Spaces:
Build error
Build error
| import numpy as np | |
| import cv2 | |
| from PIL import Image | |
| import torch | |
| from app.model import pth_model_static, cam, pth_processing | |
| from app.face_utils import get_box | |
| from app.config import DICT_EMO | |
| from pytorch_grad_cam.utils.image import show_cam_on_image | |
| import mediapipe as mp | |
| mp_face_mesh = mp.solutions.face_mesh | |
| def preprocess_image_and_predict(inp): | |
| inp = np.array(inp) | |
| if inp is None: | |
| return None, None, None | |
| try: | |
| h, w = inp.shape[:2] | |
| except Exception: | |
| return None, None, None | |
| with mp_face_mesh.FaceMesh( | |
| max_num_faces=1, | |
| refine_landmarks=False, | |
| min_detection_confidence=0.5, | |
| min_tracking_confidence=0.5, | |
| ) as face_mesh: | |
| results = face_mesh.process(inp) | |
| if results.multi_face_landmarks: | |
| for fl in results.multi_face_landmarks: | |
| startX, startY, endX, endY = get_box(fl, w, h) | |
| cur_face = inp[startY:endY, startX:endX] | |
| cur_face_n = pth_processing(Image.fromarray(cur_face)) | |
| with torch.no_grad(): | |
| prediction = ( | |
| torch.nn.functional.softmax(pth_model_static(cur_face_n), dim=1) | |
| .detach() | |
| .numpy()[0] | |
| ) | |
| confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)} | |
| grayscale_cam = cam(input_tensor=cur_face_n) | |
| grayscale_cam = grayscale_cam[0, :] | |
| cur_face_hm = cv2.resize(cur_face,(224,224)) | |
| cur_face_hm = np.float32(cur_face_hm) / 255 | |
| heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=True) | |
| return cur_face, heatmap, confidences |