multimodalart HF Staff cbensimon HF Staff commited on
Commit
fc39399
·
verified ·
1 Parent(s): e8c8b8e

Fix AoT (#1)

Browse files

- Fix AoT (35ee5b0267f6846d0c86392c55dd3bf67deb512c)
- Update app.py (152019b5b68dd7404d072590a79c42c29bd14814)


Co-authored-by: Charles Bensimon <[email protected]>

Files changed (2) hide show
  1. app.py +12 -14
  2. optimization.py +46 -29
app.py CHANGED
@@ -2,7 +2,6 @@ import os
2
  import subprocess
3
  import sys
4
  import io
5
- from kernels import get_kernel
6
  import gradio as gr
7
  import numpy as np
8
  import random
@@ -38,14 +37,11 @@ def remote_text_encoder(prompts):
38
  return prompt_embeds
39
 
40
  # Load model
41
- fa3_kernel = get_kernel("kernels-community/flash-attn3", revision="fake-ops-return-probs")
42
-
43
  repo_id = "black-forest-labs/FLUX.2-dev"
44
 
45
  dit = Flux2Transformer2DModel.from_pretrained(
46
  repo_id,
47
  subfolder="transformer",
48
- attn_implementation=fa3_kernel,
49
  torch_dtype=torch.bfloat16
50
  )
51
 
@@ -56,16 +52,18 @@ pipe = Flux2Pipeline.from_pretrained(
56
  torch_dtype=torch.bfloat16
57
  )
58
  pipe.to("cuda")
59
- # pipe.transformer.compile_repeated_blocks(dynamic=True)
60
-
61
- #optimize_pipeline_(
62
- # pipe,
63
- # prompt_embeds=remote_text_encoder("prompt").to("cuda"),
64
- # guidance_scale=2.5,
65
- # width=1024,
66
- # height=1024,
67
- # num_inference_steps=1,
68
- #)
 
 
69
 
70
  @spaces.GPU(duration=180)
71
  def infer(prompt, input_images, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=50, guidance_scale=2.5, progress=gr.Progress(track_tqdm=True)):
 
2
  import subprocess
3
  import sys
4
  import io
 
5
  import gradio as gr
6
  import numpy as np
7
  import random
 
37
  return prompt_embeds
38
 
39
  # Load model
 
 
40
  repo_id = "black-forest-labs/FLUX.2-dev"
41
 
42
  dit = Flux2Transformer2DModel.from_pretrained(
43
  repo_id,
44
  subfolder="transformer",
 
45
  torch_dtype=torch.bfloat16
46
  )
47
 
 
52
  torch_dtype=torch.bfloat16
53
  )
54
  pipe.to("cuda")
55
+
56
+ pipe.transformer.set_attention_backend("_flash_3_hub")
57
+
58
+ optimize_pipeline_(
59
+ pipe,
60
+ image=[Image.new("RGB", (1024, 1024))],
61
+ prompt_embeds = remote_text_encoder("prompt").to("cuda"),
62
+ guidance_scale=2.5,
63
+ width=1024,
64
+ height=1024,
65
+ num_inference_steps=1
66
+ )
67
 
68
  @spaces.GPU(duration=180)
69
  def infer(prompt, input_images, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=50, guidance_scale=2.5, progress=gr.Progress(track_tqdm=True)):
optimization.py CHANGED
@@ -6,25 +6,32 @@ from typing import Callable
6
  from typing import ParamSpec
7
  import spaces
8
  import torch
 
 
9
  from torch.utils._pytree import tree_map
10
 
11
  P = ParamSpec('P')
12
 
13
- TRANSFORMER_IMAGE_SEQ_LENGTH_DIM = torch.export.Dim('image_seq_length', min=64, max=16384)
14
- TRANSFORMER_TEXT_SEQ_LENGTH_DIM = torch.export.Dim('text_seq_length', min=64, max=512)
15
 
16
  TRANSFORMER_DYNAMIC_SHAPES = {
17
- 'hidden_states': {
18
- 1: TRANSFORMER_IMAGE_SEQ_LENGTH_DIM,
 
 
 
 
 
 
19
  },
20
- 'encoder_hidden_states': {
21
- 1: TRANSFORMER_TEXT_SEQ_LENGTH_DIM,
22
- },
23
- 'img_ids': {
24
- 1: TRANSFORMER_IMAGE_SEQ_LENGTH_DIM,
25
- },
26
- 'txt_ids': {
27
- 1: TRANSFORMER_TEXT_SEQ_LENGTH_DIM,
28
  },
29
  }
30
 
@@ -33,28 +40,38 @@ INDUCTOR_CONFIGS = {
33
  'epilogue_fusion': False,
34
  'coordinate_descent_tuning': True,
35
  'coordinate_descent_check_all_directions': True,
36
- #'max_autotune': True,
37
- #'triton.cudagraphs': True,
38
  }
39
 
40
  def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
41
 
42
- @spaces.GPU(duration=1500)
43
- def compile_transformer():
 
 
44
 
45
- with spaces.aoti_capture(pipeline.transformer) as call:
 
 
 
46
  pipeline(*args, **kwargs)
47
 
48
  dynamic_shapes = tree_map(lambda t: None, call.kwargs)
49
- dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
50
-
51
- exported = torch.export.export(
52
- mod=pipeline.transformer,
53
- args=call.args,
54
- kwargs=call.kwargs,
55
- dynamic_shapes=dynamic_shapes,
56
- )
57
-
58
- return spaces.aoti_compile(exported, INDUCTOR_CONFIGS)
59
-
60
- spaces.aoti_apply(compile_transformer(), pipeline.transformer)
 
 
 
 
 
 
6
  from typing import ParamSpec
7
  import spaces
8
  import torch
9
+ from spaces.zero.torch.aoti import ZeroGPUCompiledModel
10
+ from spaces.zero.torch.aoti import ZeroGPUWeights
11
  from torch.utils._pytree import tree_map
12
 
13
  P = ParamSpec('P')
14
 
15
+ TRANSFORMER_IMAGE_DIM = torch.export.Dim('image_seq_length', min=4096, max=16384) # min: 0 images, max: 3 (1024x1024) images
 
16
 
17
  TRANSFORMER_DYNAMIC_SHAPES = {
18
+ 'double': {
19
+ 'hidden_states': {
20
+ 1: TRANSFORMER_IMAGE_DIM,
21
+ },
22
+ 'image_rotary_emb': (
23
+ {0: TRANSFORMER_IMAGE_DIM + 512},
24
+ {0: TRANSFORMER_IMAGE_DIM + 512},
25
+ ),
26
  },
27
+ 'single': {
28
+ 'hidden_states': {
29
+ 1: TRANSFORMER_IMAGE_DIM + 512,
30
+ },
31
+ 'image_rotary_emb': (
32
+ {0: TRANSFORMER_IMAGE_DIM + 512},
33
+ {0: TRANSFORMER_IMAGE_DIM + 512},
34
+ ),
35
  },
36
  }
37
 
 
40
  'epilogue_fusion': False,
41
  'coordinate_descent_tuning': True,
42
  'coordinate_descent_check_all_directions': True,
43
+ 'max_autotune': True,
44
+ 'triton.cudagraphs': True,
45
  }
46
 
47
  def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
48
 
49
+ blocks = {
50
+ 'double': pipeline.transformer.transformer_blocks,
51
+ 'single': pipeline.transformer.single_transformer_blocks,
52
+ }
53
 
54
+ @spaces.GPU(duration=1200)
55
+ def compile_block(blocks_kind: str):
56
+ block = blocks[blocks_kind][0]
57
+ with spaces.aoti_capture(block) as call:
58
  pipeline(*args, **kwargs)
59
 
60
  dynamic_shapes = tree_map(lambda t: None, call.kwargs)
61
+ dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES[blocks_kind]
62
+
63
+ with torch.no_grad():
64
+ exported = torch.export.export(
65
+ mod=block,
66
+ args=call.args,
67
+ kwargs=call.kwargs,
68
+ dynamic_shapes=dynamic_shapes,
69
+ )
70
+
71
+ return spaces.aoti_compile(exported, INDUCTOR_CONFIGS).archive_file
72
+
73
+ for blocks_kind in ('double', 'single'):
74
+ archive_file = compile_block(blocks_kind)
75
+ for block in blocks[blocks_kind]:
76
+ weights = ZeroGPUWeights(block.state_dict())
77
+ block.forward = ZeroGPUCompiledModel(archive_file, weights)