Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -280,10 +280,19 @@ def vectara_query(query: str, config: dict):
|
|
| 280 |
tab1, tab2, tab3, tab4 = st.tabs(["Synthetic Data", "Data Query", "HHEM-Victara Query Tuner", "Model Evaluation"])
|
| 281 |
|
| 282 |
with tab1:
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
|
| 288 |
with tab2:
|
| 289 |
st.header("Data Query")
|
|
@@ -294,7 +303,7 @@ with tab3:
|
|
| 294 |
st.header("HHEM-Victara Query Tuner")
|
| 295 |
|
| 296 |
# User inputs
|
| 297 |
-
query = st.text_area("Enter your text for query tuning", "", height=
|
| 298 |
lambda_val = st.slider("Lambda Value", min_value=0.0, max_value=1.0, value=0.5)
|
| 299 |
top_k = st.number_input("Top K Results", min_value=1, max_value=50, value=10)
|
| 300 |
|
|
@@ -335,7 +344,8 @@ with tab4:
|
|
| 335 |
st.header("Model Evaluation")
|
| 336 |
|
| 337 |
# User input for the research topic
|
| 338 |
-
research_topic = st.
|
|
|
|
| 339 |
|
| 340 |
# Selection box for the function to execute
|
| 341 |
process_selection = st.selectbox(
|
|
|
|
| 280 |
tab1, tab2, tab3, tab4 = st.tabs(["Synthetic Data", "Data Query", "HHEM-Victara Query Tuner", "Model Evaluation"])
|
| 281 |
|
| 282 |
with tab1:
|
| 283 |
+
|
| 284 |
+
# Create two columns, the first for the image, the second for the text and button
|
| 285 |
+
col1, col2 = st.columns([1, 2]) # Adjust the ratio as needed for your layout
|
| 286 |
+
|
| 287 |
+
# In the first column, add your image
|
| 288 |
+
with col1:
|
| 289 |
+
st.image("path_or_url_to_your_image", caption="Synthetic Data Visualization")
|
| 290 |
+
|
| 291 |
+
# In the second column, add your header and link button
|
| 292 |
+
with col2:
|
| 293 |
+
st.header("Synthetic Data")
|
| 294 |
+
st.link_button("Create Synthetic Medical Data", "https://chat.openai.com/g/g-XyHciw52w-synthetic-clinical-data")
|
| 295 |
+
|
| 296 |
|
| 297 |
with tab2:
|
| 298 |
st.header("Data Query")
|
|
|
|
| 303 |
st.header("HHEM-Victara Query Tuner")
|
| 304 |
|
| 305 |
# User inputs
|
| 306 |
+
query = st.text_area("Enter your text for query tuning", "", height=100)
|
| 307 |
lambda_val = st.slider("Lambda Value", min_value=0.0, max_value=1.0, value=0.5)
|
| 308 |
top_k = st.number_input("Top K Results", min_value=1, max_value=50, value=10)
|
| 309 |
|
|
|
|
| 344 |
st.header("Model Evaluation")
|
| 345 |
|
| 346 |
# User input for the research topic
|
| 347 |
+
research_topic = st.text_area('Enter your research topic:', '', height=100)
|
| 348 |
+
|
| 349 |
|
| 350 |
# Selection box for the function to execute
|
| 351 |
process_selection = st.selectbox(
|