Update app.py
Browse files
app.py
CHANGED
|
@@ -9,9 +9,10 @@ from pytorch_grad_cam import GradCAM, HiResCAM, ScoreCAM, GradCAMPlusPlus, Ablat
|
|
| 9 |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
| 10 |
from pytorch_grad_cam.utils.image import show_cam_on_image
|
| 11 |
from timm.data import create_transform
|
|
|
|
| 12 |
|
| 13 |
# List of available timm models
|
| 14 |
-
MODELS = timm.
|
| 15 |
|
| 16 |
# List of available GradCAM methods
|
| 17 |
CAM_METHODS = {
|
|
@@ -25,6 +26,16 @@ CAM_METHODS = {
|
|
| 25 |
"FullGrad": FullGrad
|
| 26 |
}
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
def load_model(model_name):
|
| 29 |
model = timm.create_model(model_name, pretrained=True)
|
| 30 |
model.eval()
|
|
@@ -50,9 +61,14 @@ def process_image(image_path, model):
|
|
| 50 |
tensor = transform(image).unsqueeze(0)
|
| 51 |
return tensor
|
| 52 |
|
| 53 |
-
def get_cam_image(model, image, target_layer, cam_method):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
cam = CAM_METHODS[cam_method](model=model, target_layers=[target_layer])
|
| 55 |
-
grayscale_cam = cam(input_tensor=image)
|
| 56 |
|
| 57 |
config = model.pretrained_cfg
|
| 58 |
mean = torch.tensor(config['mean']).view(3, 1, 1)
|
|
@@ -79,20 +95,35 @@ def get_target_layer(model, target_layer_name):
|
|
| 79 |
print(f"WARNING: Layer '{target_layer_name}' not found in the model.")
|
| 80 |
return None
|
| 81 |
|
| 82 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
model = load_model(model_name)
|
| 84 |
image = process_image(image_path, model)
|
| 85 |
|
| 86 |
target_layer = get_target_layer(model, feature_module)
|
| 87 |
|
| 88 |
if target_layer is None:
|
| 89 |
-
# Fallback to the last feature module or last convolutional layer
|
| 90 |
feature_info = get_feature_info(model)
|
| 91 |
if feature_info:
|
| 92 |
target_layer = get_target_layer(model, feature_info[-1])
|
| 93 |
print(f"Using last feature module: {feature_info[-1]}")
|
| 94 |
else:
|
| 95 |
-
# Fallback to finding last convolutional layer
|
| 96 |
for name, module in reversed(list(model.named_modules())):
|
| 97 |
if isinstance(module, torch.nn.Conv2d):
|
| 98 |
target_layer = module
|
|
@@ -102,17 +133,35 @@ def explain_image(model_name, image_path, cam_method, feature_module):
|
|
| 102 |
if target_layer is None:
|
| 103 |
raise ValueError("Could not find a suitable target layer.")
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
def update_feature_modules(model_name):
|
| 109 |
model = load_model(model_name)
|
| 110 |
feature_modules = get_feature_info(model)
|
| 111 |
return gr.Dropdown(choices=feature_modules, value=feature_modules[-1] if feature_modules else None)
|
| 112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
with gr.Blocks() as demo:
|
| 114 |
-
gr.Markdown("# Explainable AI with timm models")
|
| 115 |
-
gr.Markdown("Upload an image, select a model, CAM method, and optionally a specific feature module to visualize the explanation.")
|
| 116 |
|
| 117 |
with gr.Row():
|
| 118 |
with gr.Column():
|
|
@@ -120,17 +169,20 @@ with gr.Blocks() as demo:
|
|
| 120 |
image_input = gr.Image(type="filepath", label="Upload Image")
|
| 121 |
cam_method_dropdown = gr.Dropdown(choices=list(CAM_METHODS.keys()), label="Select CAM Method")
|
| 122 |
feature_module_dropdown = gr.Dropdown(label="Select Feature Module (optional)")
|
|
|
|
| 123 |
explain_button = gr.Button("Explain Image")
|
| 124 |
|
| 125 |
with gr.Column():
|
| 126 |
output_image = gr.Image(type="pil", label="Explained Image")
|
|
|
|
| 127 |
|
| 128 |
model_dropdown.change(fn=update_feature_modules, inputs=[model_dropdown], outputs=[feature_module_dropdown])
|
|
|
|
| 129 |
|
| 130 |
explain_button.click(
|
| 131 |
fn=explain_image,
|
| 132 |
-
inputs=[model_dropdown, image_input, cam_method_dropdown, feature_module_dropdown],
|
| 133 |
-
outputs=[output_image]
|
| 134 |
)
|
| 135 |
|
| 136 |
demo.launch()
|
|
|
|
| 9 |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
| 10 |
from pytorch_grad_cam.utils.image import show_cam_on_image
|
| 11 |
from timm.data import create_transform
|
| 12 |
+
from timm.data import infer_imagenet_subset, ImageNetInfo
|
| 13 |
|
| 14 |
# List of available timm models
|
| 15 |
+
MODELS = timm.list_pretrained()
|
| 16 |
|
| 17 |
# List of available GradCAM methods
|
| 18 |
CAM_METHODS = {
|
|
|
|
| 26 |
"FullGrad": FullGrad
|
| 27 |
}
|
| 28 |
|
| 29 |
+
class CustomDatasetInfo:
|
| 30 |
+
def __init__(self, label_names, label_descriptions=None):
|
| 31 |
+
self.label_names = label_names
|
| 32 |
+
self.label_descriptions = label_descriptions or label_names
|
| 33 |
+
|
| 34 |
+
def index_to_description(self, index, detailed=False):
|
| 35 |
+
if detailed and self.label_descriptions:
|
| 36 |
+
return self.label_descriptions[index]
|
| 37 |
+
return self.label_names[index]
|
| 38 |
+
|
| 39 |
def load_model(model_name):
|
| 40 |
model = timm.create_model(model_name, pretrained=True)
|
| 41 |
model.eval()
|
|
|
|
| 61 |
tensor = transform(image).unsqueeze(0)
|
| 62 |
return tensor
|
| 63 |
|
| 64 |
+
def get_cam_image(model, image, target_layer, cam_method, target_class):
|
| 65 |
+
if target_class is not None and target_class != "highest scoring":
|
| 66 |
+
target = ClassifierOutputTarget(target_class)
|
| 67 |
+
else:
|
| 68 |
+
target = None
|
| 69 |
+
|
| 70 |
cam = CAM_METHODS[cam_method](model=model, target_layers=[target_layer])
|
| 71 |
+
grayscale_cam = cam(input_tensor=image, targets=[target] if target else None)
|
| 72 |
|
| 73 |
config = model.pretrained_cfg
|
| 74 |
mean = torch.tensor(config['mean']).view(3, 1, 1)
|
|
|
|
| 95 |
print(f"WARNING: Layer '{target_layer_name}' not found in the model.")
|
| 96 |
return None
|
| 97 |
|
| 98 |
+
def get_class_names(model):
|
| 99 |
+
dataset_info = None
|
| 100 |
+
label_names = model.pretrained_cfg.get("label_names", None)
|
| 101 |
+
label_descriptions = model.pretrained_cfg.get("label_descriptions", None)
|
| 102 |
+
if label_names is None:
|
| 103 |
+
imagenet_subset = infer_imagenet_subset(model)
|
| 104 |
+
if imagenet_subset:
|
| 105 |
+
dataset_info = ImageNetInfo(imagenet_subset)
|
| 106 |
+
else:
|
| 107 |
+
label_names = [f"LABEL_{i}" for i in range(model.num_classes)]
|
| 108 |
+
if dataset_info is None:
|
| 109 |
+
dataset_info = CustomDatasetInfo(
|
| 110 |
+
label_names=label_names,
|
| 111 |
+
label_descriptions=label_descriptions,
|
| 112 |
+
)
|
| 113 |
+
return dataset_info
|
| 114 |
+
|
| 115 |
+
def explain_image(model_name, image_path, cam_method, feature_module, target_class):
|
| 116 |
model = load_model(model_name)
|
| 117 |
image = process_image(image_path, model)
|
| 118 |
|
| 119 |
target_layer = get_target_layer(model, feature_module)
|
| 120 |
|
| 121 |
if target_layer is None:
|
|
|
|
| 122 |
feature_info = get_feature_info(model)
|
| 123 |
if feature_info:
|
| 124 |
target_layer = get_target_layer(model, feature_info[-1])
|
| 125 |
print(f"Using last feature module: {feature_info[-1]}")
|
| 126 |
else:
|
|
|
|
| 127 |
for name, module in reversed(list(model.named_modules())):
|
| 128 |
if isinstance(module, torch.nn.Conv2d):
|
| 129 |
target_layer = module
|
|
|
|
| 133 |
if target_layer is None:
|
| 134 |
raise ValueError("Could not find a suitable target layer.")
|
| 135 |
|
| 136 |
+
target_class_index = None if target_class == "highest scoring" else int(target_class.split(':')[0])
|
| 137 |
+
cam_image = get_cam_image(model, image, target_layer, cam_method, target_class_index)
|
| 138 |
+
|
| 139 |
+
with torch.no_grad():
|
| 140 |
+
out = model(image)
|
| 141 |
+
probabilities = out.squeeze(0).softmax(dim=0)
|
| 142 |
+
values, indices = torch.topk(probabilities, 5) # Top 5 predictions
|
| 143 |
+
dataset_info = get_class_names(model)
|
| 144 |
+
labels = [
|
| 145 |
+
f"{i}: {dataset_info.index_to_description(i.item(), detailed=True)} ({v.item():.2%})"
|
| 146 |
+
for i, v in zip(indices, values)
|
| 147 |
+
]
|
| 148 |
+
|
| 149 |
+
return cam_image, "\n".join(labels)
|
| 150 |
|
| 151 |
def update_feature_modules(model_name):
|
| 152 |
model = load_model(model_name)
|
| 153 |
feature_modules = get_feature_info(model)
|
| 154 |
return gr.Dropdown(choices=feature_modules, value=feature_modules[-1] if feature_modules else None)
|
| 155 |
|
| 156 |
+
def update_class_dropdown(model_name):
|
| 157 |
+
model = load_model(model_name)
|
| 158 |
+
dataset_info = get_class_names(model)
|
| 159 |
+
class_names = ["highest scoring"] + [f"{i}: {dataset_info.index_to_description(i, detailed=True)}" for i in range(model.num_classes)]
|
| 160 |
+
return gr.Dropdown(choices=class_names, value="highest scoring")
|
| 161 |
+
|
| 162 |
with gr.Blocks() as demo:
|
| 163 |
+
gr.Markdown("# Explainable AI with timm models. NOTE: This is a WIP but some models are functioning.")
|
| 164 |
+
gr.Markdown("Upload an image, select a model, CAM method, and optionally a specific feature module and target class to visualize the explanation.")
|
| 165 |
|
| 166 |
with gr.Row():
|
| 167 |
with gr.Column():
|
|
|
|
| 169 |
image_input = gr.Image(type="filepath", label="Upload Image")
|
| 170 |
cam_method_dropdown = gr.Dropdown(choices=list(CAM_METHODS.keys()), label="Select CAM Method")
|
| 171 |
feature_module_dropdown = gr.Dropdown(label="Select Feature Module (optional)")
|
| 172 |
+
class_dropdown = gr.Dropdown(label="Select Target Class (optional)")
|
| 173 |
explain_button = gr.Button("Explain Image")
|
| 174 |
|
| 175 |
with gr.Column():
|
| 176 |
output_image = gr.Image(type="pil", label="Explained Image")
|
| 177 |
+
prediction_text = gr.Textbox(label="Top 5 Predictions")
|
| 178 |
|
| 179 |
model_dropdown.change(fn=update_feature_modules, inputs=[model_dropdown], outputs=[feature_module_dropdown])
|
| 180 |
+
model_dropdown.change(fn=update_class_dropdown, inputs=[model_dropdown], outputs=[class_dropdown])
|
| 181 |
|
| 182 |
explain_button.click(
|
| 183 |
fn=explain_image,
|
| 184 |
+
inputs=[model_dropdown, image_input, cam_method_dropdown, feature_module_dropdown, class_dropdown],
|
| 185 |
+
outputs=[output_image, prediction_text]
|
| 186 |
)
|
| 187 |
|
| 188 |
demo.launch()
|