_prefix = f"Remove any emotion in the following audio and the reference text is: {audio_text}\n" | |
| else: | |
| instruct_prefix=f"Make the following audio more {edit_info}. The text corresponding to the audio is: {audio_text}\n" | |
| elif edit_type == "style": | |
| if edit_info == "remove": | |
| instruct_prefix = f"Remove any speaking styles in the following audio and the reference text is: {audio_text}\n" | |
| else: | |
| instruct_prefix = f"Make the following audio more {edit_info} style. The text corresponding to the audio is: {audio_text}\n" | |
| elif edit_type == "denoise": | |
| instruct_prefix = f"Remove any noise from the given audio while preserving the voice content clearly. Ensure that the speech quality remains intact with minimal distortion, and eliminate all noise from the audio.\n" | |
| elif edit_type == "vad": | |
| instruct_prefix = f"Remove any silent portions from the given audio while preserving the voice content clearly. Ensure that the speech quality remains intact with minimal distortion, and eliminate all silence from the audio.\n" | |
| elif edit_type == "paralinguistic": | |
| instruct_prefix = f"Add some non-verbal sounds to make the audio more natural, the new text is : {text}\n The text corresponding to the audio is: {audio_text}\n" | |
| else: | |
| raise HTTPException( | |
| status_code=HTTPStatus.BAD_REQUEST, | |
| detail=f"Unsupported edit_type: {edit_type}", | |
| ) | |
| return instruct_prefix | |
| def _encode_audio_edit_prompt( | |
| self, sys_prompt: str, instruct_prefix: str, audio_token_str: str | |
| ) -> list[int]: | |
| """ | |
| Encode audio edit prompt to token sequence | |
| Args: | |
| sys_prompt: System prompt | |
| instruct_prefix: Instruction prefix | |
| audio_token_str: Audio tokens as string | |
| Returns: | |
| list[int]: Encoded token sequence | |
| """ | |
| audio_token_str = audio_token_str.strip() | |
| history = [1] | |
| sys_tokens = self.tokenizer.encode(f"system\n{sys_prompt}") | |
| history.extend([4] + sys_tokens + [3]) | |
| qrole_toks = self.tokenizer.encode("human\n") | |
| arole_toks = self.tokenizer.encode("assistant\n") | |
| human_turn_toks = self.tokenizer.encode( | |
| f"{instruct_prefix}\n{audio_token_str}\n" | |
| ) | |
| history.extend([4] + qrole_toks + human_turn_toks + [3] + [4] + arole_toks) | |
| return history | |
| def _encode_audio_edit_clone_prompt( | |
| self, text: str, prompt_text: str, prompt_speaker: str, prompt_wav_tokens: str | |
| ): | |
| prompt = self.edit_clone_sys_prompt_tpl.format( | |
| speaker=prompt_speaker, | |
| prompt_text=prompt_text, | |
| prompt_wav_tokens=prompt_wav_tokens | |
| ) | |
| sys_tokens = self.tokenizer.encode(f"system\n{prompt}") | |
| history = [1] | |
| history.extend([4] + sys_tokens + [3]) | |
| _prefix_tokens = self.tokenizer.encode("\n") | |
| target_token_encode = self.tokenizer.encode("\n" + text) | |
| target_tokens = target_token_encode[len(_prefix_tokens) :] | |
| qrole_toks = self.tokenizer.encode("human\n") | |
| arole_toks = self.tokenizer.encode("assistant\n") | |
| history.extend( | |
| [4] | |
| + qrole_toks | |
| + target_tokens | |
| + [3] | |
| + [4] | |
| + arole_toks | |
| ) | |
| return history | |
| def detect_instruction_name(self, text): | |
| instruction_name = "" | |
| match_group = re.match(r"^([(\(][^\(\)()]*[)\)]).*$", text, re.DOTALL) | |
| if match_group is not None: | |
| instruction = match_group.group(1) | |
| instruction_name = instruction.strip("()()") | |
| return instruction_name | |
| def process_audio_file(self, audio_path: str) -> Tuple[any, int]: | |
| """ | |
| Process audio file and return numpy array and sample rate | |
| Args: | |
| audio_path: Path to audio file | |
| Returns: | |
| Tuple[numpy.ndarray, int]: Audio data and sample rate | |
| """ | |
| try: | |
| audio_data, sample_rate = librosa.load(audio_path) | |
| logger.debug(f"Audio file processed successfully: {audio_path}") | |
| return audio_data, sample_rate | |
| except Exception as e: | |
| logger.error(f"Failed to process audio file: {e}") | |
| raise | |
| def preprocess_prompt_wav(self, prompt_wav_path : str): | |
| prompt_wav, prompt_wav_sr = torchaudio.load(prompt_wav_path) | |
| if prompt_wav.shape[0] > 1: | |
| prompt_wav = prompt_wav.mean(dim=0, keepdim=True) # 将多通道音频转换为单通道 | |
| # volume-normalize avoid clipping | |
| norm = torch.max(torch.abs(prompt_wav), dim=1, keepdim=True)[0] | |
| if norm > 0.6: # hard code; max absolute value is 0.6 | |
| prompt_wav = prompt_wav / norm * 0.6 | |
| speech_feat, speech_feat_len = self.cosy_model.frontend.extract_speech_feat( | |
| prompt_wav, prompt_wav_sr | |
| ) | |
| speech_embedding = self.cosy_model.frontend.extract_spk_embedding( | |
| prompt_wav, prompt_wav_sr | |
| ) | |
| vq0206_codes, vq02_codes_ori, vq06_codes_ori = self.audio_tokenizer.wav2token(prompt_wav, prompt_wav_sr) | |
| return ( | |
| vq0206_codes, | |
| vq02_codes_ori, | |
| vq06_codes_ori, | |
| speech_feat, | |
| speech_feat_len, | |
| speech_embedding, | |
| ) | |
| def generate_clone_voice_id(self, prompt_text, prompt_wav): | |
| hasher = hashlib.sha256() | |
| hasher.update(prompt_text.encode('utf-8')) | |
| wav_data = prompt_wav.cpu().numpy() | |
| if wav_data.size > 2000: | |
| audio_sample = np.concatenate([wav_data.flatten()[:1000], wav_data.flatten()[-1000:]]) | |
| else: | |
| audio_sample = wav_data.flatten() | |
| hasher.update(audio_sample.tobytes()) | |
| voice_hash = hasher.hexdigest()[:16] | |
| return f"clone_{voice_hash}" | |