Spaces:
Runtime error
Runtime error
| import torch, os | |
| from torchvision.ops.boxes import box_area | |
| def box_cxcywh_to_xyxy(x): | |
| x_c, y_c, w, h = x.unbind(-1) | |
| b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] | |
| return torch.stack(b, dim=-1) | |
| def box_xyxy_to_cxcywh(x): | |
| x0, y0, x1, y1 = x.unbind(-1) | |
| b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)] | |
| return torch.stack(b, dim=-1) | |
| def box_iou(boxes1, boxes2): | |
| area1 = box_area(boxes1) | |
| area2 = box_area(boxes2) | |
| # import pdb; pdb.set_trace() | |
| lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] | |
| rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] | |
| wh = (rb - lt).clamp(min=0) # [N,M,2] | |
| inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] | |
| union = area1[:, None] + area2 - inter | |
| iou = inter / (union + 1e-6) | |
| return iou, union | |
| def generalized_box_iou(boxes1, boxes2, data_batch=None): | |
| """Generalized IoU from https://giou.stanford.edu/ | |
| The boxes should be in [x0, y0, x1, y1] format | |
| Returns a [N, M] pairwise matrix, where N = len(boxes1) | |
| and M = len(boxes2) | |
| """ | |
| if not (boxes1[:, 2:] >= boxes1[:, :2]).all(): | |
| import mmcv | |
| import cv2 | |
| import numpy as np | |
| bs = len(data_batch['img']) | |
| boxes_pred = boxes1.reshape(bs, 100, 4) | |
| for i in range(bs): | |
| import torch.distributed as dist | |
| dist.barrier() | |
| idx = data_batch['idx'] | |
| img = mmcv.imdenormalize( | |
| img=(data_batch['img'][i].cpu().numpy()).transpose(1, 2, 0), | |
| mean=np.array([123.675, 116.28, 103.53]), | |
| std=np.array([58.395, 57.12, 57.375]), | |
| to_bgr=True).astype(np.uint8) | |
| img_wh = data_batch['img_shape'][i] | |
| lhand_bbox = data_batch['lhand_bbox'][i] | |
| lhand_bbox = (lhand_bbox.reshape(-1,2).cpu().numpy()*img_wh.cpu().numpy()[::-1]).reshape(-1, 4) | |
| rhand_bbox = data_batch['rhand_bbox'][i] | |
| rhand_bbox = (rhand_bbox.reshape(-1,2).cpu().numpy()*img_wh.cpu().numpy()[::-1]).reshape(-1, 4) | |
| face_bbox = data_batch['face_bbox'][i] | |
| face_bbox = (face_bbox.reshape(-1,2).cpu().numpy()*img_wh.cpu().numpy()[::-1]).reshape(-1, 4) | |
| body_bbox = data_batch['body_bbox'][i] | |
| body_bbox = (body_bbox.reshape(-1,2).cpu().numpy()*img_wh.cpu().numpy()[::-1]).reshape(-1, 4) | |
| img = mmcv.imshow_bboxes(img, body_bbox, show=False, colors='green') | |
| img = mmcv.imshow_bboxes(img, lhand_bbox, show=False, colors='blue') | |
| img = mmcv.imshow_bboxes(img, rhand_bbox, show=False, colors='yellow') | |
| img = mmcv.imshow_bboxes(img, face_bbox, show=False, colors='red') | |
| cv2.imwrite(f'error_gt_img_{idx[i]}.jpg',img) | |
| img = mmcv.imdenormalize( | |
| img=(data_batch['img'][i].cpu().numpy()).transpose(1, 2, 0), | |
| mean=np.array([123.675, 116.28, 103.53]), | |
| std=np.array([58.395, 57.12, 57.375]), | |
| to_bgr=True).astype(np.uint8) | |
| boxes_pred_ = (boxes_pred[i].reshape(-1,2).detach().cpu().numpy()*img_wh.cpu().numpy()[::-1]).reshape(-1, 4) | |
| img = mmcv.imshow_bboxes(img.copy(), boxes_pred_, show=False) | |
| cv2.imwrite(f'error_pred_img_{idx[i]}.jpg',img) | |
| # assert (boxes1[:, 2:] >= boxes1[:, :2]).all() | |
| # assert (boxes2[:, 2:] >= boxes2[:, :2]).all() | |
| iou, union = box_iou(boxes1, boxes2) | |
| lt = torch.min(boxes1[:, None, :2], boxes2[:, :2]) | |
| rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) | |
| wh = (rb - lt).clamp(min=0) # [N,M,2] | |
| area = wh[:, :, 0] * wh[:, :, 1] | |
| return iou - (area - union) / (area + 1e-6) | |
| # modified from torchvision to also return the union | |
| def box_iou_pairwise(boxes1, boxes2): | |
| area1 = box_area(boxes1) | |
| area2 = box_area(boxes2) | |
| lt = torch.max(boxes1[:, :2], boxes2[:, :2]) # [N,2] | |
| rb = torch.min(boxes1[:, 2:], boxes2[:, 2:]) # [N,2] | |
| wh = (rb - lt).clamp(min=0) # [N,2] | |
| inter = wh[:, 0] * wh[:, 1] # [N] | |
| union = area1 + area2 - inter | |
| iou = inter / union | |
| return iou, union | |
| def generalized_box_iou_pairwise(boxes1, boxes2): | |
| """Generalized IoU from https://giou.stanford.edu/ | |
| Input: | |
| - boxes1, boxes2: N,4 | |
| Output: | |
| - giou: N, 4 | |
| """ | |
| # degenerate boxes gives inf / nan results | |
| # so do an early check | |
| assert (boxes1[:, 2:] >= boxes1[:, :2]).all() | |
| assert (boxes2[:, 2:] >= boxes2[:, :2]).all() | |
| assert boxes1.shape == boxes2.shape | |
| iou, union = box_iou_pairwise(boxes1, boxes2) # N, 4 | |
| lt = torch.min(boxes1[:, :2], boxes2[:, :2]) | |
| rb = torch.max(boxes1[:, 2:], boxes2[:, 2:]) | |
| wh = (rb - lt).clamp(min=0) # [N,2] | |
| area = wh[:, 0] * wh[:, 1] | |
| return iou - (area - union) / area | |
| def masks_to_boxes(masks): | |
| """Compute the bounding boxes around the provided masks. | |
| The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions. | |
| Returns a [N, 4] tensors, with the boxes in xyxy format | |
| """ | |
| if masks.numel() == 0: | |
| return torch.zeros((0, 4), device=masks.device) | |
| h, w = masks.shape[-2:] | |
| y = torch.arange(0, h, dtype=torch.float) | |
| x = torch.arange(0, w, dtype=torch.float) | |
| y, x = torch.meshgrid(y, x) | |
| x_mask = (masks * x.unsqueeze(0)) | |
| x_max = x_mask.flatten(1).max(-1)[0] | |
| x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] | |
| y_mask = (masks * y.unsqueeze(0)) | |
| y_max = y_mask.flatten(1).max(-1)[0] | |
| y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] | |
| return torch.stack([x_min, y_min, x_max, y_max], 1) | |
| if __name__ == '__main__': | |
| x = torch.rand(5, 4) | |
| y = torch.rand(3, 4) | |
| iou, union = box_iou(x, y) | |
| import pdb | |
| pdb.set_trace() | |