File size: 3,426 Bytes
b90b5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b20455d
 
b90b5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b20455d
b90b5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


import os
import warnings
import shutil

from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    AutoConfig,
    BitsAndBytesConfig,
)
import torch
from llava.model import *
from llava.constants import (
    DEFAULT_IMAGE_PATCH_TOKEN,
    DEFAULT_IM_START_TOKEN,
    DEFAULT_IM_END_TOKEN,
)


def load_pretrained_model(
    model_path,
    model_base,
    model_name,
    load_8bit=False,
    load_4bit=False,
    device_map="auto",
    device="cuda",
):
    kwargs = {"device_map": device_map}

    if load_8bit:
        kwargs["load_in_8bit"] = True
    elif load_4bit:
        kwargs["load_in_4bit"] = True
        kwargs["quantization_config"] = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.bfloat16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
        )
    else:
        kwargs["torch_dtype"] = torch.bfloat16

    # Check if model is LLaVA-based (including VisCoT which is built on LLaVA)
    if "llava" in model_name.lower() or "viscot" in model_name.lower():
        # Load LLaVA model

        if "lora" in model_name.lower() and model_base is not None:
            raise NotImplementedError
        elif model_base is not None:
            raise NotImplementedError
        else:
            tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
            model = LlavaLlamaForCausalLM.from_pretrained(
                model_path, low_cpu_mem_usage=True, **kwargs
            )
    else:
        raise NotImplementedError

    image_processor = None

    if "llava" in model_name.lower() or "viscot" in model_name.lower():
        mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
        mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
        if mm_use_im_patch_token:
            tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
        if mm_use_im_start_end:
            tokenizer.add_tokens(
                [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
            )
        model.resize_token_embeddings(len(tokenizer))
        vision_tower = model.get_vision_tower()
        if not vision_tower.is_loaded:
            vision_tower.load_model()
        vision_tower.to(device=device, dtype=torch.bfloat16)
        if hasattr(vision_tower, "image_processor"):
            image_processor = vision_tower.image_processor
        else:
            image_processor = [
                vision_tower.image_processor_0,
                vision_tower.image_processor_1,
            ]

    if hasattr(model.config, "max_sequence_length"):
        context_len = model.config.max_sequence_length
    else:
        context_len = 2048

    return tokenizer, model, image_processor, context_len