# Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod import os import time import torch import torch.nn as nn from .multimodal_encoder.builder import build_vision_tower from .multimodal_projector.builder import build_vision_projector from llava.constants import ( IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, ) class LlavaMetaModel: def __init__(self, config): super(LlavaMetaModel, self).__init__(config) if hasattr(config, "mm_vision_tower"): self.vision_tower = build_vision_tower(config, delay_load=False) self.mm_projector = build_vision_projector(config) def init_Qformer(self, num_query_tokens, vision_width, layers): decoder_layer = nn.TransformerDecoderLayer(d_model=vision_width, nhead=8, batch_first=True) Qformer = nn.TransformerDecoder(decoder_layer, num_layers=layers) query_tokens = nn.Parameter( torch.zeros(1, num_query_tokens, vision_width) ) query_tokens.data.normal_(mean=0.0, std=0.02) self.qformer = Qformer self.query_tokens = query_tokens print('initialize qfromer successfully!') def get_vision_tower(self): vision_tower = getattr(self, "vision_tower", None) if type(vision_tower) is list: vision_tower = vision_tower[0] return vision_tower def initialize_vision_modules(self, model_args, fsdp=None): vision_tower = model_args.vision_tower mm_vision_select_layer = model_args.mm_vision_select_layer mm_vision_select_feature = model_args.mm_vision_select_feature pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter self.config.mm_vision_tower = vision_tower vision_tower = build_vision_tower(model_args) if fsdp is not None and len(fsdp) > 0: self.vision_tower = [vision_tower] else: self.vision_tower = vision_tower self.config.use_mm_proj = True self.config.mm_projector_type = getattr( model_args, "mm_projector_type", "linear" ) self.config.mm_hidden_size = vision_tower.hidden_size self.config.mm_vision_select_layer = mm_vision_select_layer self.config.mm_vision_select_feature = mm_vision_select_feature self.mm_projector = build_vision_projector(self.config) if pretrain_mm_mlp_adapter is not None: while not os.path.exists(pretrain_mm_mlp_adapter): print("wating....") time.sleep(30) mm_projector_weights = torch.load( pretrain_mm_mlp_adapter, map_location="cpu" ) def get_w(weights, keyword): return { k.split(keyword + ".")[1]: v for k, v in weights.items() if keyword in k } self.mm_projector.load_state_dict( get_w(mm_projector_weights, "mm_projector") ) class LlavaMetaForCausalLM(ABC): @abstractmethod def get_model(self): pass def get_vision_tower(self): return self.get_model().get_vision_tower() def encode_images(self, images): image_features_0 = self.get_model().get_vision_tower()(images) image_features = self.get_model().mm_projector(image_features_0) return image_features def prepare_inputs_labels_for_multimodal( self, input_ids, attention_mask, past_key_values, labels, images ): vision_tower = self.get_vision_tower() if vision_tower is None or images is None or input_ids.shape[1] == 1: if ( past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1 ): attention_mask = torch.ones( (attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device, ) return input_ids, attention_mask, past_key_values, None, labels #print(images.ndim) #import pdb; pdb.set_trace() if type(images) is list or images.ndim == 5: concat_images = torch.cat([image for image in images], dim=0) image_features = self.encode_images(concat_images) split_sizes = [image.shape[0] for image in images] image_features = torch.split(image_features, split_sizes, dim=0) image_features = [x.flatten(0, 1) for x in image_features] else: image_features = self.encode_images(images) # query_tokens = self.get_model().query_tokens.expand(image_features.shape[0], -1, -1) # image_features = self.get_model().qformer(query_tokens, image_features) new_input_embeds = [] new_labels = [] if labels is not None else None cur_image_idx = 0 for batch_idx, cur_input_ids in enumerate(input_ids): if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0: # multimodal LLM, but the current sample is not multimodal # FIXME: this is a hacky fix, for deepspeed zero3 to work split_size = cur_input_ids.shape[0] // 3 cur_image_features = image_features[cur_image_idx] cur_input_embeds_1 = self.get_model().embed_tokens( cur_input_ids[:split_size] ) cur_input_embeds_2 = self.get_model().embed_tokens( cur_input_ids[split_size : split_size * 2] ) cur_input_embeds_3 = self.get_model().embed_tokens( cur_input_ids[split_size * 2 :] ) cur_input_embeds = torch.cat( [ cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2, cur_input_embeds_3, ], dim=0, ) new_input_embeds.append(cur_input_embeds) if labels is not None: new_labels.append(labels[batch_idx]) cur_image_idx += 1 continue image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] cur_new_input_embeds = [] if labels is not None: cur_labels = labels[batch_idx] cur_new_labels = [] assert cur_labels.shape == cur_input_ids.shape current_img_num = image_token_indices.numel() while image_token_indices.numel() > 0: #print(len(image_features),image_features[0].shape, cur_image_idx) cur_image_features = image_features[cur_image_idx] image_token_start = image_token_indices[0] if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr( self.config, "mm_use_im_start_end", False ): cur_new_input_embeds.append( self.get_model() .embed_tokens(cur_input_ids[: image_token_start - 1]) .detach() ) cur_new_input_embeds.append( self.get_model().embed_tokens( cur_input_ids[image_token_start - 1 : image_token_start] ) ) cur_new_input_embeds.append(cur_image_features) cur_new_input_embeds.append( self.get_model().embed_tokens( cur_input_ids[image_token_start + 1 : image_token_start + 2] ) ) if labels is not None: cur_new_labels.append(cur_labels[:image_token_start]) cur_new_labels.append( torch.full( (cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype, ) ) cur_new_labels.append( cur_labels[image_token_start : image_token_start + 1] ) cur_labels = cur_labels[image_token_start + 2 :] else: cur_new_input_embeds.append( self.get_model().embed_tokens(cur_input_ids[:image_token_start]) ) cur_new_input_embeds.append(cur_image_features) if labels is not None: cur_new_labels.append(cur_labels[:image_token_start]) cur_new_labels.append( torch.full( (cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype, ) ) cur_labels = cur_labels[image_token_start + 1 :] cur_image_idx += 1 if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr( self.config, "mm_use_im_start_end", False ): cur_input_ids = cur_input_ids[image_token_start + 2 :] else: cur_input_ids = cur_input_ids[image_token_start + 1 :] image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] if cur_input_ids.numel() > 0: if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr( self.config, "mm_use_im_start_end", False ): cur_new_input_embeds.append( self.get_model().embed_tokens(cur_input_ids).detach() ) else: if current_img_num == 1 and cur_image_features.requires_grad: half_len = cur_input_ids.shape[0] // 2 cur_input_embeds_1 = self.get_model().embed_tokens( cur_input_ids[:half_len] ) cur_input_embeds_2 = self.get_model().embed_tokens( cur_input_ids[half_len:] ) cur_input_embeds = torch.cat( [ cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2, ], dim=0, ) cur_new_input_embeds.append(cur_input_embeds) else: cur_new_input_embeds.append( self.get_model().embed_tokens(cur_input_ids) ) if labels is not None: cur_new_labels.append(cur_labels) cur_new_input_embeds = [ x.to(device=self.device) for x in cur_new_input_embeds ] cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) new_input_embeds.append(cur_new_input_embeds) if labels is not None: cur_new_labels = torch.cat(cur_new_labels, dim=0) new_labels.append(cur_new_labels) if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): max_len = max(x.shape[0] for x in new_input_embeds) new_input_embeds_align = [] for cur_new_embed in new_input_embeds: cur_new_embed = torch.cat( ( cur_new_embed, torch.zeros( (max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device, ), ), dim=0, ) new_input_embeds_align.append(cur_new_embed) new_input_embeds = torch.stack(new_input_embeds_align, dim=0) if labels is not None: new_labels_align = [] _new_labels = new_labels for cur_new_label in new_labels: cur_new_label = torch.cat( ( cur_new_label, torch.full( (max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device, ), ), dim=0, ) new_labels_align.append(cur_new_label) new_labels = torch.stack(new_labels_align, dim=0) if attention_mask is not None: new_attention_mask = [] for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip( attention_mask, _new_labels, new_labels ): new_attn_mask_pad_left = torch.full( (cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device, ) new_attn_mask_pad_right = torch.full( (cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device, ) cur_new_attention_mask = torch.cat( ( new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right, ), dim=0, ) new_attention_mask.append(cur_new_attention_mask) attention_mask = torch.stack(new_attention_mask, dim=0) assert attention_mask.shape == new_labels.shape else: new_input_embeds = torch.stack(new_input_embeds, dim=0) if labels is not None: new_labels = torch.stack(new_labels, dim=0) if attention_mask is not None: new_attn_mask_pad_left = torch.full( ( attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1], ), True, dtype=attention_mask.dtype, device=attention_mask.device, ) attention_mask = torch.cat( (new_attn_mask_pad_left, attention_mask), dim=1 ) assert attention_mask.shape == new_input_embeds.shape[:2] attention_mask = attention_mask[:, : self.config.max_position_embeddings] new_input_embeds = new_input_embeds[:, : self.config.max_position_embeddings, :] if new_labels is not None: new_labels = new_labels[:, : self.config.max_position_embeddings] return None, attention_mask, past_key_values, new_input_embeds, new_labels def initialize_vision_tokenizer(self, model_args, tokenizer): if model_args.mm_use_im_patch_token: tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) self.resize_token_embeddings(len(tokenizer)) if model_args.mm_use_im_start_end: num_new_tokens = tokenizer.add_tokens( [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True ) self.resize_token_embeddings(len(tokenizer)) if num_new_tokens > 0: input_embeddings = self.get_input_embeddings().weight.data output_embeddings = self.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True ) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True ) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg if model_args.tune_mm_mlp_adapter: for p in self.get_input_embeddings().parameters(): p.requires_grad = True for p in self.get_output_embeddings().parameters(): p.requires_grad = False if model_args.pretrain_mm_mlp_adapter: mm_projector_weights = torch.load( model_args.pretrain_mm_mlp_adapter, map_location="cpu" ) embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"] assert num_new_tokens == 2 if input_embeddings.shape == embed_tokens_weight.shape: input_embeddings[-num_new_tokens:] = embed_tokens_weight[ -num_new_tokens: ] elif embed_tokens_weight.shape[0] == num_new_tokens: input_embeddings[-num_new_tokens:] = embed_tokens_weight else: raise ValueError( f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}." ) elif model_args.mm_use_im_patch_token: if model_args.tune_mm_mlp_adapter: for p in self.get_input_embeddings().parameters(): p.requires_grad = False for p in self.get_output_embeddings().parameters(): p.requires_grad = False