Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
import tensorflow_hub as hub
|
| 3 |
+
|
| 4 |
+
import requests
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
import numpy as np
|
| 10 |
+
import gradio as gr
|
| 11 |
+
|
| 12 |
+
#@title Helper functions for loading image (hidden)
|
| 13 |
+
|
| 14 |
+
original_image_cache = {}
|
| 15 |
+
|
| 16 |
+
def preprocess_image(image):
|
| 17 |
+
image = np.array(image)
|
| 18 |
+
# reshape into shape [batch_size, height, width, num_channels]
|
| 19 |
+
img_reshaped = tf.reshape(image, [1, image.shape[0], image.shape[1], image.shape[2]])
|
| 20 |
+
# Use `convert_image_dtype` to convert to floats in the [0,1] range.
|
| 21 |
+
image = tf.image.convert_image_dtype(img_reshaped, tf.float32)
|
| 22 |
+
return image
|
| 23 |
+
|
| 24 |
+
def load_image_from_url(img_url):
|
| 25 |
+
"""Returns an image with shape [1, height, width, num_channels]."""
|
| 26 |
+
user_agent = {'User-agent': 'Colab Sample (https://tensorflow.org)'}
|
| 27 |
+
response = requests.get(img_url, headers=user_agent)
|
| 28 |
+
image = Image.open(BytesIO(response.content))
|
| 29 |
+
image = preprocess_image(image)
|
| 30 |
+
return image
|
| 31 |
+
|
| 32 |
+
def load_image(image_url, image_size=256, dynamic_size=False, max_dynamic_size=512):
|
| 33 |
+
"""Loads and preprocesses images."""
|
| 34 |
+
# Cache image file locally.
|
| 35 |
+
if image_url in original_image_cache:
|
| 36 |
+
img = original_image_cache[image_url]
|
| 37 |
+
elif image_url.startswith('https://'):
|
| 38 |
+
img = load_image_from_url(image_url)
|
| 39 |
+
else:
|
| 40 |
+
fd = tf.io.gfile.GFile(image_url, 'rb')
|
| 41 |
+
img = preprocess_image(Image.open(fd))
|
| 42 |
+
original_image_cache[image_url] = img
|
| 43 |
+
# Load and convert to float32 numpy array, add batch dimension, and normalize to range [0, 1].
|
| 44 |
+
img_raw = img
|
| 45 |
+
if tf.reduce_max(img) > 1.0:
|
| 46 |
+
img = img / 255.
|
| 47 |
+
if len(img.shape) == 3:
|
| 48 |
+
img = tf.stack([img, img, img], axis=-1)
|
| 49 |
+
if not dynamic_size:
|
| 50 |
+
img = tf.image.resize_with_pad(img, image_size, image_size)
|
| 51 |
+
elif img.shape[1] > max_dynamic_size or img.shape[2] > max_dynamic_size:
|
| 52 |
+
img = tf.image.resize_with_pad(img, max_dynamic_size, max_dynamic_size)
|
| 53 |
+
return img, img_raw
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
image_size = 224
|
| 58 |
+
dynamic_size = False
|
| 59 |
+
|
| 60 |
+
model_name = "efficientnet_b0"
|
| 61 |
+
|
| 62 |
+
model_handle_map = {
|
| 63 |
+
"efficientnetv2-s": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_s/classification/2",
|
| 64 |
+
"efficientnetv2-m": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_m/classification/2",
|
| 65 |
+
"efficientnetv2-l": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_l/classification/2",
|
| 66 |
+
"efficientnetv2-s-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_s/classification/2",
|
| 67 |
+
"efficientnetv2-m-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_m/classification/2",
|
| 68 |
+
"efficientnetv2-l-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_l/classification/2",
|
| 69 |
+
"efficientnetv2-xl-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_xl/classification/2",
|
| 70 |
+
"efficientnetv2-b0-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b0/classification/2",
|
| 71 |
+
"efficientnetv2-b1-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b1/classification/2",
|
| 72 |
+
"efficientnetv2-b2-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b2/classification/2",
|
| 73 |
+
"efficientnetv2-b3-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b3/classification/2",
|
| 74 |
+
"efficientnetv2-s-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_s/classification/2",
|
| 75 |
+
"efficientnetv2-m-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_m/classification/2",
|
| 76 |
+
"efficientnetv2-l-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_l/classification/2",
|
| 77 |
+
"efficientnetv2-xl-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_xl/classification/2",
|
| 78 |
+
"efficientnetv2-b0-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b0/classification/2",
|
| 79 |
+
"efficientnetv2-b1-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b1/classification/2",
|
| 80 |
+
"efficientnetv2-b2-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b2/classification/2",
|
| 81 |
+
"efficientnetv2-b3-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b3/classification/2",
|
| 82 |
+
"efficientnetv2-b0": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b0/classification/2",
|
| 83 |
+
"efficientnetv2-b1": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b1/classification/2",
|
| 84 |
+
"efficientnetv2-b2": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b2/classification/2",
|
| 85 |
+
"efficientnetv2-b3": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b3/classification/2",
|
| 86 |
+
"efficientnet_b0": "https://tfhub.dev/tensorflow/efficientnet/b0/classification/1",
|
| 87 |
+
"efficientnet_b1": "https://tfhub.dev/tensorflow/efficientnet/b1/classification/1",
|
| 88 |
+
"efficientnet_b2": "https://tfhub.dev/tensorflow/efficientnet/b2/classification/1",
|
| 89 |
+
"efficientnet_b3": "https://tfhub.dev/tensorflow/efficientnet/b3/classification/1",
|
| 90 |
+
"efficientnet_b4": "https://tfhub.dev/tensorflow/efficientnet/b4/classification/1",
|
| 91 |
+
"efficientnet_b5": "https://tfhub.dev/tensorflow/efficientnet/b5/classification/1",
|
| 92 |
+
"efficientnet_b6": "https://tfhub.dev/tensorflow/efficientnet/b6/classification/1",
|
| 93 |
+
"efficientnet_b7": "https://tfhub.dev/tensorflow/efficientnet/b7/classification/1",
|
| 94 |
+
"bit_s-r50x1": "https://tfhub.dev/google/bit/s-r50x1/ilsvrc2012_classification/1",
|
| 95 |
+
"inception_v3": "https://tfhub.dev/google/imagenet/inception_v3/classification/4",
|
| 96 |
+
"inception_resnet_v2": "https://tfhub.dev/google/imagenet/inception_resnet_v2/classification/4",
|
| 97 |
+
"resnet_v1_50": "https://tfhub.dev/google/imagenet/resnet_v1_50/classification/4",
|
| 98 |
+
"resnet_v1_101": "https://tfhub.dev/google/imagenet/resnet_v1_101/classification/4",
|
| 99 |
+
"resnet_v1_152": "https://tfhub.dev/google/imagenet/resnet_v1_152/classification/4",
|
| 100 |
+
"resnet_v2_50": "https://tfhub.dev/google/imagenet/resnet_v2_50/classification/4",
|
| 101 |
+
"resnet_v2_101": "https://tfhub.dev/google/imagenet/resnet_v2_101/classification/4",
|
| 102 |
+
"resnet_v2_152": "https://tfhub.dev/google/imagenet/resnet_v2_152/classification/4",
|
| 103 |
+
"nasnet_large": "https://tfhub.dev/google/imagenet/nasnet_large/classification/4",
|
| 104 |
+
"nasnet_mobile": "https://tfhub.dev/google/imagenet/nasnet_mobile/classification/4",
|
| 105 |
+
"pnasnet_large": "https://tfhub.dev/google/imagenet/pnasnet_large/classification/4",
|
| 106 |
+
"mobilenet_v2_100_224": "https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classification/4",
|
| 107 |
+
"mobilenet_v2_130_224": "https://tfhub.dev/google/imagenet/mobilenet_v2_130_224/classification/4",
|
| 108 |
+
"mobilenet_v2_140_224": "https://tfhub.dev/google/imagenet/mobilenet_v2_140_224/classification/4",
|
| 109 |
+
"mobilenet_v3_small_100_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_small_100_224/classification/5",
|
| 110 |
+
"mobilenet_v3_small_075_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_small_075_224/classification/5",
|
| 111 |
+
"mobilenet_v3_large_100_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_large_100_224/classification/5",
|
| 112 |
+
"mobilenet_v3_large_075_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_large_075_224/classification/5",
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
model_image_size_map = {
|
| 116 |
+
"efficientnetv2-s": 384,
|
| 117 |
+
"efficientnetv2-m": 480,
|
| 118 |
+
"efficientnetv2-l": 480,
|
| 119 |
+
"efficientnetv2-b0": 224,
|
| 120 |
+
"efficientnetv2-b1": 240,
|
| 121 |
+
"efficientnetv2-b2": 260,
|
| 122 |
+
"efficientnetv2-b3": 300,
|
| 123 |
+
"efficientnetv2-s-21k": 384,
|
| 124 |
+
"efficientnetv2-m-21k": 480,
|
| 125 |
+
"efficientnetv2-l-21k": 480,
|
| 126 |
+
"efficientnetv2-xl-21k": 512,
|
| 127 |
+
"efficientnetv2-b0-21k": 224,
|
| 128 |
+
"efficientnetv2-b1-21k": 240,
|
| 129 |
+
"efficientnetv2-b2-21k": 260,
|
| 130 |
+
"efficientnetv2-b3-21k": 300,
|
| 131 |
+
"efficientnetv2-s-21k-ft1k": 384,
|
| 132 |
+
"efficientnetv2-m-21k-ft1k": 480,
|
| 133 |
+
"efficientnetv2-l-21k-ft1k": 480,
|
| 134 |
+
"efficientnetv2-xl-21k-ft1k": 512,
|
| 135 |
+
"efficientnetv2-b0-21k-ft1k": 224,
|
| 136 |
+
"efficientnetv2-b1-21k-ft1k": 240,
|
| 137 |
+
"efficientnetv2-b2-21k-ft1k": 260,
|
| 138 |
+
"efficientnetv2-b3-21k-ft1k": 300,
|
| 139 |
+
"efficientnet_b0": 224,
|
| 140 |
+
"efficientnet_b1": 240,
|
| 141 |
+
"efficientnet_b2": 260,
|
| 142 |
+
"efficientnet_b3": 300,
|
| 143 |
+
"efficientnet_b4": 380,
|
| 144 |
+
"efficientnet_b5": 456,
|
| 145 |
+
"efficientnet_b6": 528,
|
| 146 |
+
"efficientnet_b7": 600,
|
| 147 |
+
"inception_v3": 299,
|
| 148 |
+
"inception_resnet_v2": 299,
|
| 149 |
+
"mobilenet_v2_100_224": 224,
|
| 150 |
+
"mobilenet_v2_130_224": 224,
|
| 151 |
+
"mobilenet_v2_140_224": 224,
|
| 152 |
+
"nasnet_large": 331,
|
| 153 |
+
"nasnet_mobile": 224,
|
| 154 |
+
"pnasnet_large": 331,
|
| 155 |
+
"resnet_v1_50": 224,
|
| 156 |
+
"resnet_v1_101": 224,
|
| 157 |
+
"resnet_v1_152": 224,
|
| 158 |
+
"resnet_v2_50": 224,
|
| 159 |
+
"resnet_v2_101": 224,
|
| 160 |
+
"resnet_v2_152": 224,
|
| 161 |
+
"mobilenet_v3_small_100_224": 224,
|
| 162 |
+
"mobilenet_v3_small_075_224": 224,
|
| 163 |
+
"mobilenet_v3_large_100_224": 224,
|
| 164 |
+
"mobilenet_v3_large_075_224": 224,
|
| 165 |
+
}
|
| 166 |
+
|
| 167 |
+
model_handle = model_handle_map[model_name]
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
max_dynamic_size = 512
|
| 171 |
+
if model_name in model_image_size_map:
|
| 172 |
+
image_size = model_image_size_map[model_name]
|
| 173 |
+
dynamic_size = False
|
| 174 |
+
print(f"Images will be converted to {image_size}x{image_size}")
|
| 175 |
+
else:
|
| 176 |
+
dynamic_size = True
|
| 177 |
+
print(f"Images will be capped to a max size of {max_dynamic_size}x{max_dynamic_size}")
|
| 178 |
+
|
| 179 |
+
labels_file = "https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt"
|
| 180 |
+
|
| 181 |
+
#download labels and creates a maps
|
| 182 |
+
downloaded_file = tf.keras.utils.get_file("labels.txt", origin=labels_file)
|
| 183 |
+
|
| 184 |
+
classes = []
|
| 185 |
+
|
| 186 |
+
with open(downloaded_file) as f:
|
| 187 |
+
labels = f.readlines()
|
| 188 |
+
classes = [l.strip() for l in labels]
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
classifier = hub.load(model_handle)
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def inference(img):
|
| 195 |
+
image, original_image = load_image(img, image_size, dynamic_size, max_dynamic_size)
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
input_shape = image.shape
|
| 199 |
+
warmup_input = tf.random.uniform(input_shape, 0, 1.0)
|
| 200 |
+
warmup_logits = classifier(warmup_input).numpy()
|
| 201 |
+
|
| 202 |
+
# Run model on image
|
| 203 |
+
probabilities = tf.nn.softmax(classifier(image)).numpy()
|
| 204 |
+
|
| 205 |
+
top_5 = tf.argsort(probabilities, axis=-1, direction="DESCENDING")[0][:5].numpy()
|
| 206 |
+
np_classes = np.array(classes)
|
| 207 |
+
|
| 208 |
+
# Some models include an additional 'background' class in the predictions, so
|
| 209 |
+
# we must account for this when reading the class labels.
|
| 210 |
+
includes_background_class = probabilities.shape[1] == 1001
|
| 211 |
+
result = {}
|
| 212 |
+
for i, item in enumerate(top_5):
|
| 213 |
+
class_index = item if includes_background_class else item + 1
|
| 214 |
+
line = f'({i+1}) {class_index:4} - {classes[class_index]}: {probabilities[0][top_5][i]}'
|
| 215 |
+
result[classes[class_index]] = probabilities[0][top_5][i].item()
|
| 216 |
+
return result
|
| 217 |
+
|
| 218 |
+
title="efficientnet_b0"
|
| 219 |
+
description="Gradio Demo for efficientnet_b0: Imagenet (ILSVRC-2012-CLS) classification with EfficientNet-B0. To use it, simply upload your image or click on one of the examples to load them. Read more at the links below"
|
| 220 |
+
|
| 221 |
+
article = "<p style='text-align: center'><a href='https://tfhub.dev/google/efficientnet/b0/classification/1' target='_blank'>Tensorflow Hub</a></p>"
|
| 222 |
+
examples=[['apple1.jpg']]
|
| 223 |
+
|
| 224 |
+
gr.Interface(inference,gr.inputs.Image(type="filepath"),"label",title=title,description=description,article=article,examples=examples).launch(enable_queue=True)
|