""" """ from typing import Any from typing import Callable from typing import ParamSpec import spaces import torch from spaces.zero.torch.aoti import ZeroGPUCompiledModel from spaces.zero.torch.aoti import ZeroGPUWeights from torch.utils._pytree import tree_map P = ParamSpec('P') TRANSFORMER_IMAGE_DIM = torch.export.Dim('image_seq_length', min=4096, max=16384) # min: 0 images, max: 3 (1024x1024) images TRANSFORMER_DYNAMIC_SHAPES = { 'double': { 'hidden_states': { 1: TRANSFORMER_IMAGE_DIM, }, 'image_rotary_emb': ( {0: TRANSFORMER_IMAGE_DIM + 512}, {0: TRANSFORMER_IMAGE_DIM + 512}, ), }, 'single': { 'hidden_states': { 1: TRANSFORMER_IMAGE_DIM + 512, }, 'image_rotary_emb': ( {0: TRANSFORMER_IMAGE_DIM + 512}, {0: TRANSFORMER_IMAGE_DIM + 512}, ), }, } INDUCTOR_CONFIGS = { 'conv_1x1_as_mm': True, 'epilogue_fusion': False, 'coordinate_descent_tuning': True, 'coordinate_descent_check_all_directions': True, 'max_autotune': True, 'triton.cudagraphs': True, } def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs): blocks = { 'double': pipeline.transformer.transformer_blocks, 'single': pipeline.transformer.single_transformer_blocks, } @spaces.GPU(duration=1200) def compile_block(blocks_kind: str): block = blocks[blocks_kind][0] with spaces.aoti_capture(block) as call: pipeline(*args, **kwargs) dynamic_shapes = tree_map(lambda t: None, call.kwargs) dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES[blocks_kind] with torch.no_grad(): exported = torch.export.export( mod=block, args=call.args, kwargs=call.kwargs, dynamic_shapes=dynamic_shapes, ) return spaces.aoti_compile(exported, INDUCTOR_CONFIGS).archive_file for blocks_kind in ('double', 'single'): archive_file = compile_block(blocks_kind) for block in blocks[blocks_kind]: weights = ZeroGPUWeights(block.state_dict()) block.forward = ZeroGPUCompiledModel(archive_file, weights)