Spaces:
Runtime error
Runtime error
| num_classes = 2 | |
| lr = 0.0001*1.414/10 | |
| param_dict_type = 'default' | |
| lr_backbone = 1e-05*1.414/10 | |
| lr_backbone_names = ['backbone.0'] | |
| lr_linear_proj_names = ['reference_points', 'sampling_offsets'] | |
| lr_linear_proj_mult = 0.1 | |
| ddetr_lr_param = False | |
| batch_size = 2 | |
| weight_decay = 0.0001 | |
| epochs = 200 | |
| lr_drop = 11 | |
| save_checkpoint_interval = 1 | |
| clip_max_norm = 0.1 | |
| onecyclelr = False | |
| multi_step_lr = True | |
| lr_drop_list = [30, 60] | |
| modelname = 'aios_smplx' | |
| frozen_weights = None | |
| backbone = 'resnet50' | |
| use_checkpoint = False | |
| dilation = False | |
| position_embedding = 'sine' | |
| pe_temperatureH = 20 | |
| pe_temperatureW = 20 | |
| return_interm_indices = [1, 2, 3] | |
| backbone_freeze_keywords = None | |
| enc_layers = 6 | |
| dec_layers = 6 | |
| pre_norm = False | |
| dim_feedforward = 2048 | |
| hidden_dim = 256 | |
| dropout = 0.0 | |
| nheads = 8 | |
| num_queries = 900 | |
| query_dim = 4 | |
| num_patterns = 0 | |
| random_refpoints_xy = False | |
| fix_refpoints_hw = -1 | |
| dec_layer_number = None | |
| num_feature_levels = 4 | |
| enc_n_points = 4 | |
| dec_n_points = 4 | |
| dln_xy_noise = 0.2 | |
| dln_hw_noise = 0.2 | |
| two_stage_type = 'standard' | |
| two_stage_bbox_embed_share = False | |
| two_stage_class_embed_share = False | |
| two_stage_learn_wh = False | |
| two_stage_default_hw = 0.05 | |
| two_stage_keep_all_tokens = False | |
| rm_detach = None | |
| num_select = 50 | |
| transformer_activation = 'relu' | |
| batch_norm_type = 'FrozenBatchNorm2d' | |
| masks = False | |
| losses = ["smpl_pose", "smpl_beta", "smpl_expr", | |
| "smpl_kp2d","smpl_kp3d","smpl_kp3d_ra",'labels', 'boxes', "keypoints"] | |
| # losses = ['labels', 'boxes', "keypoints"] | |
| aux_loss = True | |
| set_cost_class = 2.0 | |
| set_cost_bbox = 5.0 | |
| set_cost_giou = 2.0 | |
| set_cost_keypoints = 10.0 | |
| set_cost_kpvis = 0.0 | |
| set_cost_oks = 4.0 | |
| cls_loss_coef = 2.0 | |
| # keypoints_loss_coef = 10.0 | |
| smpl_pose_loss_root_coef = 10 * 0.1 | |
| smpl_pose_loss_body_coef = 1 * 0.1 | |
| smpl_pose_loss_lhand_coef = 1 * 0.1 | |
| smpl_pose_loss_rhand_coef = 1 * 0.1 | |
| smpl_pose_loss_jaw_coef = 1 * 0.1 | |
| smpl_beta_loss_coef = 0.01 | |
| smpl_expr_loss_coef = 0.01 | |
| # smpl_kp3d_loss_coef = 10 | |
| smpl_body_kp3d_loss_coef = 10.0 * 0.1 | |
| smpl_face_kp3d_loss_coef = 1.0 * 0.1 | |
| smpl_lhand_kp3d_loss_coef = 1 * 0.1 | |
| smpl_rhand_kp3d_loss_coef = 1 * 0.1 | |
| # kp3d ra | |
| smpl_body_kp3d_ra_loss_coef = 10 * 0.1 | |
| smpl_face_kp3d_ra_loss_coef = 1 * 0.1 | |
| smpl_lhand_kp3d_ra_loss_coef = 1 * 0.1 | |
| smpl_rhand_kp3d_ra_loss_coef = 1 * 0.1 | |
| # smpl_kp2d_ba_loss_coef = 1.0 | |
| smpl_body_kp2d_loss_coef = 10.0 * 0.1 | |
| smpl_lhand_kp2d_loss_coef = 5.0 * 0.1 | |
| smpl_rhand_kp2d_loss_coef = 5.0 * 0.1 | |
| smpl_face_kp2d_loss_coef = 1.0 * 0.1 | |
| smpl_body_kp2d_ba_loss_coef = 0 * 0.1 | |
| smpl_face_kp2d_ba_loss_coef = 0 * 0.1 | |
| smpl_lhand_kp2d_ba_loss_coef = 0 * 0.1 | |
| smpl_rhand_kp2d_ba_loss_coef = 0 * 0.1 | |
| bbox_loss_coef = 5.0 | |
| body_bbox_loss_coef = 5.0 | |
| lhand_bbox_loss_coef = 5.0 | |
| rhand_bbox_loss_coef = 5.0 | |
| face_bbox_loss_coef = 5.0 | |
| giou_loss_coef = 2.0 | |
| body_giou_loss_coef = 2.0 | |
| rhand_giou_loss_coef = 2.0 | |
| lhand_giou_loss_coef = 2.0 | |
| face_giou_loss_coef = 2.0 | |
| keypoints_loss_coef = 10.0 | |
| rhand_keypoints_loss_coef = 10.0 | |
| lhand_keypoints_loss_coef = 10.0 | |
| face_keypoints_loss_coef = 10.0 | |
| oks_loss_coef=4.0 | |
| rhand_oks_loss_coef = 0.5 | |
| lhand_oks_loss_coef = 0.5 | |
| face_oks_loss_coef = 4.0 | |
| enc_loss_coef = 1.0 | |
| interm_loss_coef = 1.0 | |
| no_interm_box_loss = False | |
| focal_alpha = 0.25 | |
| rm_self_attn_layers = None | |
| indices_idx_list = [1, 2, 3, 4, 5, 6, 7] | |
| decoder_sa_type = 'sa' | |
| matcher_type = 'HungarianMatcher' | |
| decoder_module_seq = ['sa', 'ca', 'ffn'] | |
| nms_iou_threshold = -1 | |
| dec_pred_bbox_embed_share = False | |
| dec_pred_class_embed_share = False | |
| dec_pred_pose_embed_share = False | |
| body_only = True | |
| # for dn | |
| use_dn = True | |
| dn_number = 100 | |
| dn_box_noise_scale = 0.4 | |
| dn_label_noise_ratio = 0.5 | |
| embed_init_tgt = False | |
| dn_label_coef = 0.3 | |
| dn_bbox_coef = 0.5 | |
| dn_batch_gt_fuse = False | |
| dn_attn_mask_type_list = ['match2dn', 'dn2dn', 'group2group'] | |
| dn_labelbook_size = 100 | |
| match_unstable_error = False | |
| # for ema | |
| use_ema = True | |
| ema_decay = 0.9997 | |
| ema_epoch = 0 | |
| cls_no_bias = False | |
| num_body_points = 17 # for coco | |
| num_hand_points = 6 # for coco | |
| num_face_points = 6 # for coco | |
| num_group = 100 | |
| num_box_decoder_layers = 2 | |
| num_hand_face_decoder_layers = 4 | |
| no_mmpose_keypoint_evaluator = True | |
| strong_aug = False | |
| body_model_test=\ | |
| dict( | |
| type='smplx', | |
| keypoint_src='smplx', | |
| num_expression_coeffs=10, | |
| num_betas=10, | |
| keypoint_dst='smplx_137', | |
| model_path='data/body_models/smplx', | |
| use_pca=False, | |
| use_face_contour=True) | |
| body_model_train = \ | |
| dict( | |
| type='smplx', | |
| keypoint_src='smplx', | |
| num_expression_coeffs=10, | |
| num_betas=10, | |
| keypoint_dst='smplx_137', | |
| model_path='data/body_models/smplx', | |
| use_pca=False, | |
| use_face_contour=True) | |
| # will be update in exp | |
| exp_name = 'output/exp52/dataset_debug' | |
| end_epoch = 150 | |
| train_batch_size = 32 | |
| scheduler = 'step' | |
| step_size = 20 | |
| gamma = 0.1 | |
| # continue | |
| continue_train = True | |
| pretrained_model_path = '../output/train_gta_synbody_ft_20230410_132110/model_dump/snapshot_2.pth.tar' | |
| # dataset setting | |
| # dataset_list = ['AGORA_MM','BEDLAM', 'COCO_NA'] | |
| # trainset_3d = ['AGORA_MM','BEDLAM', 'COCO_NA'] | |
| dataset_list = ['AGORA_MM','BEDLAM', 'COCO_NA'] | |
| trainset_3d = ['AGORA_MM','BEDLAM', 'COCO_NA'] | |
| trainset_2d = [] | |
| trainset_partition = { | |
| 'AGORA_MM': 0.4, | |
| 'BEDLAM': 0.7, | |
| 'COCO_NA': 1, | |
| # 'EgoBody_Egocentric': 1, | |
| # 'EgoBody_Kinect': 1.0, | |
| } | |
| trainset_humandata = [] | |
| testset = 'INFERENCE' | |
| train_sizes=[480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800] | |
| train_max_size=1333 | |
| test_sizes=[800] | |
| test_max_size=1333 | |
| no_aug=False | |
| # model | |
| use_cache = True | |
| ## UBody setting | |
| train_sample_interval = 10 | |
| test_sample_interval = 100 | |
| make_same_len = False | |
| ## input, output size | |
| input_body_shape = (256, 192) | |
| output_hm_shape = (16, 16, 12) | |
| input_hand_shape = (256, 256) | |
| output_hand_hm_shape = (16, 16, 16) | |
| output_face_hm_shape = (8, 8, 8) | |
| input_face_shape = (192, 192) | |
| focal = (5000, 5000) # virtual focal lengths | |
| princpt = (input_body_shape[1] / 2, input_body_shape[0] / 2 | |
| ) # virtual principal point position | |
| body_3d_size = 2 | |
| hand_3d_size = 0.3 | |
| face_3d_size = 0.3 | |
| camera_3d_size = 2.5 | |
| bbox_ratio = 1.2 | |
| ## directory | |
| output_dir, model_dir, vis_dir, log_dir, result_dir, code_dir = None, None, None, None, None, None | |
| agora_benchmark = 'na' # 'agora_model', 'test_only' | |
| # strategy | |
| data_strategy = 'balance' # 'balance' need to define total_data_len | |
| total_data_len = 'auto' |