Sayantan Das
commited on
Commit
·
b553871
1
Parent(s):
ef2913c
Add application file
Browse files
app.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import geocoder
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import requests
|
| 5 |
+
import urllib.parse
|
| 6 |
+
from typing import Dict, Any
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
import math
|
| 9 |
+
from typing import Tuple, List, Optional
|
| 10 |
+
import json
|
| 11 |
+
|
| 12 |
+
class CrimeData:
|
| 13 |
+
def __init__(self, incident_type: str, date_time: datetime, location: Tuple[float, float],
|
| 14 |
+
address: str, narrative: str = None):
|
| 15 |
+
self.incident_type = incident_type
|
| 16 |
+
self.date_time = date_time
|
| 17 |
+
self.location = location
|
| 18 |
+
self.address = address
|
| 19 |
+
self.narrative = narrative
|
| 20 |
+
|
| 21 |
+
def haversine_distance(coord1: Tuple[float, float], coord2: Tuple[float, float]) -> float:
|
| 22 |
+
"""Calculate the distance between two coordinates in kilometers."""
|
| 23 |
+
R = 6371.0
|
| 24 |
+
lat1, lon1 = math.radians(coord1[0]), math.radians(coord1[1])
|
| 25 |
+
lat2, lon2 = math.radians(coord2[0]), math.radians(coord2[1])
|
| 26 |
+
|
| 27 |
+
dlat = lat2 - lat1
|
| 28 |
+
dlon = lon2 - lon1
|
| 29 |
+
|
| 30 |
+
a = math.sin(dlat/2)**2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon/2)**2
|
| 31 |
+
c = 2 * math.asin(math.sqrt(a))
|
| 32 |
+
|
| 33 |
+
return R * c
|
| 34 |
+
|
| 35 |
+
def geocode_address(address: str, city: str = "Kingston", province: str = "ON") -> Optional[Tuple[float, float]]:
|
| 36 |
+
"""Convert address to latitude/longitude coordinates."""
|
| 37 |
+
full_address = f"{address}, {city}, {province}, Canada"
|
| 38 |
+
location = geocoder.osm(full_address, headers={
|
| 39 |
+
'User-Agent': 'CrimeLookupApp/1.0 ([email protected])'
|
| 40 |
+
})
|
| 41 |
+
|
| 42 |
+
if location.ok:
|
| 43 |
+
return (location.lat, location.lng)
|
| 44 |
+
|
| 45 |
+
# Fallback: Direct request to Nominatim API
|
| 46 |
+
import requests
|
| 47 |
+
import urllib.parse
|
| 48 |
+
|
| 49 |
+
url = f"https://nominatim.openstreetmap.org/search"
|
| 50 |
+
params = {
|
| 51 |
+
'q': full_address,
|
| 52 |
+
'format': 'jsonv2',
|
| 53 |
+
'addressdetails': 1,
|
| 54 |
+
'limit': 1
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
headers = {
|
| 58 |
+
'User-Agent': 'CrimeLookupApp/1.0 ([email protected])'
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
try:
|
| 62 |
+
response = requests.get(url, params=params, headers=headers)
|
| 63 |
+
response.raise_for_status()
|
| 64 |
+
results = response.json()
|
| 65 |
+
|
| 66 |
+
if results:
|
| 67 |
+
return (float(results[0]['lat']), float(results[0]['lon']))
|
| 68 |
+
except Exception as e:
|
| 69 |
+
print(f"Geocoding error: {e}")
|
| 70 |
+
|
| 71 |
+
return None
|
| 72 |
+
|
| 73 |
+
def load_crime_data() -> List[CrimeData]:
|
| 74 |
+
"""Load crime data from the police incidents API."""
|
| 75 |
+
url = "https://ce-portal-service.commandcentral.com/api/v1.0/public/incidents"
|
| 76 |
+
|
| 77 |
+
# Define the request payload with the Kingston area boundaries
|
| 78 |
+
payload = {
|
| 79 |
+
"limit": 2000,
|
| 80 |
+
"offset": 0,
|
| 81 |
+
"geoJson": {
|
| 82 |
+
"type": "Polygon",
|
| 83 |
+
"coordinates": [[
|
| 84 |
+
[-76.5167293, 44.2255476],
|
| 85 |
+
[-76.5167293, 44.2435476],
|
| 86 |
+
[-76.4987293, 44.2435476],
|
| 87 |
+
[-76.4987293, 44.2255476],
|
| 88 |
+
[-76.5167293, 44.2255476]
|
| 89 |
+
]]
|
| 90 |
+
},
|
| 91 |
+
"projection": False,
|
| 92 |
+
"propertyMap": {
|
| 93 |
+
"pageSize": "2000",
|
| 94 |
+
"zoomLevel": "15",
|
| 95 |
+
"latitude": "44.2345476",
|
| 96 |
+
"longitude": "-76.5077293",
|
| 97 |
+
"relativeDate": "custom",
|
| 98 |
+
"fromDate": "2024-01-11T14:00:00.000Z",
|
| 99 |
+
"toDate": "2025-01-11T13:00:00.000Z",
|
| 100 |
+
"days": "",
|
| 101 |
+
"startHour": "0",
|
| 102 |
+
"endHour": "24",
|
| 103 |
+
"parentIncidentTypeIds": "149,150,148,8,97,104,165,98,100,179,178,180,101,99,103,163,168,166,12,161,14,16,15,160,121,162,164,167,173,169,170,172,171,151",
|
| 104 |
+
"agencyIds": "407,1358,ottawapolice.ca,kpf.ca"
|
| 105 |
+
}
|
| 106 |
+
}
|
| 107 |
+
|
| 108 |
+
headers = {
|
| 109 |
+
'Content-Type': 'application/json',
|
| 110 |
+
'Accept': 'application/json',
|
| 111 |
+
'Origin': 'https://www.cityprotect.com',
|
| 112 |
+
'Referer': 'https://www.cityprotect.com/'
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
try:
|
| 116 |
+
response = requests.post(url, json=payload, headers=headers)
|
| 117 |
+
response.raise_for_status()
|
| 118 |
+
data = response.json()
|
| 119 |
+
|
| 120 |
+
crimes = []
|
| 121 |
+
if 'result' in data and 'list' in data['result'] and 'incidents' in data['result']['list']:
|
| 122 |
+
for incident in data['result']['list']['incidents']:
|
| 123 |
+
crimes.append(CrimeData(
|
| 124 |
+
incident_type=incident['incidentType'],
|
| 125 |
+
date_time=datetime.fromisoformat(incident['date'].rstrip('Z')),
|
| 126 |
+
location=(incident['location']['coordinates'][1], incident['location']['coordinates'][0]),
|
| 127 |
+
address=incident['blockizedAddress'],
|
| 128 |
+
narrative=incident.get('narrative', '')
|
| 129 |
+
))
|
| 130 |
+
return crimes
|
| 131 |
+
except Exception as e:
|
| 132 |
+
print(f"Error loading crime data: {e}")
|
| 133 |
+
return []
|
| 134 |
+
|
| 135 |
+
def filter_crimes(center: Tuple[float, float], radius_km: float,
|
| 136 |
+
crimes: List[CrimeData], start_date: datetime, end_date: datetime) -> List[CrimeData]:
|
| 137 |
+
"""Filter crimes by distance and date range."""
|
| 138 |
+
return [crime for crime in crimes
|
| 139 |
+
if (haversine_distance(center, crime.location) <= radius_km and
|
| 140 |
+
start_date <= crime.date_time <= end_date)]
|
| 141 |
+
|
| 142 |
+
def format_crime_report(crimes: List[CrimeData]) -> pd.DataFrame:
|
| 143 |
+
"""Format crimes into a DataFrame for display."""
|
| 144 |
+
data = []
|
| 145 |
+
for crime in crimes:
|
| 146 |
+
data.append({
|
| 147 |
+
'Date': crime.date_time.strftime('%Y-%m-%d %H:%M'),
|
| 148 |
+
'Type': crime.incident_type,
|
| 149 |
+
'Location': crime.address,
|
| 150 |
+
'Details': crime.narrative
|
| 151 |
+
})
|
| 152 |
+
return pd.DataFrame(data)
|
| 153 |
+
|
| 154 |
+
def lookup_crimes(address: str, radius: float = 1.0,
|
| 155 |
+
start_date: str = None, end_date: str = None) -> pd.DataFrame:
|
| 156 |
+
"""Main function to lookup crimes near an address within a date range."""
|
| 157 |
+
# Validate and parse dates
|
| 158 |
+
try:
|
| 159 |
+
start = datetime.strptime(start_date, '%Y-%m-%d') if start_date else datetime(2023, 1, 1)
|
| 160 |
+
end = datetime.strptime(end_date, '%Y-%m-%d') if end_date else datetime.now()
|
| 161 |
+
except ValueError:
|
| 162 |
+
return pd.DataFrame({'Error': ['Invalid date format. Please use YYYY-MM-DD']})
|
| 163 |
+
|
| 164 |
+
# Geocode the address
|
| 165 |
+
coords = geocode_address(address)
|
| 166 |
+
if not coords:
|
| 167 |
+
return pd.DataFrame({'Error': ['Address not found']})
|
| 168 |
+
|
| 169 |
+
# Load and filter crimes
|
| 170 |
+
all_crimes = load_crime_data()
|
| 171 |
+
filtered_crimes = filter_crimes(coords, radius, all_crimes, start, end)
|
| 172 |
+
|
| 173 |
+
# Format results
|
| 174 |
+
if not filtered_crimes:
|
| 175 |
+
return pd.DataFrame({'Message': [f'No crimes found in specified radius between {start_date} and {end_date}']})
|
| 176 |
+
|
| 177 |
+
return format_crime_report(filtered_crimes)
|
| 178 |
+
|
| 179 |
+
# Create Gradio interface
|
| 180 |
+
iface = gr.Interface(
|
| 181 |
+
fn=lookup_crimes,
|
| 182 |
+
inputs=[
|
| 183 |
+
gr.Textbox(label="Address (e.g., '503 Victoria St, Kingston')"),
|
| 184 |
+
gr.Slider(minimum=0.1, maximum=5.0, value=1.0, label="Radius (km)"),
|
| 185 |
+
gr.Textbox(label="Start Date (YYYY-MM-DD)", value="2024-02-01"),
|
| 186 |
+
gr.Textbox(label="End Date (YYYY-MM-DD)", value=datetime.now().strftime('%Y-%m-%d'))
|
| 187 |
+
],
|
| 188 |
+
outputs=gr.Dataframe(),
|
| 189 |
+
title="Neighborhood Crime Lookup",
|
| 190 |
+
description="Enter an address and date range to see crimes in the area. Add street name and number only - city is assumed to be Kingston, ON.",
|
| 191 |
+
examples=[
|
| 192 |
+
["503 Victoria St", 1.0, "2024-01-01", "2024-01-10"],
|
| 193 |
+
["417 Princess St", 0.5, "2024-06-01", "2024-12-31"]
|
| 194 |
+
]
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
# Launch the app
|
| 198 |
+
if __name__ == "__main__":
|
| 199 |
+
iface.launch()
|