Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
8577a79
verified
·
0
Parent(s):
init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +4 -0
- .gitignore +28 -0
- CONTRIBUTING.md +41 -0
- LICENSE +674 -0
- README.md +12 -0
- api_server/__init__.py +0 -0
- api_server/routes/__init__.py +0 -0
- api_server/routes/internal/README.md +3 -0
- api_server/routes/internal/__init__.py +0 -0
- api_server/routes/internal/internal_routes.py +75 -0
- api_server/services/__init__.py +0 -0
- api_server/services/file_service.py +13 -0
- api_server/services/terminal_service.py +60 -0
- api_server/utils/file_operations.py +42 -0
- app.py +822 -0
- app/__init__.py +0 -0
- app/app_settings.py +59 -0
- app/custom_node_manager.py +34 -0
- app/frontend_management.py +204 -0
- app/logger.py +84 -0
- app/model_manager.py +184 -0
- app/user_manager.py +330 -0
- comfy/checkpoint_pickle.py +13 -0
- comfy/cldm/cldm.py +433 -0
- comfy/cldm/control_types.py +10 -0
- comfy/cldm/dit_embedder.py +120 -0
- comfy/cldm/mmdit.py +81 -0
- comfy/cli_args.py +190 -0
- comfy/clip_config_bigg.json +23 -0
- comfy/clip_model.py +218 -0
- comfy/clip_vision.py +129 -0
- comfy/clip_vision_config_g.json +18 -0
- comfy/clip_vision_config_h.json +18 -0
- comfy/clip_vision_config_vitl.json +18 -0
- comfy/clip_vision_config_vitl_336.json +18 -0
- comfy/clip_vision_siglip_384.json +13 -0
- comfy/comfy_types/README.md +43 -0
- comfy/comfy_types/__init__.py +45 -0
- comfy/comfy_types/examples/example_nodes.py +28 -0
- comfy/comfy_types/node_typing.py +274 -0
- comfy/conds.py +83 -0
- comfy/controlnet.py +862 -0
- comfy/diffusers_convert.py +288 -0
- comfy/diffusers_load.py +36 -0
- comfy/extra_samplers/uni_pc.py +873 -0
- comfy/float.py +67 -0
- comfy/gligen.py +344 -0
- comfy/hooks.py +785 -0
- comfy/k_diffusion/deis.py +120 -0
- comfy/k_diffusion/sampling.py +1338 -0
.gitattributes
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/web/assets/** linguist-generated
|
| 2 |
+
/web/** linguist-vendored
|
| 3 |
+
comfy/text_encoders/t5_pile_tokenizer/tokenizer.model filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
custom_nodes/comfyui-WD14-Tagger/models/wd-v1-4-moat-tagger-v2.onnx filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
| 2 |
+
*.py[cod]
|
| 3 |
+
/output/
|
| 4 |
+
/input/
|
| 5 |
+
!/input/example.png
|
| 6 |
+
/models/
|
| 7 |
+
/temp/
|
| 8 |
+
# /custom_nodes/
|
| 9 |
+
!custom_nodes/example_node.py.example
|
| 10 |
+
extra_model_paths.yaml
|
| 11 |
+
/.vs
|
| 12 |
+
.vscode/
|
| 13 |
+
.idea/
|
| 14 |
+
venv/
|
| 15 |
+
.venv/
|
| 16 |
+
/web/extensions/*
|
| 17 |
+
!/web/extensions/logging.js.example
|
| 18 |
+
!/web/extensions/core/
|
| 19 |
+
/tests-ui/data/object_info.json
|
| 20 |
+
/user/
|
| 21 |
+
*.log
|
| 22 |
+
web_custom_versions/
|
| 23 |
+
.DS_Store
|
| 24 |
+
*.png
|
| 25 |
+
*.gif
|
| 26 |
+
*.jpg
|
| 27 |
+
*.pt
|
| 28 |
+
*.safetensors
|
CONTRIBUTING.md
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Contributing to ComfyUI
|
| 2 |
+
|
| 3 |
+
Welcome, and thank you for your interest in contributing to ComfyUI!
|
| 4 |
+
|
| 5 |
+
There are several ways in which you can contribute, beyond writing code. The goal of this document is to provide a high-level overview of how you can get involved.
|
| 6 |
+
|
| 7 |
+
## Asking Questions
|
| 8 |
+
|
| 9 |
+
Have a question? Instead of opening an issue, please ask on [Discord](https://comfy.org/discord) or [Matrix](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) channels. Our team and the community will help you.
|
| 10 |
+
|
| 11 |
+
## Providing Feedback
|
| 12 |
+
|
| 13 |
+
Your comments and feedback are welcome, and the development team is available via a handful of different channels.
|
| 14 |
+
|
| 15 |
+
See the `#bug-report`, `#feature-request` and `#feedback` channels on Discord.
|
| 16 |
+
|
| 17 |
+
## Reporting Issues
|
| 18 |
+
|
| 19 |
+
Have you identified a reproducible problem in ComfyUI? Do you have a feature request? We want to hear about it! Here's how you can report your issue as effectively as possible.
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
### Look For an Existing Issue
|
| 23 |
+
|
| 24 |
+
Before you create a new issue, please do a search in [open issues](https://github.com/comfyanonymous/ComfyUI/issues) to see if the issue or feature request has already been filed.
|
| 25 |
+
|
| 26 |
+
If you find your issue already exists, make relevant comments and add your [reaction](https://github.com/blog/2119-add-reactions-to-pull-requests-issues-and-comments). Use a reaction in place of a "+1" comment:
|
| 27 |
+
|
| 28 |
+
* 👍 - upvote
|
| 29 |
+
* 👎 - downvote
|
| 30 |
+
|
| 31 |
+
If you cannot find an existing issue that describes your bug or feature, create a new issue. We have an issue template in place to organize new issues.
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
### Creating Pull Requests
|
| 35 |
+
|
| 36 |
+
* Please refer to the article on [creating pull requests](https://github.com/comfyanonymous/ComfyUI/wiki/How-to-Contribute-Code) and contributing to this project.
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
## Thank You
|
| 40 |
+
|
| 41 |
+
Your contributions to open source, large or small, make great projects like this possible. Thank you for taking the time to contribute.
|
LICENSE
ADDED
|
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
GNU GENERAL PUBLIC LICENSE
|
| 2 |
+
Version 3, 29 June 2007
|
| 3 |
+
|
| 4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
| 5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
| 6 |
+
of this license document, but changing it is not allowed.
|
| 7 |
+
|
| 8 |
+
Preamble
|
| 9 |
+
|
| 10 |
+
The GNU General Public License is a free, copyleft license for
|
| 11 |
+
software and other kinds of works.
|
| 12 |
+
|
| 13 |
+
The licenses for most software and other practical works are designed
|
| 14 |
+
to take away your freedom to share and change the works. By contrast,
|
| 15 |
+
the GNU General Public License is intended to guarantee your freedom to
|
| 16 |
+
share and change all versions of a program--to make sure it remains free
|
| 17 |
+
software for all its users. We, the Free Software Foundation, use the
|
| 18 |
+
GNU General Public License for most of our software; it applies also to
|
| 19 |
+
any other work released this way by its authors. You can apply it to
|
| 20 |
+
your programs, too.
|
| 21 |
+
|
| 22 |
+
When we speak of free software, we are referring to freedom, not
|
| 23 |
+
price. Our General Public Licenses are designed to make sure that you
|
| 24 |
+
have the freedom to distribute copies of free software (and charge for
|
| 25 |
+
them if you wish), that you receive source code or can get it if you
|
| 26 |
+
want it, that you can change the software or use pieces of it in new
|
| 27 |
+
free programs, and that you know you can do these things.
|
| 28 |
+
|
| 29 |
+
To protect your rights, we need to prevent others from denying you
|
| 30 |
+
these rights or asking you to surrender the rights. Therefore, you have
|
| 31 |
+
certain responsibilities if you distribute copies of the software, or if
|
| 32 |
+
you modify it: responsibilities to respect the freedom of others.
|
| 33 |
+
|
| 34 |
+
For example, if you distribute copies of such a program, whether
|
| 35 |
+
gratis or for a fee, you must pass on to the recipients the same
|
| 36 |
+
freedoms that you received. You must make sure that they, too, receive
|
| 37 |
+
or can get the source code. And you must show them these terms so they
|
| 38 |
+
know their rights.
|
| 39 |
+
|
| 40 |
+
Developers that use the GNU GPL protect your rights with two steps:
|
| 41 |
+
(1) assert copyright on the software, and (2) offer you this License
|
| 42 |
+
giving you legal permission to copy, distribute and/or modify it.
|
| 43 |
+
|
| 44 |
+
For the developers' and authors' protection, the GPL clearly explains
|
| 45 |
+
that there is no warranty for this free software. For both users' and
|
| 46 |
+
authors' sake, the GPL requires that modified versions be marked as
|
| 47 |
+
changed, so that their problems will not be attributed erroneously to
|
| 48 |
+
authors of previous versions.
|
| 49 |
+
|
| 50 |
+
Some devices are designed to deny users access to install or run
|
| 51 |
+
modified versions of the software inside them, although the manufacturer
|
| 52 |
+
can do so. This is fundamentally incompatible with the aim of
|
| 53 |
+
protecting users' freedom to change the software. The systematic
|
| 54 |
+
pattern of such abuse occurs in the area of products for individuals to
|
| 55 |
+
use, which is precisely where it is most unacceptable. Therefore, we
|
| 56 |
+
have designed this version of the GPL to prohibit the practice for those
|
| 57 |
+
products. If such problems arise substantially in other domains, we
|
| 58 |
+
stand ready to extend this provision to those domains in future versions
|
| 59 |
+
of the GPL, as needed to protect the freedom of users.
|
| 60 |
+
|
| 61 |
+
Finally, every program is threatened constantly by software patents.
|
| 62 |
+
States should not allow patents to restrict development and use of
|
| 63 |
+
software on general-purpose computers, but in those that do, we wish to
|
| 64 |
+
avoid the special danger that patents applied to a free program could
|
| 65 |
+
make it effectively proprietary. To prevent this, the GPL assures that
|
| 66 |
+
patents cannot be used to render the program non-free.
|
| 67 |
+
|
| 68 |
+
The precise terms and conditions for copying, distribution and
|
| 69 |
+
modification follow.
|
| 70 |
+
|
| 71 |
+
TERMS AND CONDITIONS
|
| 72 |
+
|
| 73 |
+
0. Definitions.
|
| 74 |
+
|
| 75 |
+
"This License" refers to version 3 of the GNU General Public License.
|
| 76 |
+
|
| 77 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
| 78 |
+
works, such as semiconductor masks.
|
| 79 |
+
|
| 80 |
+
"The Program" refers to any copyrightable work licensed under this
|
| 81 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
| 82 |
+
"recipients" may be individuals or organizations.
|
| 83 |
+
|
| 84 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
| 85 |
+
in a fashion requiring copyright permission, other than the making of an
|
| 86 |
+
exact copy. The resulting work is called a "modified version" of the
|
| 87 |
+
earlier work or a work "based on" the earlier work.
|
| 88 |
+
|
| 89 |
+
A "covered work" means either the unmodified Program or a work based
|
| 90 |
+
on the Program.
|
| 91 |
+
|
| 92 |
+
To "propagate" a work means to do anything with it that, without
|
| 93 |
+
permission, would make you directly or secondarily liable for
|
| 94 |
+
infringement under applicable copyright law, except executing it on a
|
| 95 |
+
computer or modifying a private copy. Propagation includes copying,
|
| 96 |
+
distribution (with or without modification), making available to the
|
| 97 |
+
public, and in some countries other activities as well.
|
| 98 |
+
|
| 99 |
+
To "convey" a work means any kind of propagation that enables other
|
| 100 |
+
parties to make or receive copies. Mere interaction with a user through
|
| 101 |
+
a computer network, with no transfer of a copy, is not conveying.
|
| 102 |
+
|
| 103 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
| 104 |
+
to the extent that it includes a convenient and prominently visible
|
| 105 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
| 106 |
+
tells the user that there is no warranty for the work (except to the
|
| 107 |
+
extent that warranties are provided), that licensees may convey the
|
| 108 |
+
work under this License, and how to view a copy of this License. If
|
| 109 |
+
the interface presents a list of user commands or options, such as a
|
| 110 |
+
menu, a prominent item in the list meets this criterion.
|
| 111 |
+
|
| 112 |
+
1. Source Code.
|
| 113 |
+
|
| 114 |
+
The "source code" for a work means the preferred form of the work
|
| 115 |
+
for making modifications to it. "Object code" means any non-source
|
| 116 |
+
form of a work.
|
| 117 |
+
|
| 118 |
+
A "Standard Interface" means an interface that either is an official
|
| 119 |
+
standard defined by a recognized standards body, or, in the case of
|
| 120 |
+
interfaces specified for a particular programming language, one that
|
| 121 |
+
is widely used among developers working in that language.
|
| 122 |
+
|
| 123 |
+
The "System Libraries" of an executable work include anything, other
|
| 124 |
+
than the work as a whole, that (a) is included in the normal form of
|
| 125 |
+
packaging a Major Component, but which is not part of that Major
|
| 126 |
+
Component, and (b) serves only to enable use of the work with that
|
| 127 |
+
Major Component, or to implement a Standard Interface for which an
|
| 128 |
+
implementation is available to the public in source code form. A
|
| 129 |
+
"Major Component", in this context, means a major essential component
|
| 130 |
+
(kernel, window system, and so on) of the specific operating system
|
| 131 |
+
(if any) on which the executable work runs, or a compiler used to
|
| 132 |
+
produce the work, or an object code interpreter used to run it.
|
| 133 |
+
|
| 134 |
+
The "Corresponding Source" for a work in object code form means all
|
| 135 |
+
the source code needed to generate, install, and (for an executable
|
| 136 |
+
work) run the object code and to modify the work, including scripts to
|
| 137 |
+
control those activities. However, it does not include the work's
|
| 138 |
+
System Libraries, or general-purpose tools or generally available free
|
| 139 |
+
programs which are used unmodified in performing those activities but
|
| 140 |
+
which are not part of the work. For example, Corresponding Source
|
| 141 |
+
includes interface definition files associated with source files for
|
| 142 |
+
the work, and the source code for shared libraries and dynamically
|
| 143 |
+
linked subprograms that the work is specifically designed to require,
|
| 144 |
+
such as by intimate data communication or control flow between those
|
| 145 |
+
subprograms and other parts of the work.
|
| 146 |
+
|
| 147 |
+
The Corresponding Source need not include anything that users
|
| 148 |
+
can regenerate automatically from other parts of the Corresponding
|
| 149 |
+
Source.
|
| 150 |
+
|
| 151 |
+
The Corresponding Source for a work in source code form is that
|
| 152 |
+
same work.
|
| 153 |
+
|
| 154 |
+
2. Basic Permissions.
|
| 155 |
+
|
| 156 |
+
All rights granted under this License are granted for the term of
|
| 157 |
+
copyright on the Program, and are irrevocable provided the stated
|
| 158 |
+
conditions are met. This License explicitly affirms your unlimited
|
| 159 |
+
permission to run the unmodified Program. The output from running a
|
| 160 |
+
covered work is covered by this License only if the output, given its
|
| 161 |
+
content, constitutes a covered work. This License acknowledges your
|
| 162 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
| 163 |
+
|
| 164 |
+
You may make, run and propagate covered works that you do not
|
| 165 |
+
convey, without conditions so long as your license otherwise remains
|
| 166 |
+
in force. You may convey covered works to others for the sole purpose
|
| 167 |
+
of having them make modifications exclusively for you, or provide you
|
| 168 |
+
with facilities for running those works, provided that you comply with
|
| 169 |
+
the terms of this License in conveying all material for which you do
|
| 170 |
+
not control copyright. Those thus making or running the covered works
|
| 171 |
+
for you must do so exclusively on your behalf, under your direction
|
| 172 |
+
and control, on terms that prohibit them from making any copies of
|
| 173 |
+
your copyrighted material outside their relationship with you.
|
| 174 |
+
|
| 175 |
+
Conveying under any other circumstances is permitted solely under
|
| 176 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
| 177 |
+
makes it unnecessary.
|
| 178 |
+
|
| 179 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
| 180 |
+
|
| 181 |
+
No covered work shall be deemed part of an effective technological
|
| 182 |
+
measure under any applicable law fulfilling obligations under article
|
| 183 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
| 184 |
+
similar laws prohibiting or restricting circumvention of such
|
| 185 |
+
measures.
|
| 186 |
+
|
| 187 |
+
When you convey a covered work, you waive any legal power to forbid
|
| 188 |
+
circumvention of technological measures to the extent such circumvention
|
| 189 |
+
is effected by exercising rights under this License with respect to
|
| 190 |
+
the covered work, and you disclaim any intention to limit operation or
|
| 191 |
+
modification of the work as a means of enforcing, against the work's
|
| 192 |
+
users, your or third parties' legal rights to forbid circumvention of
|
| 193 |
+
technological measures.
|
| 194 |
+
|
| 195 |
+
4. Conveying Verbatim Copies.
|
| 196 |
+
|
| 197 |
+
You may convey verbatim copies of the Program's source code as you
|
| 198 |
+
receive it, in any medium, provided that you conspicuously and
|
| 199 |
+
appropriately publish on each copy an appropriate copyright notice;
|
| 200 |
+
keep intact all notices stating that this License and any
|
| 201 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
| 202 |
+
keep intact all notices of the absence of any warranty; and give all
|
| 203 |
+
recipients a copy of this License along with the Program.
|
| 204 |
+
|
| 205 |
+
You may charge any price or no price for each copy that you convey,
|
| 206 |
+
and you may offer support or warranty protection for a fee.
|
| 207 |
+
|
| 208 |
+
5. Conveying Modified Source Versions.
|
| 209 |
+
|
| 210 |
+
You may convey a work based on the Program, or the modifications to
|
| 211 |
+
produce it from the Program, in the form of source code under the
|
| 212 |
+
terms of section 4, provided that you also meet all of these conditions:
|
| 213 |
+
|
| 214 |
+
a) The work must carry prominent notices stating that you modified
|
| 215 |
+
it, and giving a relevant date.
|
| 216 |
+
|
| 217 |
+
b) The work must carry prominent notices stating that it is
|
| 218 |
+
released under this License and any conditions added under section
|
| 219 |
+
7. This requirement modifies the requirement in section 4 to
|
| 220 |
+
"keep intact all notices".
|
| 221 |
+
|
| 222 |
+
c) You must license the entire work, as a whole, under this
|
| 223 |
+
License to anyone who comes into possession of a copy. This
|
| 224 |
+
License will therefore apply, along with any applicable section 7
|
| 225 |
+
additional terms, to the whole of the work, and all its parts,
|
| 226 |
+
regardless of how they are packaged. This License gives no
|
| 227 |
+
permission to license the work in any other way, but it does not
|
| 228 |
+
invalidate such permission if you have separately received it.
|
| 229 |
+
|
| 230 |
+
d) If the work has interactive user interfaces, each must display
|
| 231 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
| 232 |
+
interfaces that do not display Appropriate Legal Notices, your
|
| 233 |
+
work need not make them do so.
|
| 234 |
+
|
| 235 |
+
A compilation of a covered work with other separate and independent
|
| 236 |
+
works, which are not by their nature extensions of the covered work,
|
| 237 |
+
and which are not combined with it such as to form a larger program,
|
| 238 |
+
in or on a volume of a storage or distribution medium, is called an
|
| 239 |
+
"aggregate" if the compilation and its resulting copyright are not
|
| 240 |
+
used to limit the access or legal rights of the compilation's users
|
| 241 |
+
beyond what the individual works permit. Inclusion of a covered work
|
| 242 |
+
in an aggregate does not cause this License to apply to the other
|
| 243 |
+
parts of the aggregate.
|
| 244 |
+
|
| 245 |
+
6. Conveying Non-Source Forms.
|
| 246 |
+
|
| 247 |
+
You may convey a covered work in object code form under the terms
|
| 248 |
+
of sections 4 and 5, provided that you also convey the
|
| 249 |
+
machine-readable Corresponding Source under the terms of this License,
|
| 250 |
+
in one of these ways:
|
| 251 |
+
|
| 252 |
+
a) Convey the object code in, or embodied in, a physical product
|
| 253 |
+
(including a physical distribution medium), accompanied by the
|
| 254 |
+
Corresponding Source fixed on a durable physical medium
|
| 255 |
+
customarily used for software interchange.
|
| 256 |
+
|
| 257 |
+
b) Convey the object code in, or embodied in, a physical product
|
| 258 |
+
(including a physical distribution medium), accompanied by a
|
| 259 |
+
written offer, valid for at least three years and valid for as
|
| 260 |
+
long as you offer spare parts or customer support for that product
|
| 261 |
+
model, to give anyone who possesses the object code either (1) a
|
| 262 |
+
copy of the Corresponding Source for all the software in the
|
| 263 |
+
product that is covered by this License, on a durable physical
|
| 264 |
+
medium customarily used for software interchange, for a price no
|
| 265 |
+
more than your reasonable cost of physically performing this
|
| 266 |
+
conveying of source, or (2) access to copy the
|
| 267 |
+
Corresponding Source from a network server at no charge.
|
| 268 |
+
|
| 269 |
+
c) Convey individual copies of the object code with a copy of the
|
| 270 |
+
written offer to provide the Corresponding Source. This
|
| 271 |
+
alternative is allowed only occasionally and noncommercially, and
|
| 272 |
+
only if you received the object code with such an offer, in accord
|
| 273 |
+
with subsection 6b.
|
| 274 |
+
|
| 275 |
+
d) Convey the object code by offering access from a designated
|
| 276 |
+
place (gratis or for a charge), and offer equivalent access to the
|
| 277 |
+
Corresponding Source in the same way through the same place at no
|
| 278 |
+
further charge. You need not require recipients to copy the
|
| 279 |
+
Corresponding Source along with the object code. If the place to
|
| 280 |
+
copy the object code is a network server, the Corresponding Source
|
| 281 |
+
may be on a different server (operated by you or a third party)
|
| 282 |
+
that supports equivalent copying facilities, provided you maintain
|
| 283 |
+
clear directions next to the object code saying where to find the
|
| 284 |
+
Corresponding Source. Regardless of what server hosts the
|
| 285 |
+
Corresponding Source, you remain obligated to ensure that it is
|
| 286 |
+
available for as long as needed to satisfy these requirements.
|
| 287 |
+
|
| 288 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
| 289 |
+
you inform other peers where the object code and Corresponding
|
| 290 |
+
Source of the work are being offered to the general public at no
|
| 291 |
+
charge under subsection 6d.
|
| 292 |
+
|
| 293 |
+
A separable portion of the object code, whose source code is excluded
|
| 294 |
+
from the Corresponding Source as a System Library, need not be
|
| 295 |
+
included in conveying the object code work.
|
| 296 |
+
|
| 297 |
+
A "User Product" is either (1) a "consumer product", which means any
|
| 298 |
+
tangible personal property which is normally used for personal, family,
|
| 299 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
| 300 |
+
into a dwelling. In determining whether a product is a consumer product,
|
| 301 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
| 302 |
+
product received by a particular user, "normally used" refers to a
|
| 303 |
+
typical or common use of that class of product, regardless of the status
|
| 304 |
+
of the particular user or of the way in which the particular user
|
| 305 |
+
actually uses, or expects or is expected to use, the product. A product
|
| 306 |
+
is a consumer product regardless of whether the product has substantial
|
| 307 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
| 308 |
+
the only significant mode of use of the product.
|
| 309 |
+
|
| 310 |
+
"Installation Information" for a User Product means any methods,
|
| 311 |
+
procedures, authorization keys, or other information required to install
|
| 312 |
+
and execute modified versions of a covered work in that User Product from
|
| 313 |
+
a modified version of its Corresponding Source. The information must
|
| 314 |
+
suffice to ensure that the continued functioning of the modified object
|
| 315 |
+
code is in no case prevented or interfered with solely because
|
| 316 |
+
modification has been made.
|
| 317 |
+
|
| 318 |
+
If you convey an object code work under this section in, or with, or
|
| 319 |
+
specifically for use in, a User Product, and the conveying occurs as
|
| 320 |
+
part of a transaction in which the right of possession and use of the
|
| 321 |
+
User Product is transferred to the recipient in perpetuity or for a
|
| 322 |
+
fixed term (regardless of how the transaction is characterized), the
|
| 323 |
+
Corresponding Source conveyed under this section must be accompanied
|
| 324 |
+
by the Installation Information. But this requirement does not apply
|
| 325 |
+
if neither you nor any third party retains the ability to install
|
| 326 |
+
modified object code on the User Product (for example, the work has
|
| 327 |
+
been installed in ROM).
|
| 328 |
+
|
| 329 |
+
The requirement to provide Installation Information does not include a
|
| 330 |
+
requirement to continue to provide support service, warranty, or updates
|
| 331 |
+
for a work that has been modified or installed by the recipient, or for
|
| 332 |
+
the User Product in which it has been modified or installed. Access to a
|
| 333 |
+
network may be denied when the modification itself materially and
|
| 334 |
+
adversely affects the operation of the network or violates the rules and
|
| 335 |
+
protocols for communication across the network.
|
| 336 |
+
|
| 337 |
+
Corresponding Source conveyed, and Installation Information provided,
|
| 338 |
+
in accord with this section must be in a format that is publicly
|
| 339 |
+
documented (and with an implementation available to the public in
|
| 340 |
+
source code form), and must require no special password or key for
|
| 341 |
+
unpacking, reading or copying.
|
| 342 |
+
|
| 343 |
+
7. Additional Terms.
|
| 344 |
+
|
| 345 |
+
"Additional permissions" are terms that supplement the terms of this
|
| 346 |
+
License by making exceptions from one or more of its conditions.
|
| 347 |
+
Additional permissions that are applicable to the entire Program shall
|
| 348 |
+
be treated as though they were included in this License, to the extent
|
| 349 |
+
that they are valid under applicable law. If additional permissions
|
| 350 |
+
apply only to part of the Program, that part may be used separately
|
| 351 |
+
under those permissions, but the entire Program remains governed by
|
| 352 |
+
this License without regard to the additional permissions.
|
| 353 |
+
|
| 354 |
+
When you convey a copy of a covered work, you may at your option
|
| 355 |
+
remove any additional permissions from that copy, or from any part of
|
| 356 |
+
it. (Additional permissions may be written to require their own
|
| 357 |
+
removal in certain cases when you modify the work.) You may place
|
| 358 |
+
additional permissions on material, added by you to a covered work,
|
| 359 |
+
for which you have or can give appropriate copyright permission.
|
| 360 |
+
|
| 361 |
+
Notwithstanding any other provision of this License, for material you
|
| 362 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
| 363 |
+
that material) supplement the terms of this License with terms:
|
| 364 |
+
|
| 365 |
+
a) Disclaiming warranty or limiting liability differently from the
|
| 366 |
+
terms of sections 15 and 16 of this License; or
|
| 367 |
+
|
| 368 |
+
b) Requiring preservation of specified reasonable legal notices or
|
| 369 |
+
author attributions in that material or in the Appropriate Legal
|
| 370 |
+
Notices displayed by works containing it; or
|
| 371 |
+
|
| 372 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
| 373 |
+
requiring that modified versions of such material be marked in
|
| 374 |
+
reasonable ways as different from the original version; or
|
| 375 |
+
|
| 376 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
| 377 |
+
authors of the material; or
|
| 378 |
+
|
| 379 |
+
e) Declining to grant rights under trademark law for use of some
|
| 380 |
+
trade names, trademarks, or service marks; or
|
| 381 |
+
|
| 382 |
+
f) Requiring indemnification of licensors and authors of that
|
| 383 |
+
material by anyone who conveys the material (or modified versions of
|
| 384 |
+
it) with contractual assumptions of liability to the recipient, for
|
| 385 |
+
any liability that these contractual assumptions directly impose on
|
| 386 |
+
those licensors and authors.
|
| 387 |
+
|
| 388 |
+
All other non-permissive additional terms are considered "further
|
| 389 |
+
restrictions" within the meaning of section 10. If the Program as you
|
| 390 |
+
received it, or any part of it, contains a notice stating that it is
|
| 391 |
+
governed by this License along with a term that is a further
|
| 392 |
+
restriction, you may remove that term. If a license document contains
|
| 393 |
+
a further restriction but permits relicensing or conveying under this
|
| 394 |
+
License, you may add to a covered work material governed by the terms
|
| 395 |
+
of that license document, provided that the further restriction does
|
| 396 |
+
not survive such relicensing or conveying.
|
| 397 |
+
|
| 398 |
+
If you add terms to a covered work in accord with this section, you
|
| 399 |
+
must place, in the relevant source files, a statement of the
|
| 400 |
+
additional terms that apply to those files, or a notice indicating
|
| 401 |
+
where to find the applicable terms.
|
| 402 |
+
|
| 403 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
| 404 |
+
form of a separately written license, or stated as exceptions;
|
| 405 |
+
the above requirements apply either way.
|
| 406 |
+
|
| 407 |
+
8. Termination.
|
| 408 |
+
|
| 409 |
+
You may not propagate or modify a covered work except as expressly
|
| 410 |
+
provided under this License. Any attempt otherwise to propagate or
|
| 411 |
+
modify it is void, and will automatically terminate your rights under
|
| 412 |
+
this License (including any patent licenses granted under the third
|
| 413 |
+
paragraph of section 11).
|
| 414 |
+
|
| 415 |
+
However, if you cease all violation of this License, then your
|
| 416 |
+
license from a particular copyright holder is reinstated (a)
|
| 417 |
+
provisionally, unless and until the copyright holder explicitly and
|
| 418 |
+
finally terminates your license, and (b) permanently, if the copyright
|
| 419 |
+
holder fails to notify you of the violation by some reasonable means
|
| 420 |
+
prior to 60 days after the cessation.
|
| 421 |
+
|
| 422 |
+
Moreover, your license from a particular copyright holder is
|
| 423 |
+
reinstated permanently if the copyright holder notifies you of the
|
| 424 |
+
violation by some reasonable means, this is the first time you have
|
| 425 |
+
received notice of violation of this License (for any work) from that
|
| 426 |
+
copyright holder, and you cure the violation prior to 30 days after
|
| 427 |
+
your receipt of the notice.
|
| 428 |
+
|
| 429 |
+
Termination of your rights under this section does not terminate the
|
| 430 |
+
licenses of parties who have received copies or rights from you under
|
| 431 |
+
this License. If your rights have been terminated and not permanently
|
| 432 |
+
reinstated, you do not qualify to receive new licenses for the same
|
| 433 |
+
material under section 10.
|
| 434 |
+
|
| 435 |
+
9. Acceptance Not Required for Having Copies.
|
| 436 |
+
|
| 437 |
+
You are not required to accept this License in order to receive or
|
| 438 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
| 439 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
| 440 |
+
to receive a copy likewise does not require acceptance. However,
|
| 441 |
+
nothing other than this License grants you permission to propagate or
|
| 442 |
+
modify any covered work. These actions infringe copyright if you do
|
| 443 |
+
not accept this License. Therefore, by modifying or propagating a
|
| 444 |
+
covered work, you indicate your acceptance of this License to do so.
|
| 445 |
+
|
| 446 |
+
10. Automatic Licensing of Downstream Recipients.
|
| 447 |
+
|
| 448 |
+
Each time you convey a covered work, the recipient automatically
|
| 449 |
+
receives a license from the original licensors, to run, modify and
|
| 450 |
+
propagate that work, subject to this License. You are not responsible
|
| 451 |
+
for enforcing compliance by third parties with this License.
|
| 452 |
+
|
| 453 |
+
An "entity transaction" is a transaction transferring control of an
|
| 454 |
+
organization, or substantially all assets of one, or subdividing an
|
| 455 |
+
organization, or merging organizations. If propagation of a covered
|
| 456 |
+
work results from an entity transaction, each party to that
|
| 457 |
+
transaction who receives a copy of the work also receives whatever
|
| 458 |
+
licenses to the work the party's predecessor in interest had or could
|
| 459 |
+
give under the previous paragraph, plus a right to possession of the
|
| 460 |
+
Corresponding Source of the work from the predecessor in interest, if
|
| 461 |
+
the predecessor has it or can get it with reasonable efforts.
|
| 462 |
+
|
| 463 |
+
You may not impose any further restrictions on the exercise of the
|
| 464 |
+
rights granted or affirmed under this License. For example, you may
|
| 465 |
+
not impose a license fee, royalty, or other charge for exercise of
|
| 466 |
+
rights granted under this License, and you may not initiate litigation
|
| 467 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
| 468 |
+
any patent claim is infringed by making, using, selling, offering for
|
| 469 |
+
sale, or importing the Program or any portion of it.
|
| 470 |
+
|
| 471 |
+
11. Patents.
|
| 472 |
+
|
| 473 |
+
A "contributor" is a copyright holder who authorizes use under this
|
| 474 |
+
License of the Program or a work on which the Program is based. The
|
| 475 |
+
work thus licensed is called the contributor's "contributor version".
|
| 476 |
+
|
| 477 |
+
A contributor's "essential patent claims" are all patent claims
|
| 478 |
+
owned or controlled by the contributor, whether already acquired or
|
| 479 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
| 480 |
+
by this License, of making, using, or selling its contributor version,
|
| 481 |
+
but do not include claims that would be infringed only as a
|
| 482 |
+
consequence of further modification of the contributor version. For
|
| 483 |
+
purposes of this definition, "control" includes the right to grant
|
| 484 |
+
patent sublicenses in a manner consistent with the requirements of
|
| 485 |
+
this License.
|
| 486 |
+
|
| 487 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
| 488 |
+
patent license under the contributor's essential patent claims, to
|
| 489 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
| 490 |
+
propagate the contents of its contributor version.
|
| 491 |
+
|
| 492 |
+
In the following three paragraphs, a "patent license" is any express
|
| 493 |
+
agreement or commitment, however denominated, not to enforce a patent
|
| 494 |
+
(such as an express permission to practice a patent or covenant not to
|
| 495 |
+
sue for patent infringement). To "grant" such a patent license to a
|
| 496 |
+
party means to make such an agreement or commitment not to enforce a
|
| 497 |
+
patent against the party.
|
| 498 |
+
|
| 499 |
+
If you convey a covered work, knowingly relying on a patent license,
|
| 500 |
+
and the Corresponding Source of the work is not available for anyone
|
| 501 |
+
to copy, free of charge and under the terms of this License, through a
|
| 502 |
+
publicly available network server or other readily accessible means,
|
| 503 |
+
then you must either (1) cause the Corresponding Source to be so
|
| 504 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
| 505 |
+
patent license for this particular work, or (3) arrange, in a manner
|
| 506 |
+
consistent with the requirements of this License, to extend the patent
|
| 507 |
+
license to downstream recipients. "Knowingly relying" means you have
|
| 508 |
+
actual knowledge that, but for the patent license, your conveying the
|
| 509 |
+
covered work in a country, or your recipient's use of the covered work
|
| 510 |
+
in a country, would infringe one or more identifiable patents in that
|
| 511 |
+
country that you have reason to believe are valid.
|
| 512 |
+
|
| 513 |
+
If, pursuant to or in connection with a single transaction or
|
| 514 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
| 515 |
+
covered work, and grant a patent license to some of the parties
|
| 516 |
+
receiving the covered work authorizing them to use, propagate, modify
|
| 517 |
+
or convey a specific copy of the covered work, then the patent license
|
| 518 |
+
you grant is automatically extended to all recipients of the covered
|
| 519 |
+
work and works based on it.
|
| 520 |
+
|
| 521 |
+
A patent license is "discriminatory" if it does not include within
|
| 522 |
+
the scope of its coverage, prohibits the exercise of, or is
|
| 523 |
+
conditioned on the non-exercise of one or more of the rights that are
|
| 524 |
+
specifically granted under this License. You may not convey a covered
|
| 525 |
+
work if you are a party to an arrangement with a third party that is
|
| 526 |
+
in the business of distributing software, under which you make payment
|
| 527 |
+
to the third party based on the extent of your activity of conveying
|
| 528 |
+
the work, and under which the third party grants, to any of the
|
| 529 |
+
parties who would receive the covered work from you, a discriminatory
|
| 530 |
+
patent license (a) in connection with copies of the covered work
|
| 531 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
| 532 |
+
for and in connection with specific products or compilations that
|
| 533 |
+
contain the covered work, unless you entered into that arrangement,
|
| 534 |
+
or that patent license was granted, prior to 28 March 2007.
|
| 535 |
+
|
| 536 |
+
Nothing in this License shall be construed as excluding or limiting
|
| 537 |
+
any implied license or other defenses to infringement that may
|
| 538 |
+
otherwise be available to you under applicable patent law.
|
| 539 |
+
|
| 540 |
+
12. No Surrender of Others' Freedom.
|
| 541 |
+
|
| 542 |
+
If conditions are imposed on you (whether by court order, agreement or
|
| 543 |
+
otherwise) that contradict the conditions of this License, they do not
|
| 544 |
+
excuse you from the conditions of this License. If you cannot convey a
|
| 545 |
+
covered work so as to satisfy simultaneously your obligations under this
|
| 546 |
+
License and any other pertinent obligations, then as a consequence you may
|
| 547 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
| 548 |
+
to collect a royalty for further conveying from those to whom you convey
|
| 549 |
+
the Program, the only way you could satisfy both those terms and this
|
| 550 |
+
License would be to refrain entirely from conveying the Program.
|
| 551 |
+
|
| 552 |
+
13. Use with the GNU Affero General Public License.
|
| 553 |
+
|
| 554 |
+
Notwithstanding any other provision of this License, you have
|
| 555 |
+
permission to link or combine any covered work with a work licensed
|
| 556 |
+
under version 3 of the GNU Affero General Public License into a single
|
| 557 |
+
combined work, and to convey the resulting work. The terms of this
|
| 558 |
+
License will continue to apply to the part which is the covered work,
|
| 559 |
+
but the special requirements of the GNU Affero General Public License,
|
| 560 |
+
section 13, concerning interaction through a network will apply to the
|
| 561 |
+
combination as such.
|
| 562 |
+
|
| 563 |
+
14. Revised Versions of this License.
|
| 564 |
+
|
| 565 |
+
The Free Software Foundation may publish revised and/or new versions of
|
| 566 |
+
the GNU General Public License from time to time. Such new versions will
|
| 567 |
+
be similar in spirit to the present version, but may differ in detail to
|
| 568 |
+
address new problems or concerns.
|
| 569 |
+
|
| 570 |
+
Each version is given a distinguishing version number. If the
|
| 571 |
+
Program specifies that a certain numbered version of the GNU General
|
| 572 |
+
Public License "or any later version" applies to it, you have the
|
| 573 |
+
option of following the terms and conditions either of that numbered
|
| 574 |
+
version or of any later version published by the Free Software
|
| 575 |
+
Foundation. If the Program does not specify a version number of the
|
| 576 |
+
GNU General Public License, you may choose any version ever published
|
| 577 |
+
by the Free Software Foundation.
|
| 578 |
+
|
| 579 |
+
If the Program specifies that a proxy can decide which future
|
| 580 |
+
versions of the GNU General Public License can be used, that proxy's
|
| 581 |
+
public statement of acceptance of a version permanently authorizes you
|
| 582 |
+
to choose that version for the Program.
|
| 583 |
+
|
| 584 |
+
Later license versions may give you additional or different
|
| 585 |
+
permissions. However, no additional obligations are imposed on any
|
| 586 |
+
author or copyright holder as a result of your choosing to follow a
|
| 587 |
+
later version.
|
| 588 |
+
|
| 589 |
+
15. Disclaimer of Warranty.
|
| 590 |
+
|
| 591 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
| 592 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
| 593 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
| 594 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
| 595 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
| 596 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
| 597 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
| 598 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
| 599 |
+
|
| 600 |
+
16. Limitation of Liability.
|
| 601 |
+
|
| 602 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
| 603 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
| 604 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
| 605 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
| 606 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
| 607 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
| 608 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
| 609 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
| 610 |
+
SUCH DAMAGES.
|
| 611 |
+
|
| 612 |
+
17. Interpretation of Sections 15 and 16.
|
| 613 |
+
|
| 614 |
+
If the disclaimer of warranty and limitation of liability provided
|
| 615 |
+
above cannot be given local legal effect according to their terms,
|
| 616 |
+
reviewing courts shall apply local law that most closely approximates
|
| 617 |
+
an absolute waiver of all civil liability in connection with the
|
| 618 |
+
Program, unless a warranty or assumption of liability accompanies a
|
| 619 |
+
copy of the Program in return for a fee.
|
| 620 |
+
|
| 621 |
+
END OF TERMS AND CONDITIONS
|
| 622 |
+
|
| 623 |
+
How to Apply These Terms to Your New Programs
|
| 624 |
+
|
| 625 |
+
If you develop a new program, and you want it to be of the greatest
|
| 626 |
+
possible use to the public, the best way to achieve this is to make it
|
| 627 |
+
free software which everyone can redistribute and change under these terms.
|
| 628 |
+
|
| 629 |
+
To do so, attach the following notices to the program. It is safest
|
| 630 |
+
to attach them to the start of each source file to most effectively
|
| 631 |
+
state the exclusion of warranty; and each file should have at least
|
| 632 |
+
the "copyright" line and a pointer to where the full notice is found.
|
| 633 |
+
|
| 634 |
+
<one line to give the program's name and a brief idea of what it does.>
|
| 635 |
+
Copyright (C) <year> <name of author>
|
| 636 |
+
|
| 637 |
+
This program is free software: you can redistribute it and/or modify
|
| 638 |
+
it under the terms of the GNU General Public License as published by
|
| 639 |
+
the Free Software Foundation, either version 3 of the License, or
|
| 640 |
+
(at your option) any later version.
|
| 641 |
+
|
| 642 |
+
This program is distributed in the hope that it will be useful,
|
| 643 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 644 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 645 |
+
GNU General Public License for more details.
|
| 646 |
+
|
| 647 |
+
You should have received a copy of the GNU General Public License
|
| 648 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
| 649 |
+
|
| 650 |
+
Also add information on how to contact you by electronic and paper mail.
|
| 651 |
+
|
| 652 |
+
If the program does terminal interaction, make it output a short
|
| 653 |
+
notice like this when it starts in an interactive mode:
|
| 654 |
+
|
| 655 |
+
<program> Copyright (C) <year> <name of author>
|
| 656 |
+
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
| 657 |
+
This is free software, and you are welcome to redistribute it
|
| 658 |
+
under certain conditions; type `show c' for details.
|
| 659 |
+
|
| 660 |
+
The hypothetical commands `show w' and `show c' should show the appropriate
|
| 661 |
+
parts of the General Public License. Of course, your program's commands
|
| 662 |
+
might be different; for a GUI interface, you would use an "about box".
|
| 663 |
+
|
| 664 |
+
You should also get your employer (if you work as a programmer) or school,
|
| 665 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
| 666 |
+
For more information on this, and how to apply and follow the GNU GPL, see
|
| 667 |
+
<https://www.gnu.org/licenses/>.
|
| 668 |
+
|
| 669 |
+
The GNU General Public License does not permit incorporating your program
|
| 670 |
+
into proprietary programs. If your program is a subroutine library, you
|
| 671 |
+
may consider it more useful to permit linking proprietary applications with
|
| 672 |
+
the library. If this is what you want to do, use the GNU Lesser General
|
| 673 |
+
Public License instead of this License. But first, please read
|
| 674 |
+
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
README.md
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: test
|
| 3 |
+
emoji: 🖼
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: red
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.25.2
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
api_server/__init__.py
ADDED
|
File without changes
|
api_server/routes/__init__.py
ADDED
|
File without changes
|
api_server/routes/internal/README.md
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ComfyUI Internal Routes
|
| 2 |
+
|
| 3 |
+
All routes under the `/internal` path are designated for **internal use by ComfyUI only**. These routes are not intended for use by external applications may change at any time without notice.
|
api_server/routes/internal/__init__.py
ADDED
|
File without changes
|
api_server/routes/internal/internal_routes.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from aiohttp import web
|
| 2 |
+
from typing import Optional
|
| 3 |
+
from folder_paths import models_dir, user_directory, output_directory, folder_names_and_paths
|
| 4 |
+
from api_server.services.file_service import FileService
|
| 5 |
+
from api_server.services.terminal_service import TerminalService
|
| 6 |
+
import app.logger
|
| 7 |
+
|
| 8 |
+
class InternalRoutes:
|
| 9 |
+
'''
|
| 10 |
+
The top level web router for internal routes: /internal/*
|
| 11 |
+
The endpoints here should NOT be depended upon. It is for ComfyUI frontend use only.
|
| 12 |
+
Check README.md for more information.
|
| 13 |
+
'''
|
| 14 |
+
|
| 15 |
+
def __init__(self, prompt_server):
|
| 16 |
+
self.routes: web.RouteTableDef = web.RouteTableDef()
|
| 17 |
+
self._app: Optional[web.Application] = None
|
| 18 |
+
self.file_service = FileService({
|
| 19 |
+
"models": models_dir,
|
| 20 |
+
"user": user_directory,
|
| 21 |
+
"output": output_directory
|
| 22 |
+
})
|
| 23 |
+
self.prompt_server = prompt_server
|
| 24 |
+
self.terminal_service = TerminalService(prompt_server)
|
| 25 |
+
|
| 26 |
+
def setup_routes(self):
|
| 27 |
+
@self.routes.get('/files')
|
| 28 |
+
async def list_files(request):
|
| 29 |
+
directory_key = request.query.get('directory', '')
|
| 30 |
+
try:
|
| 31 |
+
file_list = self.file_service.list_files(directory_key)
|
| 32 |
+
return web.json_response({"files": file_list})
|
| 33 |
+
except ValueError as e:
|
| 34 |
+
return web.json_response({"error": str(e)}, status=400)
|
| 35 |
+
except Exception as e:
|
| 36 |
+
return web.json_response({"error": str(e)}, status=500)
|
| 37 |
+
|
| 38 |
+
@self.routes.get('/logs')
|
| 39 |
+
async def get_logs(request):
|
| 40 |
+
return web.json_response("".join([(l["t"] + " - " + l["m"]) for l in app.logger.get_logs()]))
|
| 41 |
+
|
| 42 |
+
@self.routes.get('/logs/raw')
|
| 43 |
+
async def get_raw_logs(request):
|
| 44 |
+
self.terminal_service.update_size()
|
| 45 |
+
return web.json_response({
|
| 46 |
+
"entries": list(app.logger.get_logs()),
|
| 47 |
+
"size": {"cols": self.terminal_service.cols, "rows": self.terminal_service.rows}
|
| 48 |
+
})
|
| 49 |
+
|
| 50 |
+
@self.routes.patch('/logs/subscribe')
|
| 51 |
+
async def subscribe_logs(request):
|
| 52 |
+
json_data = await request.json()
|
| 53 |
+
client_id = json_data["clientId"]
|
| 54 |
+
enabled = json_data["enabled"]
|
| 55 |
+
if enabled:
|
| 56 |
+
self.terminal_service.subscribe(client_id)
|
| 57 |
+
else:
|
| 58 |
+
self.terminal_service.unsubscribe(client_id)
|
| 59 |
+
|
| 60 |
+
return web.Response(status=200)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
@self.routes.get('/folder_paths')
|
| 64 |
+
async def get_folder_paths(request):
|
| 65 |
+
response = {}
|
| 66 |
+
for key in folder_names_and_paths:
|
| 67 |
+
response[key] = folder_names_and_paths[key][0]
|
| 68 |
+
return web.json_response(response)
|
| 69 |
+
|
| 70 |
+
def get_app(self):
|
| 71 |
+
if self._app is None:
|
| 72 |
+
self._app = web.Application()
|
| 73 |
+
self.setup_routes()
|
| 74 |
+
self._app.add_routes(self.routes)
|
| 75 |
+
return self._app
|
api_server/services/__init__.py
ADDED
|
File without changes
|
api_server/services/file_service.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List, Optional
|
| 2 |
+
from api_server.utils.file_operations import FileSystemOperations, FileSystemItem
|
| 3 |
+
|
| 4 |
+
class FileService:
|
| 5 |
+
def __init__(self, allowed_directories: Dict[str, str], file_system_ops: Optional[FileSystemOperations] = None):
|
| 6 |
+
self.allowed_directories: Dict[str, str] = allowed_directories
|
| 7 |
+
self.file_system_ops: FileSystemOperations = file_system_ops or FileSystemOperations()
|
| 8 |
+
|
| 9 |
+
def list_files(self, directory_key: str) -> List[FileSystemItem]:
|
| 10 |
+
if directory_key not in self.allowed_directories:
|
| 11 |
+
raise ValueError("Invalid directory key")
|
| 12 |
+
directory_path: str = self.allowed_directories[directory_key]
|
| 13 |
+
return self.file_system_ops.walk_directory(directory_path)
|
api_server/services/terminal_service.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from app.logger import on_flush
|
| 2 |
+
import os
|
| 3 |
+
import shutil
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class TerminalService:
|
| 7 |
+
def __init__(self, server):
|
| 8 |
+
self.server = server
|
| 9 |
+
self.cols = None
|
| 10 |
+
self.rows = None
|
| 11 |
+
self.subscriptions = set()
|
| 12 |
+
on_flush(self.send_messages)
|
| 13 |
+
|
| 14 |
+
def get_terminal_size(self):
|
| 15 |
+
try:
|
| 16 |
+
size = os.get_terminal_size()
|
| 17 |
+
return (size.columns, size.lines)
|
| 18 |
+
except OSError:
|
| 19 |
+
try:
|
| 20 |
+
size = shutil.get_terminal_size()
|
| 21 |
+
return (size.columns, size.lines)
|
| 22 |
+
except OSError:
|
| 23 |
+
return (80, 24) # fallback to 80x24
|
| 24 |
+
|
| 25 |
+
def update_size(self):
|
| 26 |
+
columns, lines = self.get_terminal_size()
|
| 27 |
+
changed = False
|
| 28 |
+
|
| 29 |
+
if columns != self.cols:
|
| 30 |
+
self.cols = columns
|
| 31 |
+
changed = True
|
| 32 |
+
|
| 33 |
+
if lines != self.rows:
|
| 34 |
+
self.rows = lines
|
| 35 |
+
changed = True
|
| 36 |
+
|
| 37 |
+
if changed:
|
| 38 |
+
return {"cols": self.cols, "rows": self.rows}
|
| 39 |
+
|
| 40 |
+
return None
|
| 41 |
+
|
| 42 |
+
def subscribe(self, client_id):
|
| 43 |
+
self.subscriptions.add(client_id)
|
| 44 |
+
|
| 45 |
+
def unsubscribe(self, client_id):
|
| 46 |
+
self.subscriptions.discard(client_id)
|
| 47 |
+
|
| 48 |
+
def send_messages(self, entries):
|
| 49 |
+
if not len(entries) or not len(self.subscriptions):
|
| 50 |
+
return
|
| 51 |
+
|
| 52 |
+
new_size = self.update_size()
|
| 53 |
+
|
| 54 |
+
for client_id in self.subscriptions.copy(): # prevent: Set changed size during iteration
|
| 55 |
+
if client_id not in self.server.sockets:
|
| 56 |
+
# Automatically unsub if the socket has disconnected
|
| 57 |
+
self.unsubscribe(client_id)
|
| 58 |
+
continue
|
| 59 |
+
|
| 60 |
+
self.server.send_sync("logs", {"entries": entries, "size": new_size}, client_id)
|
api_server/utils/file_operations.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import List, Union, TypedDict, Literal
|
| 3 |
+
from typing_extensions import TypeGuard
|
| 4 |
+
class FileInfo(TypedDict):
|
| 5 |
+
name: str
|
| 6 |
+
path: str
|
| 7 |
+
type: Literal["file"]
|
| 8 |
+
size: int
|
| 9 |
+
|
| 10 |
+
class DirectoryInfo(TypedDict):
|
| 11 |
+
name: str
|
| 12 |
+
path: str
|
| 13 |
+
type: Literal["directory"]
|
| 14 |
+
|
| 15 |
+
FileSystemItem = Union[FileInfo, DirectoryInfo]
|
| 16 |
+
|
| 17 |
+
def is_file_info(item: FileSystemItem) -> TypeGuard[FileInfo]:
|
| 18 |
+
return item["type"] == "file"
|
| 19 |
+
|
| 20 |
+
class FileSystemOperations:
|
| 21 |
+
@staticmethod
|
| 22 |
+
def walk_directory(directory: str) -> List[FileSystemItem]:
|
| 23 |
+
file_list: List[FileSystemItem] = []
|
| 24 |
+
for root, dirs, files in os.walk(directory):
|
| 25 |
+
for name in files:
|
| 26 |
+
file_path = os.path.join(root, name)
|
| 27 |
+
relative_path = os.path.relpath(file_path, directory)
|
| 28 |
+
file_list.append({
|
| 29 |
+
"name": name,
|
| 30 |
+
"path": relative_path,
|
| 31 |
+
"type": "file",
|
| 32 |
+
"size": os.path.getsize(file_path)
|
| 33 |
+
})
|
| 34 |
+
for name in dirs:
|
| 35 |
+
dir_path = os.path.join(root, name)
|
| 36 |
+
relative_path = os.path.relpath(dir_path, directory)
|
| 37 |
+
file_list.append({
|
| 38 |
+
"name": name,
|
| 39 |
+
"path": relative_path,
|
| 40 |
+
"type": "directory"
|
| 41 |
+
})
|
| 42 |
+
return file_list
|
app.py
ADDED
|
@@ -0,0 +1,822 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
import sys
|
| 4 |
+
import json
|
| 5 |
+
import argparse
|
| 6 |
+
import contextlib
|
| 7 |
+
from typing import Sequence, Mapping, Any, Union
|
| 8 |
+
import torch
|
| 9 |
+
import numpy as np
|
| 10 |
+
import time
|
| 11 |
+
from PIL import Image, ImageOps, ImageSequence
|
| 12 |
+
from PIL.PngImagePlugin import PngInfo
|
| 13 |
+
import datetime
|
| 14 |
+
|
| 15 |
+
import uuid
|
| 16 |
+
|
| 17 |
+
import gradio as gr
|
| 18 |
+
from huggingface_hub import hf_hub_download
|
| 19 |
+
import spaces
|
| 20 |
+
|
| 21 |
+
token = os.environ.get("HF_TOKEN")
|
| 22 |
+
|
| 23 |
+
hf_hub_download(repo_id="oimoyu/model", filename="chkp1.safetensors", local_dir="models/checkpoints")
|
| 24 |
+
hf_hub_download(repo_id="oimoyu/model", filename="lora1.safetensors", local_dir="models/loras")
|
| 25 |
+
hf_hub_download(repo_id="oimoyu/model", filename="lora2.safetensors", local_dir="models/loras")
|
| 26 |
+
hf_hub_download(repo_id="oimoyu/model", filename="lora3.safetensors", local_dir="models/loras")
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def get_script_directory():
|
| 30 |
+
script_path = os.path.abspath(__file__)
|
| 31 |
+
script_dir = os.path.dirname(script_path)
|
| 32 |
+
return script_dir
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def safe_execute(func, *args, **kwargs):
|
| 36 |
+
try:
|
| 37 |
+
result = func(*args, **kwargs)
|
| 38 |
+
return result
|
| 39 |
+
except Exception as e:
|
| 40 |
+
print(f"Error executing {func.__name__}: {e}")
|
| 41 |
+
return None
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def cleanup_output():
|
| 45 |
+
trigger_probability = 0.015
|
| 46 |
+
keep_minutes = 30
|
| 47 |
+
min_files_threshold = 100 # at least keep n files
|
| 48 |
+
|
| 49 |
+
if random.random() > trigger_probability:
|
| 50 |
+
return None
|
| 51 |
+
|
| 52 |
+
# print(list(os.walk("/tmp/gradio")))
|
| 53 |
+
|
| 54 |
+
for output_dir in ["/tmp/gradio", os.path.join(get_script_directory(), "temp")]:
|
| 55 |
+
try:
|
| 56 |
+
if not os.path.exists(output_dir):
|
| 57 |
+
continue
|
| 58 |
+
|
| 59 |
+
all_files = []
|
| 60 |
+
for root, dirs, files in os.walk(output_dir): # traverse all subdirectories
|
| 61 |
+
for filename in files:
|
| 62 |
+
filepath = os.path.join(root, filename)
|
| 63 |
+
all_files.append(filepath)
|
| 64 |
+
|
| 65 |
+
total_files = len(all_files)
|
| 66 |
+
|
| 67 |
+
if total_files < min_files_threshold: # skip if too few files
|
| 68 |
+
return
|
| 69 |
+
|
| 70 |
+
current_time = time.time()
|
| 71 |
+
time_threshold = current_time - (keep_minutes * 60)
|
| 72 |
+
|
| 73 |
+
deleted_count = 0
|
| 74 |
+
deleted_files = []
|
| 75 |
+
|
| 76 |
+
for file_path in all_files:
|
| 77 |
+
try:
|
| 78 |
+
file_mtime = os.path.getctime(file_path)
|
| 79 |
+
filename = os.path.basename(file_path)
|
| 80 |
+
|
| 81 |
+
if file_mtime < time_threshold: # delete if older than threshold
|
| 82 |
+
os.remove(file_path)
|
| 83 |
+
deleted_files.append(filename)
|
| 84 |
+
deleted_count += 1
|
| 85 |
+
|
| 86 |
+
except Exception as e:
|
| 87 |
+
pass # ignore individual file errors
|
| 88 |
+
|
| 89 |
+
# Remove empty directories (bottom-up traversal)
|
| 90 |
+
deleted_dirs = 0
|
| 91 |
+
for root, dirs, files in os.walk(output_dir, topdown=False):
|
| 92 |
+
if root == output_dir.rstrip('/'): # Skip the root output directory itself
|
| 93 |
+
continue
|
| 94 |
+
try:
|
| 95 |
+
# Try to remove directory if it's empty
|
| 96 |
+
if not os.listdir(root): # Check if directory is empty
|
| 97 |
+
os.rmdir(root)
|
| 98 |
+
deleted_dirs += 1
|
| 99 |
+
except Exception as e:
|
| 100 |
+
pass # ignore directory removal errors
|
| 101 |
+
|
| 102 |
+
print(f"cleanup done: dir: {output_dir}, deleted {deleted_count} files, {deleted_dirs} empty directories")
|
| 103 |
+
|
| 104 |
+
except Exception as e:
|
| 105 |
+
print(f"cleanup error:dir: {output_dir}, error: {str(e)}")
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
|
| 109 |
+
# print(10000000000000000)
|
| 110 |
+
try:
|
| 111 |
+
# print(2000000000000000)
|
| 112 |
+
return obj[index]
|
| 113 |
+
except KeyError:
|
| 114 |
+
# print(2000000000000000)
|
| 115 |
+
return obj["result"][index]
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def find_path(name: str, path: str = None) -> str:
|
| 119 |
+
"""
|
| 120 |
+
Recursively looks at parent folders starting from the given path until it finds the given name.
|
| 121 |
+
Returns the path as a Path object if found, or None otherwise.
|
| 122 |
+
"""
|
| 123 |
+
# If no path is given, use the current working directory
|
| 124 |
+
if path is None:
|
| 125 |
+
path = os.getcwd()
|
| 126 |
+
|
| 127 |
+
# Check if the current directory contains the name
|
| 128 |
+
if name in os.listdir(path):
|
| 129 |
+
path_name = os.path.join(path, name)
|
| 130 |
+
print(f"{name} found: {path_name}")
|
| 131 |
+
return path_name
|
| 132 |
+
|
| 133 |
+
# Get the parent directory
|
| 134 |
+
parent_directory = os.path.dirname(path)
|
| 135 |
+
|
| 136 |
+
# If the parent directory is the same as the current directory, we've reached the root and stop the search
|
| 137 |
+
if parent_directory == path:
|
| 138 |
+
return None
|
| 139 |
+
|
| 140 |
+
# Recursively call the function with the parent directory
|
| 141 |
+
return find_path(name, parent_directory)
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def add_comfyui_directory_to_sys_path() -> None:
|
| 145 |
+
"""
|
| 146 |
+
Add 'ComfyUI' to the sys.path
|
| 147 |
+
"""
|
| 148 |
+
comfyui_path = find_path("ComfyUI")
|
| 149 |
+
if comfyui_path is not None and os.path.isdir(comfyui_path):
|
| 150 |
+
sys.path.append(comfyui_path)
|
| 151 |
+
import __main__
|
| 152 |
+
|
| 153 |
+
if getattr(__main__, "__file__", None) is None:
|
| 154 |
+
__main__.__file__ = os.path.join(comfyui_path, "main.py")
|
| 155 |
+
|
| 156 |
+
print(f"'{comfyui_path}' added to sys.path")
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def add_extra_model_paths() -> None:
|
| 160 |
+
"""
|
| 161 |
+
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
|
| 162 |
+
"""
|
| 163 |
+
from utils.extra_config import load_extra_path_config
|
| 164 |
+
|
| 165 |
+
extra_model_paths = find_path("extra_model_paths.yaml")
|
| 166 |
+
|
| 167 |
+
if extra_model_paths is not None:
|
| 168 |
+
load_extra_path_config(extra_model_paths)
|
| 169 |
+
else:
|
| 170 |
+
print("Could not find the extra_model_paths config file.")
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def import_custom_nodes() -> None:
|
| 174 |
+
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS
|
| 175 |
+
|
| 176 |
+
This function sets up a new asyncio event loop, initializes the PromptServer,
|
| 177 |
+
creates a PromptQueue, and initializes the custom nodes.
|
| 178 |
+
"""
|
| 179 |
+
import asyncio
|
| 180 |
+
import execution
|
| 181 |
+
from nodes import init_extra_nodes
|
| 182 |
+
import server
|
| 183 |
+
|
| 184 |
+
# Creating a new event loop and setting it as the default loop
|
| 185 |
+
loop = asyncio.new_event_loop()
|
| 186 |
+
asyncio.set_event_loop(loop)
|
| 187 |
+
|
| 188 |
+
# Creating an instance of PromptServer with the loop
|
| 189 |
+
server_instance = server.PromptServer(loop)
|
| 190 |
+
execution.PromptQueue(server_instance)
|
| 191 |
+
|
| 192 |
+
# Initializing custom nodes
|
| 193 |
+
init_extra_nodes(init_custom_nodes=True)
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
from fastapi import HTTPException, Request
|
| 198 |
+
expected_secret = os.environ.get("API_SECRET", "")
|
| 199 |
+
print(expected_secret)
|
| 200 |
+
def dep(request: Request):
|
| 201 |
+
secret = request.headers.get("X-Secret")
|
| 202 |
+
if expected_secret and secret != expected_secret:
|
| 203 |
+
raise HTTPException(
|
| 204 |
+
status_code=401,
|
| 205 |
+
detail="Invalid secret",
|
| 206 |
+
headers={"WWW-Authenticate": "X-Secret"}
|
| 207 |
+
)
|
| 208 |
+
return {"authenticated": True}
|
| 209 |
+
def pil_to_tensor(image):
|
| 210 |
+
if image.mode != 'RGB':
|
| 211 |
+
image = image.convert('RGB')
|
| 212 |
+
img_array = np.array(image, dtype=np.float32) / 255.0
|
| 213 |
+
img_tensor = torch.from_numpy(img_array).unsqueeze(0)
|
| 214 |
+
return img_tensor
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
PROMPT_DATA = json.loads("{}")
|
| 218 |
+
|
| 219 |
+
add_comfyui_directory_to_sys_path()
|
| 220 |
+
add_extra_model_paths()
|
| 221 |
+
from nodes import NODE_CLASS_MAPPINGS
|
| 222 |
+
|
| 223 |
+
import_custom_nodes()
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
smz_cliptextencode = NODE_CLASS_MAPPINGS["smZ CLIPTextEncode"]()
|
| 227 |
+
imagescaleby = NODE_CLASS_MAPPINGS["ImageScaleBy"]()
|
| 228 |
+
vaeencode = NODE_CLASS_MAPPINGS["VAEEncode"]()
|
| 229 |
+
applyfbcacheonmodel = NODE_CLASS_MAPPINGS["ApplyFBCacheOnModel"]()
|
| 230 |
+
ksampler_efficient = NODE_CLASS_MAPPINGS["KSampler (Efficient)"]()
|
| 231 |
+
|
| 232 |
+
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
|
| 233 |
+
ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
|
| 234 |
+
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
|
| 235 |
+
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
|
| 236 |
+
|
| 237 |
+
checkpointloadersimple = NODE_CLASS_MAPPINGS["CheckpointLoaderSimple"]()
|
| 238 |
+
checkpointloadersimple_4 = checkpointloadersimple.load_checkpoint(
|
| 239 |
+
ckpt_name="chkp1.safetensors"
|
| 240 |
+
)
|
| 241 |
+
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
|
| 242 |
+
clipsetlastlayer = NODE_CLASS_MAPPINGS["CLIPSetLastLayer"]()
|
| 243 |
+
clipsetlastlayer_14 = clipsetlastlayer.set_last_layer(
|
| 244 |
+
stop_at_clip_layer=-2, clip=get_value_at_index(checkpointloadersimple_4, 1)
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
loraloader = NODE_CLASS_MAPPINGS["LoraLoader"]()
|
| 248 |
+
loraloader_11 = loraloader.load_lora(
|
| 249 |
+
lora_name="lora1.safetensors",
|
| 250 |
+
strength_model=0.3,
|
| 251 |
+
strength_clip=0.3,
|
| 252 |
+
model=get_value_at_index(checkpointloadersimple_4, 0),
|
| 253 |
+
clip=get_value_at_index(clipsetlastlayer_14, 0),
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
loraloader_12 = loraloader.load_lora(
|
| 257 |
+
lora_name="lora2.safetensors",
|
| 258 |
+
strength_model=0.5,
|
| 259 |
+
strength_clip=0.5,
|
| 260 |
+
model=get_value_at_index(loraloader_11, 0),
|
| 261 |
+
clip=get_value_at_index(loraloader_11, 1),
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
loraloader_13 = loraloader.load_lora(
|
| 265 |
+
lora_name="lora3.safetensors",
|
| 266 |
+
strength_model=0.5,
|
| 267 |
+
strength_clip=0.5,
|
| 268 |
+
model=get_value_at_index(loraloader_12, 0),
|
| 269 |
+
clip=get_value_at_index(loraloader_12, 1),
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
applyfbcacheonmodel_16 = applyfbcacheonmodel.patch(
|
| 274 |
+
object_to_patch="diffusion_model",
|
| 275 |
+
residual_diff_threshold=0.2,
|
| 276 |
+
start=0.7,
|
| 277 |
+
end=1,
|
| 278 |
+
max_consecutive_cache_hits=-1,
|
| 279 |
+
model=get_value_at_index(loraloader_13, 0),
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
wd14taggerpysssss = NODE_CLASS_MAPPINGS["WD14Tagger|pysssss"]()
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
from comfy import model_management
|
| 287 |
+
model_loaders = [checkpointloadersimple_4, loraloader_11, loraloader_12, loraloader_13, applyfbcacheonmodel_16]
|
| 288 |
+
# model_loaders = [applyfbcacheonmodel_16]
|
| 289 |
+
model_management.load_models_gpu([
|
| 290 |
+
loader[0].patcher if hasattr(loader[0], 'patcher') else loader[0] for loader in model_loaders
|
| 291 |
+
])
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
LOADED_MODEL = get_value_at_index(loraloader_13, 0)
|
| 295 |
+
LOADED_CLIP = get_value_at_index(loraloader_13, 1)
|
| 296 |
+
LOADED_VAE = get_value_at_index(checkpointloadersimple_4, 2)
|
| 297 |
+
LOADED_WAVESPEED_MODEL = get_value_at_index(applyfbcacheonmodel_16, 0)
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
@spaces.GPU(duration=60)
|
| 302 |
+
def infer(prompt_input, negative_prompt_input, seed, width, height, guidance_scale, num_inference_steps):
|
| 303 |
+
safe_execute(cleanup_output)
|
| 304 |
+
|
| 305 |
+
start_time = time.time()
|
| 306 |
+
consume_time_list = []
|
| 307 |
+
|
| 308 |
+
if seed <=0 :
|
| 309 |
+
seed = random.randint(1, 2**64)
|
| 310 |
+
|
| 311 |
+
with torch.inference_mode():
|
| 312 |
+
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
|
| 313 |
+
emptylatentimage_5 = emptylatentimage.generate(
|
| 314 |
+
width=width, height=height, batch_size=1
|
| 315 |
+
)
|
| 316 |
+
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
|
| 317 |
+
|
| 318 |
+
# cliptextencode_6 = cliptextencode.encode(
|
| 319 |
+
# text=prompt_input,
|
| 320 |
+
# clip=LOADED_CLIP,
|
| 321 |
+
# )
|
| 322 |
+
# consume_time_list.append(time.time() - start_time - sum(consume_time_list))
|
| 323 |
+
|
| 324 |
+
# cliptextencode_7 = cliptextencode.encode(
|
| 325 |
+
# text=negative_prompt_input,
|
| 326 |
+
# clip=LOADED_CLIP,
|
| 327 |
+
# )
|
| 328 |
+
|
| 329 |
+
cliptextencode_6 = smz_cliptextencode.encode(
|
| 330 |
+
text=prompt_input,
|
| 331 |
+
parser="A1111",
|
| 332 |
+
mean_normalization=True,
|
| 333 |
+
multi_conditioning=True,
|
| 334 |
+
use_old_emphasis_implementation=False,
|
| 335 |
+
with_SDXL=False, # if use two text encode
|
| 336 |
+
ascore=6, # Aesthetic Score
|
| 337 |
+
width=1024, # unkonw
|
| 338 |
+
height=1024, # unkonw
|
| 339 |
+
crop_w=0, # unkonw
|
| 340 |
+
crop_h=0, # unkonw
|
| 341 |
+
target_width=1024, # unkonw
|
| 342 |
+
target_height=1024, # unkonw
|
| 343 |
+
text_g="", # Global Prompt
|
| 344 |
+
text_l="", # Local Prompt
|
| 345 |
+
smZ_steps=1, # unkonw
|
| 346 |
+
clip=LOADED_CLIP,
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
cliptextencode_7 = smz_cliptextencode.encode(
|
| 350 |
+
text=negative_prompt_input,
|
| 351 |
+
parser="A1111",
|
| 352 |
+
mean_normalization=True,
|
| 353 |
+
multi_conditioning=False,
|
| 354 |
+
use_old_emphasis_implementation=False,
|
| 355 |
+
with_SDXL=False, # if use two text encode
|
| 356 |
+
ascore=6,# Aesthetic Score
|
| 357 |
+
width=1024, # unkonw
|
| 358 |
+
height=1024, # unkonw
|
| 359 |
+
crop_w=0, # unkonw
|
| 360 |
+
crop_h=0, # unkonw
|
| 361 |
+
target_width=1024, # unkonw
|
| 362 |
+
target_height=1024, # unkonw
|
| 363 |
+
text_g="", # Global Prompt
|
| 364 |
+
text_l="", # Local Prompt
|
| 365 |
+
smZ_steps=1, # unkonw
|
| 366 |
+
clip=LOADED_CLIP,
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
|
| 370 |
+
|
| 371 |
+
ksampler_efficient_23 = ksampler_efficient.sample(
|
| 372 |
+
seed=seed,
|
| 373 |
+
steps=num_inference_steps,
|
| 374 |
+
cfg=guidance_scale,
|
| 375 |
+
sampler_name="dpmpp_2m",
|
| 376 |
+
scheduler="karras",
|
| 377 |
+
denoise=1,
|
| 378 |
+
preview_method="auto",
|
| 379 |
+
vae_decode="true",
|
| 380 |
+
model=LOADED_MODEL,
|
| 381 |
+
positive=get_value_at_index(cliptextencode_6, 0),
|
| 382 |
+
negative=get_value_at_index(cliptextencode_7, 0),
|
| 383 |
+
latent_image=get_value_at_index(emptylatentimage_5, 0),
|
| 384 |
+
optional_vae=LOADED_VAE,
|
| 385 |
+
prompt=PROMPT_DATA,
|
| 386 |
+
)
|
| 387 |
+
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
if width < 1024 and height < 1024:
|
| 391 |
+
image_tensor = get_value_at_index(ksampler_efficient_23, 5)[0]
|
| 392 |
+
image_tensor = torch.clamp(image_tensor * 255.0, 0, 255) # calc to 255 on gpu
|
| 393 |
+
image_uint8 = image_tensor.cpu().numpy().astype(np.uint8)
|
| 394 |
+
# pillow_img = Image.fromarray(image_uint8)
|
| 395 |
+
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
|
| 396 |
+
consume_time = time.time() - start_time
|
| 397 |
+
print(f"[{datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] consume:{consume_time:.1f}s ({[f'{t:.1f}' for t in consume_time_list]})")
|
| 398 |
+
return image_uint8
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
imagescaleby_17 = imagescaleby.upscale(
|
| 402 |
+
upscale_method="bicubic",
|
| 403 |
+
scale_by=1.5,
|
| 404 |
+
image=get_value_at_index(ksampler_efficient_23, 5),
|
| 405 |
+
)
|
| 406 |
+
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
|
| 407 |
+
|
| 408 |
+
vaeencode_26 = vaeencode.encode(
|
| 409 |
+
pixels=get_value_at_index(imagescaleby_17, 0),
|
| 410 |
+
vae=LOADED_VAE,
|
| 411 |
+
)
|
| 412 |
+
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
|
| 413 |
+
|
| 414 |
+
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
|
| 415 |
+
|
| 416 |
+
ksampler_efficient_24 = ksampler_efficient.sample(
|
| 417 |
+
seed=seed,
|
| 418 |
+
steps=num_inference_steps,
|
| 419 |
+
cfg=guidance_scale,
|
| 420 |
+
sampler_name="dpmpp_2m",
|
| 421 |
+
scheduler="karras",
|
| 422 |
+
denoise=0.39,
|
| 423 |
+
preview_method="auto",
|
| 424 |
+
vae_decode="true",
|
| 425 |
+
model=LOADED_WAVESPEED_MODEL,
|
| 426 |
+
positive=get_value_at_index(ksampler_efficient_23, 1),
|
| 427 |
+
negative=get_value_at_index(ksampler_efficient_23, 2),
|
| 428 |
+
latent_image=get_value_at_index(vaeencode_26, 0),
|
| 429 |
+
optional_vae=LOADED_VAE,
|
| 430 |
+
prompt=PROMPT_DATA,
|
| 431 |
+
)
|
| 432 |
+
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
|
| 433 |
+
|
| 434 |
+
image_tensor = get_value_at_index(ksampler_efficient_24, 5)[0]
|
| 435 |
+
image_tensor = torch.clamp(image_tensor * 255.0, 0, 255) # calc to 255 on gpu
|
| 436 |
+
image_uint8 = image_tensor.cpu().numpy().astype(np.uint8)
|
| 437 |
+
# pillow_img = Image.fromarray(image_uint8)
|
| 438 |
+
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
|
| 439 |
+
|
| 440 |
+
consume_time = time.time() - start_time
|
| 441 |
+
print(f"[{datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] consume:{consume_time:.1f}s ({[f'{t:.1f}' for t in consume_time_list]})")
|
| 442 |
+
|
| 443 |
+
return image_uint8
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
def clamp_image_size(image, max_size=1280):
|
| 447 |
+
width, height = image.size
|
| 448 |
+
|
| 449 |
+
# 如果图片尺寸都小于等于max_size,使用原尺寸
|
| 450 |
+
if width > max_size or height > max_size:
|
| 451 |
+
# 计算缩放比例
|
| 452 |
+
if width > height:
|
| 453 |
+
# 宽度较大,以宽度为准
|
| 454 |
+
new_width = max_size
|
| 455 |
+
new_height = int(height * max_size / width)
|
| 456 |
+
else:
|
| 457 |
+
# 高度较大,以高度为准
|
| 458 |
+
new_height = max_size
|
| 459 |
+
new_width = int(width * max_size / height)
|
| 460 |
+
|
| 461 |
+
# 使用LANCZOS重采样算法进行高质量缩放
|
| 462 |
+
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
| 463 |
+
|
| 464 |
+
# 确保是RGB模式
|
| 465 |
+
if image.mode != 'RGB':
|
| 466 |
+
image = image.convert('RGB')
|
| 467 |
+
|
| 468 |
+
# 转换为numpy数组,然后转为PyTorch tensor
|
| 469 |
+
img_array = np.array(image, dtype=np.float32) / 255.0
|
| 470 |
+
|
| 471 |
+
# 转为PyTorch tensor
|
| 472 |
+
img_tensor = torch.from_numpy(img_array).unsqueeze(0)
|
| 473 |
+
|
| 474 |
+
return img_tensor
|
| 475 |
+
|
| 476 |
+
|
| 477 |
+
def string_to_pil(image):
|
| 478 |
+
if image.startswith('data:image'):
|
| 479 |
+
# 移除前缀
|
| 480 |
+
base64_str = image.split(',', 1)[1]
|
| 481 |
+
# 解码base64
|
| 482 |
+
image_data = base64.b64decode(base64_str)
|
| 483 |
+
# 转换为PIL图像
|
| 484 |
+
image_stream = io.BytesIO(image_data)
|
| 485 |
+
pil_image = Image.open(image_stream)
|
| 486 |
+
|
| 487 |
+
else:
|
| 488 |
+
# 处理文件路径
|
| 489 |
+
pil_image = Image.open(image)
|
| 490 |
+
return pil_image
|
| 491 |
+
|
| 492 |
+
|
| 493 |
+
@spaces.GPU(duration=60)
|
| 494 |
+
def infer_i2i(prompt_input, negative_prompt_input, image, seed, denoise_strength, guidance_scale, num_inference_steps):
|
| 495 |
+
safe_execute(cleanup_output)
|
| 496 |
+
|
| 497 |
+
start_time = time.time()
|
| 498 |
+
consume_time_list = []
|
| 499 |
+
|
| 500 |
+
# image = string_to_pil(image)
|
| 501 |
+
|
| 502 |
+
if seed <= 0:
|
| 503 |
+
seed = random.randint(1, 2**64)
|
| 504 |
+
|
| 505 |
+
with torch.inference_mode():
|
| 506 |
+
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
|
| 507 |
+
|
| 508 |
+
# 钳制图片
|
| 509 |
+
image = clamp_image_size(image)
|
| 510 |
+
emptylatentimage_5 = vaeencode.encode(
|
| 511 |
+
pixels=image,
|
| 512 |
+
vae=LOADED_VAE,
|
| 513 |
+
)
|
| 514 |
+
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
|
| 515 |
+
|
| 516 |
+
# cliptextencode_6 = cliptextencode.encode(
|
| 517 |
+
# text=prompt_input,
|
| 518 |
+
# clip=LOADED_CLIP,
|
| 519 |
+
# )
|
| 520 |
+
# consume_time_list.append(time.time() - start_time - sum(consume_time_list))
|
| 521 |
+
|
| 522 |
+
# cliptextencode_7 = cliptextencode.encode(
|
| 523 |
+
# text=negative_prompt_input,
|
| 524 |
+
# clip=LOADED_CLIP,
|
| 525 |
+
# )
|
| 526 |
+
|
| 527 |
+
cliptextencode_6 = smz_cliptextencode.encode(
|
| 528 |
+
text=prompt_input,
|
| 529 |
+
parser="A1111",
|
| 530 |
+
mean_normalization=True,
|
| 531 |
+
multi_conditioning=True,
|
| 532 |
+
use_old_emphasis_implementation=False,
|
| 533 |
+
with_SDXL=False, # if use two text encode
|
| 534 |
+
ascore=6, # Aesthetic Score
|
| 535 |
+
width=1024, # unkonw
|
| 536 |
+
height=1024, # unkonw
|
| 537 |
+
crop_w=0, # unkonw
|
| 538 |
+
crop_h=0, # unkonw
|
| 539 |
+
target_width=1024, # unkonw
|
| 540 |
+
target_height=1024, # unkonw
|
| 541 |
+
text_g="", # Global Prompt
|
| 542 |
+
text_l="", # Local Prompt
|
| 543 |
+
smZ_steps=1, # unkonw
|
| 544 |
+
clip=LOADED_CLIP,
|
| 545 |
+
)
|
| 546 |
+
|
| 547 |
+
cliptextencode_7 = smz_cliptextencode.encode(
|
| 548 |
+
text=negative_prompt_input,
|
| 549 |
+
parser="A1111",
|
| 550 |
+
mean_normalization=True,
|
| 551 |
+
multi_conditioning=False,
|
| 552 |
+
use_old_emphasis_implementation=False,
|
| 553 |
+
with_SDXL=False, # if use two text encode
|
| 554 |
+
ascore=6,# Aesthetic Score
|
| 555 |
+
width=1024, # unkonw
|
| 556 |
+
height=1024, # unkonw
|
| 557 |
+
crop_w=0, # unkonw
|
| 558 |
+
crop_h=0, # unkonw
|
| 559 |
+
target_width=1024, # unkonw
|
| 560 |
+
target_height=1024, # unkonw
|
| 561 |
+
text_g="", # Global Prompt
|
| 562 |
+
text_l="", # Local Prompt
|
| 563 |
+
smZ_steps=1, # unkonw
|
| 564 |
+
clip=LOADED_CLIP,
|
| 565 |
+
)
|
| 566 |
+
|
| 567 |
+
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
|
| 568 |
+
|
| 569 |
+
ksampler_efficient_23 = ksampler_efficient.sample(
|
| 570 |
+
seed=seed,
|
| 571 |
+
steps=num_inference_steps,
|
| 572 |
+
cfg=guidance_scale,
|
| 573 |
+
sampler_name="dpmpp_2m",
|
| 574 |
+
scheduler="karras",
|
| 575 |
+
denoise=denoise_strength,
|
| 576 |
+
preview_method="auto",
|
| 577 |
+
vae_decode="true",
|
| 578 |
+
model=LOADED_MODEL,
|
| 579 |
+
positive=get_value_at_index(cliptextencode_6, 0),
|
| 580 |
+
negative=get_value_at_index(cliptextencode_7, 0),
|
| 581 |
+
latent_image=get_value_at_index(emptylatentimage_5, 0),
|
| 582 |
+
optional_vae=LOADED_VAE,
|
| 583 |
+
prompt=PROMPT_DATA,
|
| 584 |
+
)
|
| 585 |
+
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
|
| 586 |
+
|
| 587 |
+
imagescaleby_17 = imagescaleby.upscale(
|
| 588 |
+
upscale_method="bicubic",
|
| 589 |
+
scale_by=1.5,
|
| 590 |
+
image=get_value_at_index(ksampler_efficient_23, 5),
|
| 591 |
+
)
|
| 592 |
+
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
|
| 593 |
+
|
| 594 |
+
vaeencode_26 = vaeencode.encode(
|
| 595 |
+
pixels=get_value_at_index(imagescaleby_17, 0),
|
| 596 |
+
vae=LOADED_VAE,
|
| 597 |
+
)
|
| 598 |
+
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
|
| 599 |
+
|
| 600 |
+
|
| 601 |
+
ksampler_efficient_24 = ksampler_efficient.sample(
|
| 602 |
+
seed=seed,
|
| 603 |
+
steps=num_inference_steps,
|
| 604 |
+
cfg=guidance_scale,
|
| 605 |
+
sampler_name="dpmpp_2m",
|
| 606 |
+
scheduler="karras",
|
| 607 |
+
denoise=0.39,
|
| 608 |
+
preview_method="auto",
|
| 609 |
+
vae_decode="true",
|
| 610 |
+
model=get_value_at_index(applyfbcacheonmodel_16, 0),
|
| 611 |
+
positive=get_value_at_index(ksampler_efficient_23, 1),
|
| 612 |
+
negative=get_value_at_index(ksampler_efficient_23, 2),
|
| 613 |
+
latent_image=get_value_at_index(vaeencode_26, 0),
|
| 614 |
+
optional_vae=LOADED_VAE,
|
| 615 |
+
prompt=PROMPT_DATA,
|
| 616 |
+
)
|
| 617 |
+
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
|
| 618 |
+
|
| 619 |
+
image_tensor = get_value_at_index(ksampler_efficient_24, 5)[0]
|
| 620 |
+
image_tensor = torch.clamp(image_tensor * 255.0, 0, 255) # calc to 255 on gpu
|
| 621 |
+
image_uint8 = image_tensor.cpu().numpy().astype(np.uint8)
|
| 622 |
+
# pillow_img = Image.fromarray(image_uint8)
|
| 623 |
+
consume_time_list.append(time.time() - start_time - sum(consume_time_list))
|
| 624 |
+
|
| 625 |
+
consume_time = time.time() - start_time
|
| 626 |
+
print(f"[{datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] consume:{consume_time:.1f}s ({[f'{t:.1f}' for t in consume_time_list]})")
|
| 627 |
+
|
| 628 |
+
return image_uint8
|
| 629 |
+
|
| 630 |
+
|
| 631 |
+
# @spaces.GPU(duration=60)
|
| 632 |
+
def infer_wd14tagger(image):
|
| 633 |
+
if image is None:
|
| 634 |
+
return "Please upload an image first."
|
| 635 |
+
|
| 636 |
+
with torch.inference_mode():
|
| 637 |
+
image_tensor = pil_to_tensor(image)
|
| 638 |
+
|
| 639 |
+
wd14taggerpysssss_10 = wd14taggerpysssss.tag(
|
| 640 |
+
model="wd-v1-4-moat-tagger-v2",
|
| 641 |
+
threshold=0.35,
|
| 642 |
+
character_threshold=0.85,
|
| 643 |
+
replace_underscore=False,
|
| 644 |
+
trailing_comma=False,
|
| 645 |
+
exclude_tags="",
|
| 646 |
+
image=image_tensor,
|
| 647 |
+
)
|
| 648 |
+
|
| 649 |
+
wd14_result = get_value_at_index(wd14taggerpysssss_10, 0)
|
| 650 |
+
result = ""
|
| 651 |
+
if wd14_result:
|
| 652 |
+
result = wd14_result[0]
|
| 653 |
+
return result
|
| 654 |
+
|
| 655 |
+
|
| 656 |
+
|
| 657 |
+
|
| 658 |
+
|
| 659 |
+
default_concurrency_limit = 2
|
| 660 |
+
|
| 661 |
+
if __name__ == "__main__":
|
| 662 |
+
|
| 663 |
+
# 开启 Gradio 程序
|
| 664 |
+
|
| 665 |
+
# 开启 Gradio 程序
|
| 666 |
+
with gr.Blocks() as app:
|
| 667 |
+
# 添加标题
|
| 668 |
+
gr.Markdown("# Your dream wifi generator")
|
| 669 |
+
|
| 670 |
+
with gr.Tabs():
|
| 671 |
+
# Text-to-Image Tab
|
| 672 |
+
with gr.TabItem("Text-to-Image"):
|
| 673 |
+
with gr.Row():
|
| 674 |
+
# 添加输入
|
| 675 |
+
prompt_input = gr.Textbox(
|
| 676 |
+
label="Prompt", placeholder="Enter your prompt here...",
|
| 677 |
+
value="1boy"
|
| 678 |
+
)
|
| 679 |
+
negative_prompt_input = gr.Textbox(
|
| 680 |
+
label="Negative Prompt", placeholder="Enter your negative prompt here...",
|
| 681 |
+
value="nsfw, lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]"
|
| 682 |
+
)
|
| 683 |
+
|
| 684 |
+
use_negative_prompt = gr.Checkbox(label="Is use negative", value=True, visible=False)
|
| 685 |
+
seed = gr.Slider(
|
| 686 |
+
label="Seed",
|
| 687 |
+
minimum=0,
|
| 688 |
+
maximum=np.iinfo(np.int32).max,
|
| 689 |
+
step=1,
|
| 690 |
+
value=0,
|
| 691 |
+
)
|
| 692 |
+
with gr.Row(visible=True):
|
| 693 |
+
width = gr.Slider(
|
| 694 |
+
label="Width",
|
| 695 |
+
minimum=512,
|
| 696 |
+
maximum=1280,
|
| 697 |
+
step=64,
|
| 698 |
+
value=832,
|
| 699 |
+
)
|
| 700 |
+
height = gr.Slider(
|
| 701 |
+
label="Height",
|
| 702 |
+
minimum=512,
|
| 703 |
+
maximum=1280,
|
| 704 |
+
step=64,
|
| 705 |
+
value=832,
|
| 706 |
+
)
|
| 707 |
+
guidance_scale = gr.Slider(
|
| 708 |
+
label="Guidance Scale",
|
| 709 |
+
minimum=0.1,
|
| 710 |
+
maximum=10,
|
| 711 |
+
step=0.1,
|
| 712 |
+
value=7.0,
|
| 713 |
+
)
|
| 714 |
+
num_inference_steps = gr.Slider(
|
| 715 |
+
label="Step",
|
| 716 |
+
minimum=1,
|
| 717 |
+
maximum=50,
|
| 718 |
+
step=1,
|
| 719 |
+
value=28,
|
| 720 |
+
)
|
| 721 |
+
# 生成按钮
|
| 722 |
+
generate_btn = gr.Button("Generate")
|
| 723 |
+
|
| 724 |
+
with gr.Column():
|
| 725 |
+
# 输出图像
|
| 726 |
+
output_image = gr.Image(label="Generated Image", show_label=False, format="JPEG")
|
| 727 |
+
|
| 728 |
+
# 当点击按钮时,它将触发"generate_image"函数,该函数带有相应的输入
|
| 729 |
+
# 并且输出是一张图像
|
| 730 |
+
generate_btn.click(
|
| 731 |
+
fn=infer,
|
| 732 |
+
inputs=[prompt_input, negative_prompt_input, seed, width, height, guidance_scale, num_inference_steps],
|
| 733 |
+
outputs=[output_image],
|
| 734 |
+
concurrency_id="inference_queue"
|
| 735 |
+
)
|
| 736 |
+
|
| 737 |
+
# Image-to-Image Tab
|
| 738 |
+
with gr.TabItem("Image-to-Image"):
|
| 739 |
+
with gr.Row():
|
| 740 |
+
# 添加输入
|
| 741 |
+
i2i_prompt_input = gr.Textbox(
|
| 742 |
+
label="Prompt", placeholder="Enter your prompt here...",
|
| 743 |
+
value="1boy"
|
| 744 |
+
)
|
| 745 |
+
i2i_negative_prompt_input = gr.Textbox(
|
| 746 |
+
label="Negative Prompt", placeholder="Enter your negative prompt here...",
|
| 747 |
+
value="nsfw, lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]"
|
| 748 |
+
)
|
| 749 |
+
|
| 750 |
+
input_image_component = gr.Image(type="pil", label="Input Image")
|
| 751 |
+
|
| 752 |
+
i2i_use_negative_prompt = gr.Checkbox(label="Is use negative", value=True, visible=False)
|
| 753 |
+
i2i_seed = gr.Slider(
|
| 754 |
+
label="Seed",
|
| 755 |
+
minimum=0,
|
| 756 |
+
maximum=np.iinfo(np.int32).max,
|
| 757 |
+
step=1,
|
| 758 |
+
value=0,
|
| 759 |
+
)
|
| 760 |
+
|
| 761 |
+
# Denoise strength for I2I
|
| 762 |
+
denoise_strength = gr.Slider(
|
| 763 |
+
label="Denoise Strength",
|
| 764 |
+
minimum=0,
|
| 765 |
+
maximum=1.0,
|
| 766 |
+
step=0.05,
|
| 767 |
+
value=0.75,
|
| 768 |
+
info="Higher values will change the image more"
|
| 769 |
+
)
|
| 770 |
+
|
| 771 |
+
i2i_guidance_scale = gr.Slider(
|
| 772 |
+
label="Guidance Scale",
|
| 773 |
+
minimum=0.1,
|
| 774 |
+
maximum=10,
|
| 775 |
+
step=0.1,
|
| 776 |
+
value=7.0,
|
| 777 |
+
)
|
| 778 |
+
i2i_num_inference_steps = gr.Slider(
|
| 779 |
+
label="Step",
|
| 780 |
+
minimum=1,
|
| 781 |
+
maximum=50,
|
| 782 |
+
step=1,
|
| 783 |
+
value=28,
|
| 784 |
+
)
|
| 785 |
+
# 生成按钮
|
| 786 |
+
i2i_generate_btn = gr.Button("Generate")
|
| 787 |
+
|
| 788 |
+
with gr.Column():
|
| 789 |
+
# 输出图像
|
| 790 |
+
i2i_output_image = gr.Image(label="Generated Image", show_label=False, format="JPEG")
|
| 791 |
+
|
| 792 |
+
i2i_generate_btn.click(
|
| 793 |
+
fn=infer_i2i,
|
| 794 |
+
inputs=[i2i_prompt_input, i2i_negative_prompt_input, input_image_component, i2i_seed, denoise_strength, i2i_guidance_scale, i2i_num_inference_steps],
|
| 795 |
+
outputs=[i2i_output_image],
|
| 796 |
+
concurrency_id="inference_queue"
|
| 797 |
+
)
|
| 798 |
+
|
| 799 |
+
|
| 800 |
+
# WD14-Tagger
|
| 801 |
+
with gr.TabItem("WD14-Tagger"):
|
| 802 |
+
with gr.Row():
|
| 803 |
+
input_image = gr.Image(type="pil", label="Extract Image Tags",)
|
| 804 |
+
|
| 805 |
+
generate_btn = gr.Button("Generate Tags")
|
| 806 |
+
|
| 807 |
+
with gr.Column():
|
| 808 |
+
output_tags = gr.TextArea(label="Generated Tags", show_label=True)
|
| 809 |
+
|
| 810 |
+
generate_btn.click(
|
| 811 |
+
fn=infer_wd14tagger,
|
| 812 |
+
inputs=[input_image],
|
| 813 |
+
outputs=[output_tags],
|
| 814 |
+
concurrency_id="inference_queue"
|
| 815 |
+
)
|
| 816 |
+
|
| 817 |
+
app.queue(
|
| 818 |
+
default_concurrency_limit=default_concurrency_limit, # 默认并发数,可以被单独事件设置覆盖
|
| 819 |
+
max_size=15 # 全局队列大小,不能被覆盖
|
| 820 |
+
)
|
| 821 |
+
app.launch(server_port=7860, auth_dependency=dep,server_name="0.0.0.0" )
|
| 822 |
+
|
app/__init__.py
ADDED
|
File without changes
|
app/app_settings.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
from aiohttp import web
|
| 4 |
+
import logging
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class AppSettings():
|
| 8 |
+
def __init__(self, user_manager):
|
| 9 |
+
self.user_manager = user_manager
|
| 10 |
+
|
| 11 |
+
def get_settings(self, request):
|
| 12 |
+
file = self.user_manager.get_request_user_filepath(
|
| 13 |
+
request, "comfy.settings.json")
|
| 14 |
+
if os.path.isfile(file):
|
| 15 |
+
try:
|
| 16 |
+
with open(file) as f:
|
| 17 |
+
return json.load(f)
|
| 18 |
+
except:
|
| 19 |
+
logging.error(f"The user settings file is corrupted: {file}")
|
| 20 |
+
return {}
|
| 21 |
+
else:
|
| 22 |
+
return {}
|
| 23 |
+
|
| 24 |
+
def save_settings(self, request, settings):
|
| 25 |
+
file = self.user_manager.get_request_user_filepath(
|
| 26 |
+
request, "comfy.settings.json")
|
| 27 |
+
with open(file, "w") as f:
|
| 28 |
+
f.write(json.dumps(settings, indent=4))
|
| 29 |
+
|
| 30 |
+
def add_routes(self, routes):
|
| 31 |
+
@routes.get("/settings")
|
| 32 |
+
async def get_settings(request):
|
| 33 |
+
return web.json_response(self.get_settings(request))
|
| 34 |
+
|
| 35 |
+
@routes.get("/settings/{id}")
|
| 36 |
+
async def get_setting(request):
|
| 37 |
+
value = None
|
| 38 |
+
settings = self.get_settings(request)
|
| 39 |
+
setting_id = request.match_info.get("id", None)
|
| 40 |
+
if setting_id and setting_id in settings:
|
| 41 |
+
value = settings[setting_id]
|
| 42 |
+
return web.json_response(value)
|
| 43 |
+
|
| 44 |
+
@routes.post("/settings")
|
| 45 |
+
async def post_settings(request):
|
| 46 |
+
settings = self.get_settings(request)
|
| 47 |
+
new_settings = await request.json()
|
| 48 |
+
self.save_settings(request, {**settings, **new_settings})
|
| 49 |
+
return web.Response(status=200)
|
| 50 |
+
|
| 51 |
+
@routes.post("/settings/{id}")
|
| 52 |
+
async def post_setting(request):
|
| 53 |
+
setting_id = request.match_info.get("id", None)
|
| 54 |
+
if not setting_id:
|
| 55 |
+
return web.Response(status=400)
|
| 56 |
+
settings = self.get_settings(request)
|
| 57 |
+
settings[setting_id] = await request.json()
|
| 58 |
+
self.save_settings(request, settings)
|
| 59 |
+
return web.Response(status=200)
|
app/custom_node_manager.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import folder_paths
|
| 5 |
+
import glob
|
| 6 |
+
from aiohttp import web
|
| 7 |
+
|
| 8 |
+
class CustomNodeManager:
|
| 9 |
+
"""
|
| 10 |
+
Placeholder to refactor the custom node management features from ComfyUI-Manager.
|
| 11 |
+
Currently it only contains the custom workflow templates feature.
|
| 12 |
+
"""
|
| 13 |
+
def add_routes(self, routes, webapp, loadedModules):
|
| 14 |
+
|
| 15 |
+
@routes.get("/workflow_templates")
|
| 16 |
+
async def get_workflow_templates(request):
|
| 17 |
+
"""Returns a web response that contains the map of custom_nodes names and their associated workflow templates. The ones without templates are omitted."""
|
| 18 |
+
files = [
|
| 19 |
+
file
|
| 20 |
+
for folder in folder_paths.get_folder_paths("custom_nodes")
|
| 21 |
+
for file in glob.glob(os.path.join(folder, '*/example_workflows/*.json'))
|
| 22 |
+
]
|
| 23 |
+
workflow_templates_dict = {} # custom_nodes folder name -> example workflow names
|
| 24 |
+
for file in files:
|
| 25 |
+
custom_nodes_name = os.path.basename(os.path.dirname(os.path.dirname(file)))
|
| 26 |
+
workflow_name = os.path.splitext(os.path.basename(file))[0]
|
| 27 |
+
workflow_templates_dict.setdefault(custom_nodes_name, []).append(workflow_name)
|
| 28 |
+
return web.json_response(workflow_templates_dict)
|
| 29 |
+
|
| 30 |
+
# Serve workflow templates from custom nodes.
|
| 31 |
+
for module_name, module_dir in loadedModules:
|
| 32 |
+
workflows_dir = os.path.join(module_dir, 'example_workflows')
|
| 33 |
+
if os.path.exists(workflows_dir):
|
| 34 |
+
webapp.add_routes([web.static('/api/workflow_templates/' + module_name, workflows_dir)])
|
app/frontend_management.py
ADDED
|
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
import argparse
|
| 3 |
+
import logging
|
| 4 |
+
import os
|
| 5 |
+
import re
|
| 6 |
+
import tempfile
|
| 7 |
+
import zipfile
|
| 8 |
+
from dataclasses import dataclass
|
| 9 |
+
from functools import cached_property
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
from typing import TypedDict, Optional
|
| 12 |
+
|
| 13 |
+
import requests
|
| 14 |
+
from typing_extensions import NotRequired
|
| 15 |
+
from comfy.cli_args import DEFAULT_VERSION_STRING
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
REQUEST_TIMEOUT = 10 # seconds
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class Asset(TypedDict):
|
| 22 |
+
url: str
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class Release(TypedDict):
|
| 26 |
+
id: int
|
| 27 |
+
tag_name: str
|
| 28 |
+
name: str
|
| 29 |
+
prerelease: bool
|
| 30 |
+
created_at: str
|
| 31 |
+
published_at: str
|
| 32 |
+
body: str
|
| 33 |
+
assets: NotRequired[list[Asset]]
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@dataclass
|
| 37 |
+
class FrontEndProvider:
|
| 38 |
+
owner: str
|
| 39 |
+
repo: str
|
| 40 |
+
|
| 41 |
+
@property
|
| 42 |
+
def folder_name(self) -> str:
|
| 43 |
+
return f"{self.owner}_{self.repo}"
|
| 44 |
+
|
| 45 |
+
@property
|
| 46 |
+
def release_url(self) -> str:
|
| 47 |
+
return f"https://api.github.com/repos/{self.owner}/{self.repo}/releases"
|
| 48 |
+
|
| 49 |
+
@cached_property
|
| 50 |
+
def all_releases(self) -> list[Release]:
|
| 51 |
+
releases = []
|
| 52 |
+
api_url = self.release_url
|
| 53 |
+
while api_url:
|
| 54 |
+
response = requests.get(api_url, timeout=REQUEST_TIMEOUT)
|
| 55 |
+
response.raise_for_status() # Raises an HTTPError if the response was an error
|
| 56 |
+
releases.extend(response.json())
|
| 57 |
+
# GitHub uses the Link header to provide pagination links. Check if it exists and update api_url accordingly.
|
| 58 |
+
if "next" in response.links:
|
| 59 |
+
api_url = response.links["next"]["url"]
|
| 60 |
+
else:
|
| 61 |
+
api_url = None
|
| 62 |
+
return releases
|
| 63 |
+
|
| 64 |
+
@cached_property
|
| 65 |
+
def latest_release(self) -> Release:
|
| 66 |
+
latest_release_url = f"{self.release_url}/latest"
|
| 67 |
+
response = requests.get(latest_release_url, timeout=REQUEST_TIMEOUT)
|
| 68 |
+
response.raise_for_status() # Raises an HTTPError if the response was an error
|
| 69 |
+
return response.json()
|
| 70 |
+
|
| 71 |
+
def get_release(self, version: str) -> Release:
|
| 72 |
+
if version == "latest":
|
| 73 |
+
return self.latest_release
|
| 74 |
+
else:
|
| 75 |
+
for release in self.all_releases:
|
| 76 |
+
if release["tag_name"] in [version, f"v{version}"]:
|
| 77 |
+
return release
|
| 78 |
+
raise ValueError(f"Version {version} not found in releases")
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def download_release_asset_zip(release: Release, destination_path: str) -> None:
|
| 82 |
+
"""Download dist.zip from github release."""
|
| 83 |
+
asset_url = None
|
| 84 |
+
for asset in release.get("assets", []):
|
| 85 |
+
if asset["name"] == "dist.zip":
|
| 86 |
+
asset_url = asset["url"]
|
| 87 |
+
break
|
| 88 |
+
|
| 89 |
+
if not asset_url:
|
| 90 |
+
raise ValueError("dist.zip not found in the release assets")
|
| 91 |
+
|
| 92 |
+
# Use a temporary file to download the zip content
|
| 93 |
+
with tempfile.TemporaryFile() as tmp_file:
|
| 94 |
+
headers = {"Accept": "application/octet-stream"}
|
| 95 |
+
response = requests.get(
|
| 96 |
+
asset_url, headers=headers, allow_redirects=True, timeout=REQUEST_TIMEOUT
|
| 97 |
+
)
|
| 98 |
+
response.raise_for_status() # Ensure we got a successful response
|
| 99 |
+
|
| 100 |
+
# Write the content to the temporary file
|
| 101 |
+
tmp_file.write(response.content)
|
| 102 |
+
|
| 103 |
+
# Go back to the beginning of the temporary file
|
| 104 |
+
tmp_file.seek(0)
|
| 105 |
+
|
| 106 |
+
# Extract the zip file content to the destination path
|
| 107 |
+
with zipfile.ZipFile(tmp_file, "r") as zip_ref:
|
| 108 |
+
zip_ref.extractall(destination_path)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
class FrontendManager:
|
| 112 |
+
DEFAULT_FRONTEND_PATH = str(Path(__file__).parents[1] / "web")
|
| 113 |
+
CUSTOM_FRONTENDS_ROOT = str(Path(__file__).parents[1] / "web_custom_versions")
|
| 114 |
+
|
| 115 |
+
@classmethod
|
| 116 |
+
def parse_version_string(cls, value: str) -> tuple[str, str, str]:
|
| 117 |
+
"""
|
| 118 |
+
Args:
|
| 119 |
+
value (str): The version string to parse.
|
| 120 |
+
|
| 121 |
+
Returns:
|
| 122 |
+
tuple[str, str]: A tuple containing provider name and version.
|
| 123 |
+
|
| 124 |
+
Raises:
|
| 125 |
+
argparse.ArgumentTypeError: If the version string is invalid.
|
| 126 |
+
"""
|
| 127 |
+
VERSION_PATTERN = r"^([a-zA-Z0-9][a-zA-Z0-9-]{0,38})/([a-zA-Z0-9_.-]+)@(v?\d+\.\d+\.\d+|latest)$"
|
| 128 |
+
match_result = re.match(VERSION_PATTERN, value)
|
| 129 |
+
if match_result is None:
|
| 130 |
+
raise argparse.ArgumentTypeError(f"Invalid version string: {value}")
|
| 131 |
+
|
| 132 |
+
return match_result.group(1), match_result.group(2), match_result.group(3)
|
| 133 |
+
|
| 134 |
+
@classmethod
|
| 135 |
+
def init_frontend_unsafe(cls, version_string: str, provider: Optional[FrontEndProvider] = None) -> str:
|
| 136 |
+
"""
|
| 137 |
+
Initializes the frontend for the specified version.
|
| 138 |
+
|
| 139 |
+
Args:
|
| 140 |
+
version_string (str): The version string.
|
| 141 |
+
provider (FrontEndProvider, optional): The provider to use. Defaults to None.
|
| 142 |
+
|
| 143 |
+
Returns:
|
| 144 |
+
str: The path to the initialized frontend.
|
| 145 |
+
|
| 146 |
+
Raises:
|
| 147 |
+
Exception: If there is an error during the initialization process.
|
| 148 |
+
main error source might be request timeout or invalid URL.
|
| 149 |
+
"""
|
| 150 |
+
if version_string == DEFAULT_VERSION_STRING:
|
| 151 |
+
return cls.DEFAULT_FRONTEND_PATH
|
| 152 |
+
|
| 153 |
+
repo_owner, repo_name, version = cls.parse_version_string(version_string)
|
| 154 |
+
|
| 155 |
+
if version.startswith("v"):
|
| 156 |
+
expected_path = str(Path(cls.CUSTOM_FRONTENDS_ROOT) / f"{repo_owner}_{repo_name}" / version.lstrip("v"))
|
| 157 |
+
if os.path.exists(expected_path):
|
| 158 |
+
logging.info(f"Using existing copy of specific frontend version tag: {repo_owner}/{repo_name}@{version}")
|
| 159 |
+
return expected_path
|
| 160 |
+
|
| 161 |
+
logging.info(f"Initializing frontend: {repo_owner}/{repo_name}@{version}, requesting version details from GitHub...")
|
| 162 |
+
|
| 163 |
+
provider = provider or FrontEndProvider(repo_owner, repo_name)
|
| 164 |
+
release = provider.get_release(version)
|
| 165 |
+
|
| 166 |
+
semantic_version = release["tag_name"].lstrip("v")
|
| 167 |
+
web_root = str(
|
| 168 |
+
Path(cls.CUSTOM_FRONTENDS_ROOT) / provider.folder_name / semantic_version
|
| 169 |
+
)
|
| 170 |
+
if not os.path.exists(web_root):
|
| 171 |
+
try:
|
| 172 |
+
os.makedirs(web_root, exist_ok=True)
|
| 173 |
+
logging.info(
|
| 174 |
+
"Downloading frontend(%s) version(%s) to (%s)",
|
| 175 |
+
provider.folder_name,
|
| 176 |
+
semantic_version,
|
| 177 |
+
web_root,
|
| 178 |
+
)
|
| 179 |
+
logging.debug(release)
|
| 180 |
+
download_release_asset_zip(release, destination_path=web_root)
|
| 181 |
+
finally:
|
| 182 |
+
# Clean up the directory if it is empty, i.e. the download failed
|
| 183 |
+
if not os.listdir(web_root):
|
| 184 |
+
os.rmdir(web_root)
|
| 185 |
+
|
| 186 |
+
return web_root
|
| 187 |
+
|
| 188 |
+
@classmethod
|
| 189 |
+
def init_frontend(cls, version_string: str) -> str:
|
| 190 |
+
"""
|
| 191 |
+
Initializes the frontend with the specified version string.
|
| 192 |
+
|
| 193 |
+
Args:
|
| 194 |
+
version_string (str): The version string to initialize the frontend with.
|
| 195 |
+
|
| 196 |
+
Returns:
|
| 197 |
+
str: The path of the initialized frontend.
|
| 198 |
+
"""
|
| 199 |
+
try:
|
| 200 |
+
return cls.init_frontend_unsafe(version_string)
|
| 201 |
+
except Exception as e:
|
| 202 |
+
logging.error("Failed to initialize frontend: %s", e)
|
| 203 |
+
logging.info("Falling back to the default frontend.")
|
| 204 |
+
return cls.DEFAULT_FRONTEND_PATH
|
app/logger.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import deque
|
| 2 |
+
from datetime import datetime
|
| 3 |
+
import io
|
| 4 |
+
import logging
|
| 5 |
+
import sys
|
| 6 |
+
import threading
|
| 7 |
+
|
| 8 |
+
logs = None
|
| 9 |
+
stdout_interceptor = None
|
| 10 |
+
stderr_interceptor = None
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class LogInterceptor(io.TextIOWrapper):
|
| 14 |
+
def __init__(self, stream, *args, **kwargs):
|
| 15 |
+
buffer = stream.buffer
|
| 16 |
+
encoding = stream.encoding
|
| 17 |
+
super().__init__(buffer, *args, **kwargs, encoding=encoding, line_buffering=stream.line_buffering)
|
| 18 |
+
self._lock = threading.Lock()
|
| 19 |
+
self._flush_callbacks = []
|
| 20 |
+
self._logs_since_flush = []
|
| 21 |
+
|
| 22 |
+
def write(self, data):
|
| 23 |
+
entry = {"t": datetime.now().isoformat(), "m": data}
|
| 24 |
+
with self._lock:
|
| 25 |
+
self._logs_since_flush.append(entry)
|
| 26 |
+
|
| 27 |
+
# Simple handling for cr to overwrite the last output if it isnt a full line
|
| 28 |
+
# else logs just get full of progress messages
|
| 29 |
+
if isinstance(data, str) and data.startswith("\r") and not logs[-1]["m"].endswith("\n"):
|
| 30 |
+
logs.pop()
|
| 31 |
+
logs.append(entry)
|
| 32 |
+
super().write(data)
|
| 33 |
+
|
| 34 |
+
def flush(self):
|
| 35 |
+
super().flush()
|
| 36 |
+
for cb in self._flush_callbacks:
|
| 37 |
+
cb(self._logs_since_flush)
|
| 38 |
+
self._logs_since_flush = []
|
| 39 |
+
|
| 40 |
+
def on_flush(self, callback):
|
| 41 |
+
self._flush_callbacks.append(callback)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def get_logs():
|
| 45 |
+
return logs
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def on_flush(callback):
|
| 49 |
+
if stdout_interceptor is not None:
|
| 50 |
+
stdout_interceptor.on_flush(callback)
|
| 51 |
+
if stderr_interceptor is not None:
|
| 52 |
+
stderr_interceptor.on_flush(callback)
|
| 53 |
+
|
| 54 |
+
def setup_logger(log_level: str = 'INFO', capacity: int = 300, use_stdout: bool = False):
|
| 55 |
+
global logs
|
| 56 |
+
if logs:
|
| 57 |
+
return
|
| 58 |
+
|
| 59 |
+
# Override output streams and log to buffer
|
| 60 |
+
logs = deque(maxlen=capacity)
|
| 61 |
+
|
| 62 |
+
global stdout_interceptor
|
| 63 |
+
global stderr_interceptor
|
| 64 |
+
stdout_interceptor = sys.stdout = LogInterceptor(sys.stdout)
|
| 65 |
+
stderr_interceptor = sys.stderr = LogInterceptor(sys.stderr)
|
| 66 |
+
|
| 67 |
+
# Setup default global logger
|
| 68 |
+
logger = logging.getLogger()
|
| 69 |
+
logger.setLevel(log_level)
|
| 70 |
+
|
| 71 |
+
stream_handler = logging.StreamHandler()
|
| 72 |
+
stream_handler.setFormatter(logging.Formatter("%(message)s"))
|
| 73 |
+
|
| 74 |
+
if use_stdout:
|
| 75 |
+
# Only errors and critical to stderr
|
| 76 |
+
stream_handler.addFilter(lambda record: not record.levelno < logging.ERROR)
|
| 77 |
+
|
| 78 |
+
# Lesser to stdout
|
| 79 |
+
stdout_handler = logging.StreamHandler(sys.stdout)
|
| 80 |
+
stdout_handler.setFormatter(logging.Formatter("%(message)s"))
|
| 81 |
+
stdout_handler.addFilter(lambda record: record.levelno < logging.ERROR)
|
| 82 |
+
logger.addHandler(stdout_handler)
|
| 83 |
+
|
| 84 |
+
logger.addHandler(stream_handler)
|
app/model_manager.py
ADDED
|
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import base64
|
| 5 |
+
import json
|
| 6 |
+
import time
|
| 7 |
+
import logging
|
| 8 |
+
import folder_paths
|
| 9 |
+
import glob
|
| 10 |
+
import comfy.utils
|
| 11 |
+
from aiohttp import web
|
| 12 |
+
from PIL import Image
|
| 13 |
+
from io import BytesIO
|
| 14 |
+
from folder_paths import map_legacy, filter_files_extensions, filter_files_content_types
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class ModelFileManager:
|
| 18 |
+
def __init__(self) -> None:
|
| 19 |
+
self.cache: dict[str, tuple[list[dict], dict[str, float], float]] = {}
|
| 20 |
+
|
| 21 |
+
def get_cache(self, key: str, default=None) -> tuple[list[dict], dict[str, float], float] | None:
|
| 22 |
+
return self.cache.get(key, default)
|
| 23 |
+
|
| 24 |
+
def set_cache(self, key: str, value: tuple[list[dict], dict[str, float], float]):
|
| 25 |
+
self.cache[key] = value
|
| 26 |
+
|
| 27 |
+
def clear_cache(self):
|
| 28 |
+
self.cache.clear()
|
| 29 |
+
|
| 30 |
+
def add_routes(self, routes):
|
| 31 |
+
# NOTE: This is an experiment to replace `/models`
|
| 32 |
+
@routes.get("/experiment/models")
|
| 33 |
+
async def get_model_folders(request):
|
| 34 |
+
model_types = list(folder_paths.folder_names_and_paths.keys())
|
| 35 |
+
folder_black_list = ["configs", "custom_nodes"]
|
| 36 |
+
output_folders: list[dict] = []
|
| 37 |
+
for folder in model_types:
|
| 38 |
+
if folder in folder_black_list:
|
| 39 |
+
continue
|
| 40 |
+
output_folders.append({"name": folder, "folders": folder_paths.get_folder_paths(folder)})
|
| 41 |
+
return web.json_response(output_folders)
|
| 42 |
+
|
| 43 |
+
# NOTE: This is an experiment to replace `/models/{folder}`
|
| 44 |
+
@routes.get("/experiment/models/{folder}")
|
| 45 |
+
async def get_all_models(request):
|
| 46 |
+
folder = request.match_info.get("folder", None)
|
| 47 |
+
if not folder in folder_paths.folder_names_and_paths:
|
| 48 |
+
return web.Response(status=404)
|
| 49 |
+
files = self.get_model_file_list(folder)
|
| 50 |
+
return web.json_response(files)
|
| 51 |
+
|
| 52 |
+
@routes.get("/experiment/models/preview/{folder}/{path_index}/{filename:.*}")
|
| 53 |
+
async def get_model_preview(request):
|
| 54 |
+
folder_name = request.match_info.get("folder", None)
|
| 55 |
+
path_index = int(request.match_info.get("path_index", None))
|
| 56 |
+
filename = request.match_info.get("filename", None)
|
| 57 |
+
|
| 58 |
+
if not folder_name in folder_paths.folder_names_and_paths:
|
| 59 |
+
return web.Response(status=404)
|
| 60 |
+
|
| 61 |
+
folders = folder_paths.folder_names_and_paths[folder_name]
|
| 62 |
+
folder = folders[0][path_index]
|
| 63 |
+
full_filename = os.path.join(folder, filename)
|
| 64 |
+
|
| 65 |
+
previews = self.get_model_previews(full_filename)
|
| 66 |
+
default_preview = previews[0] if len(previews) > 0 else None
|
| 67 |
+
if default_preview is None or (isinstance(default_preview, str) and not os.path.isfile(default_preview)):
|
| 68 |
+
return web.Response(status=404)
|
| 69 |
+
|
| 70 |
+
try:
|
| 71 |
+
with Image.open(default_preview) as img:
|
| 72 |
+
img_bytes = BytesIO()
|
| 73 |
+
img.save(img_bytes, format="WEBP")
|
| 74 |
+
img_bytes.seek(0)
|
| 75 |
+
return web.Response(body=img_bytes.getvalue(), content_type="image/webp")
|
| 76 |
+
except:
|
| 77 |
+
return web.Response(status=404)
|
| 78 |
+
|
| 79 |
+
def get_model_file_list(self, folder_name: str):
|
| 80 |
+
folder_name = map_legacy(folder_name)
|
| 81 |
+
folders = folder_paths.folder_names_and_paths[folder_name]
|
| 82 |
+
output_list: list[dict] = []
|
| 83 |
+
|
| 84 |
+
for index, folder in enumerate(folders[0]):
|
| 85 |
+
if not os.path.isdir(folder):
|
| 86 |
+
continue
|
| 87 |
+
out = self.cache_model_file_list_(folder)
|
| 88 |
+
if out is None:
|
| 89 |
+
out = self.recursive_search_models_(folder, index)
|
| 90 |
+
self.set_cache(folder, out)
|
| 91 |
+
output_list.extend(out[0])
|
| 92 |
+
|
| 93 |
+
return output_list
|
| 94 |
+
|
| 95 |
+
def cache_model_file_list_(self, folder: str):
|
| 96 |
+
model_file_list_cache = self.get_cache(folder)
|
| 97 |
+
|
| 98 |
+
if model_file_list_cache is None:
|
| 99 |
+
return None
|
| 100 |
+
if not os.path.isdir(folder):
|
| 101 |
+
return None
|
| 102 |
+
if os.path.getmtime(folder) != model_file_list_cache[1]:
|
| 103 |
+
return None
|
| 104 |
+
for x in model_file_list_cache[1]:
|
| 105 |
+
time_modified = model_file_list_cache[1][x]
|
| 106 |
+
folder = x
|
| 107 |
+
if os.path.getmtime(folder) != time_modified:
|
| 108 |
+
return None
|
| 109 |
+
|
| 110 |
+
return model_file_list_cache
|
| 111 |
+
|
| 112 |
+
def recursive_search_models_(self, directory: str, pathIndex: int) -> tuple[list[str], dict[str, float], float]:
|
| 113 |
+
if not os.path.isdir(directory):
|
| 114 |
+
return [], {}, time.perf_counter()
|
| 115 |
+
|
| 116 |
+
excluded_dir_names = [".git"]
|
| 117 |
+
# TODO use settings
|
| 118 |
+
include_hidden_files = False
|
| 119 |
+
|
| 120 |
+
result: list[str] = []
|
| 121 |
+
dirs: dict[str, float] = {}
|
| 122 |
+
|
| 123 |
+
for dirpath, subdirs, filenames in os.walk(directory, followlinks=True, topdown=True):
|
| 124 |
+
subdirs[:] = [d for d in subdirs if d not in excluded_dir_names]
|
| 125 |
+
if not include_hidden_files:
|
| 126 |
+
subdirs[:] = [d for d in subdirs if not d.startswith(".")]
|
| 127 |
+
filenames = [f for f in filenames if not f.startswith(".")]
|
| 128 |
+
|
| 129 |
+
filenames = filter_files_extensions(filenames, folder_paths.supported_pt_extensions)
|
| 130 |
+
|
| 131 |
+
for file_name in filenames:
|
| 132 |
+
try:
|
| 133 |
+
relative_path = os.path.relpath(os.path.join(dirpath, file_name), directory)
|
| 134 |
+
result.append(relative_path)
|
| 135 |
+
except:
|
| 136 |
+
logging.warning(f"Warning: Unable to access {file_name}. Skipping this file.")
|
| 137 |
+
continue
|
| 138 |
+
|
| 139 |
+
for d in subdirs:
|
| 140 |
+
path: str = os.path.join(dirpath, d)
|
| 141 |
+
try:
|
| 142 |
+
dirs[path] = os.path.getmtime(path)
|
| 143 |
+
except FileNotFoundError:
|
| 144 |
+
logging.warning(f"Warning: Unable to access {path}. Skipping this path.")
|
| 145 |
+
continue
|
| 146 |
+
|
| 147 |
+
return [{"name": f, "pathIndex": pathIndex} for f in result], dirs, time.perf_counter()
|
| 148 |
+
|
| 149 |
+
def get_model_previews(self, filepath: str) -> list[str | BytesIO]:
|
| 150 |
+
dirname = os.path.dirname(filepath)
|
| 151 |
+
|
| 152 |
+
if not os.path.exists(dirname):
|
| 153 |
+
return []
|
| 154 |
+
|
| 155 |
+
basename = os.path.splitext(filepath)[0]
|
| 156 |
+
match_files = glob.glob(f"{basename}.*", recursive=False)
|
| 157 |
+
image_files = filter_files_content_types(match_files, "image")
|
| 158 |
+
safetensors_file = next(filter(lambda x: x.endswith(".safetensors"), match_files), None)
|
| 159 |
+
safetensors_metadata = {}
|
| 160 |
+
|
| 161 |
+
result: list[str | BytesIO] = []
|
| 162 |
+
|
| 163 |
+
for filename in image_files:
|
| 164 |
+
_basename = os.path.splitext(filename)[0]
|
| 165 |
+
if _basename == basename:
|
| 166 |
+
result.append(filename)
|
| 167 |
+
if _basename == f"{basename}.preview":
|
| 168 |
+
result.append(filename)
|
| 169 |
+
|
| 170 |
+
if safetensors_file:
|
| 171 |
+
safetensors_filepath = os.path.join(dirname, safetensors_file)
|
| 172 |
+
header = comfy.utils.safetensors_header(safetensors_filepath, max_size=8*1024*1024)
|
| 173 |
+
if header:
|
| 174 |
+
safetensors_metadata = json.loads(header)
|
| 175 |
+
safetensors_images = safetensors_metadata.get("__metadata__", {}).get("ssmd_cover_images", None)
|
| 176 |
+
if safetensors_images:
|
| 177 |
+
safetensors_images = json.loads(safetensors_images)
|
| 178 |
+
for image in safetensors_images:
|
| 179 |
+
result.append(BytesIO(base64.b64decode(image)))
|
| 180 |
+
|
| 181 |
+
return result
|
| 182 |
+
|
| 183 |
+
def __exit__(self, exc_type, exc_value, traceback):
|
| 184 |
+
self.clear_cache()
|
app/user_manager.py
ADDED
|
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
import json
|
| 3 |
+
import os
|
| 4 |
+
import re
|
| 5 |
+
import uuid
|
| 6 |
+
import glob
|
| 7 |
+
import shutil
|
| 8 |
+
import logging
|
| 9 |
+
from aiohttp import web
|
| 10 |
+
from urllib import parse
|
| 11 |
+
from comfy.cli_args import args
|
| 12 |
+
import folder_paths
|
| 13 |
+
from .app_settings import AppSettings
|
| 14 |
+
from typing import TypedDict
|
| 15 |
+
|
| 16 |
+
default_user = "default"
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class FileInfo(TypedDict):
|
| 20 |
+
path: str
|
| 21 |
+
size: int
|
| 22 |
+
modified: int
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def get_file_info(path: str, relative_to: str) -> FileInfo:
|
| 26 |
+
return {
|
| 27 |
+
"path": os.path.relpath(path, relative_to).replace(os.sep, '/'),
|
| 28 |
+
"size": os.path.getsize(path),
|
| 29 |
+
"modified": os.path.getmtime(path)
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class UserManager():
|
| 34 |
+
def __init__(self):
|
| 35 |
+
user_directory = folder_paths.get_user_directory()
|
| 36 |
+
|
| 37 |
+
self.settings = AppSettings(self)
|
| 38 |
+
if not os.path.exists(user_directory):
|
| 39 |
+
os.makedirs(user_directory, exist_ok=True)
|
| 40 |
+
if not args.multi_user:
|
| 41 |
+
logging.warning("****** User settings have been changed to be stored on the server instead of browser storage. ******")
|
| 42 |
+
logging.warning("****** For multi-user setups add the --multi-user CLI argument to enable multiple user profiles. ******")
|
| 43 |
+
|
| 44 |
+
if args.multi_user:
|
| 45 |
+
if os.path.isfile(self.get_users_file()):
|
| 46 |
+
with open(self.get_users_file()) as f:
|
| 47 |
+
self.users = json.load(f)
|
| 48 |
+
else:
|
| 49 |
+
self.users = {}
|
| 50 |
+
else:
|
| 51 |
+
self.users = {"default": "default"}
|
| 52 |
+
|
| 53 |
+
def get_users_file(self):
|
| 54 |
+
return os.path.join(folder_paths.get_user_directory(), "users.json")
|
| 55 |
+
|
| 56 |
+
def get_request_user_id(self, request):
|
| 57 |
+
user = "default"
|
| 58 |
+
if args.multi_user and "comfy-user" in request.headers:
|
| 59 |
+
user = request.headers["comfy-user"]
|
| 60 |
+
|
| 61 |
+
if user not in self.users:
|
| 62 |
+
raise KeyError("Unknown user: " + user)
|
| 63 |
+
|
| 64 |
+
return user
|
| 65 |
+
|
| 66 |
+
def get_request_user_filepath(self, request, file, type="userdata", create_dir=True):
|
| 67 |
+
user_directory = folder_paths.get_user_directory()
|
| 68 |
+
|
| 69 |
+
if type == "userdata":
|
| 70 |
+
root_dir = user_directory
|
| 71 |
+
else:
|
| 72 |
+
raise KeyError("Unknown filepath type:" + type)
|
| 73 |
+
|
| 74 |
+
user = self.get_request_user_id(request)
|
| 75 |
+
path = user_root = os.path.abspath(os.path.join(root_dir, user))
|
| 76 |
+
|
| 77 |
+
# prevent leaving /{type}
|
| 78 |
+
if os.path.commonpath((root_dir, user_root)) != root_dir:
|
| 79 |
+
return None
|
| 80 |
+
|
| 81 |
+
if file is not None:
|
| 82 |
+
# Check if filename is url encoded
|
| 83 |
+
if "%" in file:
|
| 84 |
+
file = parse.unquote(file)
|
| 85 |
+
|
| 86 |
+
# prevent leaving /{type}/{user}
|
| 87 |
+
path = os.path.abspath(os.path.join(user_root, file))
|
| 88 |
+
if os.path.commonpath((user_root, path)) != user_root:
|
| 89 |
+
return None
|
| 90 |
+
|
| 91 |
+
parent = os.path.split(path)[0]
|
| 92 |
+
|
| 93 |
+
if create_dir and not os.path.exists(parent):
|
| 94 |
+
os.makedirs(parent, exist_ok=True)
|
| 95 |
+
|
| 96 |
+
return path
|
| 97 |
+
|
| 98 |
+
def add_user(self, name):
|
| 99 |
+
name = name.strip()
|
| 100 |
+
if not name:
|
| 101 |
+
raise ValueError("username not provided")
|
| 102 |
+
user_id = re.sub("[^a-zA-Z0-9-_]+", '-', name)
|
| 103 |
+
user_id = user_id + "_" + str(uuid.uuid4())
|
| 104 |
+
|
| 105 |
+
self.users[user_id] = name
|
| 106 |
+
|
| 107 |
+
with open(self.get_users_file(), "w") as f:
|
| 108 |
+
json.dump(self.users, f)
|
| 109 |
+
|
| 110 |
+
return user_id
|
| 111 |
+
|
| 112 |
+
def add_routes(self, routes):
|
| 113 |
+
self.settings.add_routes(routes)
|
| 114 |
+
|
| 115 |
+
@routes.get("/users")
|
| 116 |
+
async def get_users(request):
|
| 117 |
+
if args.multi_user:
|
| 118 |
+
return web.json_response({"storage": "server", "users": self.users})
|
| 119 |
+
else:
|
| 120 |
+
user_dir = self.get_request_user_filepath(request, None, create_dir=False)
|
| 121 |
+
return web.json_response({
|
| 122 |
+
"storage": "server",
|
| 123 |
+
"migrated": os.path.exists(user_dir)
|
| 124 |
+
})
|
| 125 |
+
|
| 126 |
+
@routes.post("/users")
|
| 127 |
+
async def post_users(request):
|
| 128 |
+
body = await request.json()
|
| 129 |
+
username = body["username"]
|
| 130 |
+
if username in self.users.values():
|
| 131 |
+
return web.json_response({"error": "Duplicate username."}, status=400)
|
| 132 |
+
|
| 133 |
+
user_id = self.add_user(username)
|
| 134 |
+
return web.json_response(user_id)
|
| 135 |
+
|
| 136 |
+
@routes.get("/userdata")
|
| 137 |
+
async def listuserdata(request):
|
| 138 |
+
"""
|
| 139 |
+
List user data files in a specified directory.
|
| 140 |
+
|
| 141 |
+
This endpoint allows listing files in a user's data directory, with options for recursion,
|
| 142 |
+
full file information, and path splitting.
|
| 143 |
+
|
| 144 |
+
Query Parameters:
|
| 145 |
+
- dir (required): The directory to list files from.
|
| 146 |
+
- recurse (optional): If "true", recursively list files in subdirectories.
|
| 147 |
+
- full_info (optional): If "true", return detailed file information (path, size, modified time).
|
| 148 |
+
- split (optional): If "true", split file paths into components (only applies when full_info is false).
|
| 149 |
+
|
| 150 |
+
Returns:
|
| 151 |
+
- 400: If 'dir' parameter is missing.
|
| 152 |
+
- 403: If the requested path is not allowed.
|
| 153 |
+
- 404: If the requested directory does not exist.
|
| 154 |
+
- 200: JSON response with the list of files or file information.
|
| 155 |
+
|
| 156 |
+
The response format depends on the query parameters:
|
| 157 |
+
- Default: List of relative file paths.
|
| 158 |
+
- full_info=true: List of dictionaries with file details.
|
| 159 |
+
- split=true (and full_info=false): List of lists, each containing path components.
|
| 160 |
+
"""
|
| 161 |
+
directory = request.rel_url.query.get('dir', '')
|
| 162 |
+
if not directory:
|
| 163 |
+
return web.Response(status=400, text="Directory not provided")
|
| 164 |
+
|
| 165 |
+
path = self.get_request_user_filepath(request, directory)
|
| 166 |
+
if not path:
|
| 167 |
+
return web.Response(status=403, text="Invalid directory")
|
| 168 |
+
|
| 169 |
+
if not os.path.exists(path):
|
| 170 |
+
return web.Response(status=404, text="Directory not found")
|
| 171 |
+
|
| 172 |
+
recurse = request.rel_url.query.get('recurse', '').lower() == "true"
|
| 173 |
+
full_info = request.rel_url.query.get('full_info', '').lower() == "true"
|
| 174 |
+
split_path = request.rel_url.query.get('split', '').lower() == "true"
|
| 175 |
+
|
| 176 |
+
# Use different patterns based on whether we're recursing or not
|
| 177 |
+
if recurse:
|
| 178 |
+
pattern = os.path.join(glob.escape(path), '**', '*')
|
| 179 |
+
else:
|
| 180 |
+
pattern = os.path.join(glob.escape(path), '*')
|
| 181 |
+
|
| 182 |
+
def process_full_path(full_path: str) -> FileInfo | str | list[str]:
|
| 183 |
+
if full_info:
|
| 184 |
+
return get_file_info(full_path, path)
|
| 185 |
+
|
| 186 |
+
rel_path = os.path.relpath(full_path, path).replace(os.sep, '/')
|
| 187 |
+
if split_path:
|
| 188 |
+
return [rel_path] + rel_path.split('/')
|
| 189 |
+
|
| 190 |
+
return rel_path
|
| 191 |
+
|
| 192 |
+
results = [
|
| 193 |
+
process_full_path(full_path)
|
| 194 |
+
for full_path in glob.glob(pattern, recursive=recurse)
|
| 195 |
+
if os.path.isfile(full_path)
|
| 196 |
+
]
|
| 197 |
+
|
| 198 |
+
return web.json_response(results)
|
| 199 |
+
|
| 200 |
+
def get_user_data_path(request, check_exists = False, param = "file"):
|
| 201 |
+
file = request.match_info.get(param, None)
|
| 202 |
+
if not file:
|
| 203 |
+
return web.Response(status=400)
|
| 204 |
+
|
| 205 |
+
path = self.get_request_user_filepath(request, file)
|
| 206 |
+
if not path:
|
| 207 |
+
return web.Response(status=403)
|
| 208 |
+
|
| 209 |
+
if check_exists and not os.path.exists(path):
|
| 210 |
+
return web.Response(status=404)
|
| 211 |
+
|
| 212 |
+
return path
|
| 213 |
+
|
| 214 |
+
@routes.get("/userdata/{file}")
|
| 215 |
+
async def getuserdata(request):
|
| 216 |
+
path = get_user_data_path(request, check_exists=True)
|
| 217 |
+
if not isinstance(path, str):
|
| 218 |
+
return path
|
| 219 |
+
|
| 220 |
+
return web.FileResponse(path)
|
| 221 |
+
|
| 222 |
+
@routes.post("/userdata/{file}")
|
| 223 |
+
async def post_userdata(request):
|
| 224 |
+
"""
|
| 225 |
+
Upload or update a user data file.
|
| 226 |
+
|
| 227 |
+
This endpoint handles file uploads to a user's data directory, with options for
|
| 228 |
+
controlling overwrite behavior and response format.
|
| 229 |
+
|
| 230 |
+
Query Parameters:
|
| 231 |
+
- overwrite (optional): If "false", prevents overwriting existing files. Defaults to "true".
|
| 232 |
+
- full_info (optional): If "true", returns detailed file information (path, size, modified time).
|
| 233 |
+
If "false", returns only the relative file path.
|
| 234 |
+
|
| 235 |
+
Path Parameters:
|
| 236 |
+
- file: The target file path (URL encoded if necessary).
|
| 237 |
+
|
| 238 |
+
Returns:
|
| 239 |
+
- 400: If 'file' parameter is missing.
|
| 240 |
+
- 403: If the requested path is not allowed.
|
| 241 |
+
- 409: If overwrite=false and the file already exists.
|
| 242 |
+
- 200: JSON response with either:
|
| 243 |
+
- Full file information (if full_info=true)
|
| 244 |
+
- Relative file path (if full_info=false)
|
| 245 |
+
|
| 246 |
+
The request body should contain the raw file content to be written.
|
| 247 |
+
"""
|
| 248 |
+
path = get_user_data_path(request)
|
| 249 |
+
if not isinstance(path, str):
|
| 250 |
+
return path
|
| 251 |
+
|
| 252 |
+
overwrite = request.query.get("overwrite", 'true') != "false"
|
| 253 |
+
full_info = request.query.get('full_info', 'false').lower() == "true"
|
| 254 |
+
|
| 255 |
+
if not overwrite and os.path.exists(path):
|
| 256 |
+
return web.Response(status=409, text="File already exists")
|
| 257 |
+
|
| 258 |
+
body = await request.read()
|
| 259 |
+
|
| 260 |
+
with open(path, "wb") as f:
|
| 261 |
+
f.write(body)
|
| 262 |
+
|
| 263 |
+
user_path = self.get_request_user_filepath(request, None)
|
| 264 |
+
if full_info:
|
| 265 |
+
resp = get_file_info(path, user_path)
|
| 266 |
+
else:
|
| 267 |
+
resp = os.path.relpath(path, user_path)
|
| 268 |
+
|
| 269 |
+
return web.json_response(resp)
|
| 270 |
+
|
| 271 |
+
@routes.delete("/userdata/{file}")
|
| 272 |
+
async def delete_userdata(request):
|
| 273 |
+
path = get_user_data_path(request, check_exists=True)
|
| 274 |
+
if not isinstance(path, str):
|
| 275 |
+
return path
|
| 276 |
+
|
| 277 |
+
os.remove(path)
|
| 278 |
+
|
| 279 |
+
return web.Response(status=204)
|
| 280 |
+
|
| 281 |
+
@routes.post("/userdata/{file}/move/{dest}")
|
| 282 |
+
async def move_userdata(request):
|
| 283 |
+
"""
|
| 284 |
+
Move or rename a user data file.
|
| 285 |
+
|
| 286 |
+
This endpoint handles moving or renaming files within a user's data directory, with options for
|
| 287 |
+
controlling overwrite behavior and response format.
|
| 288 |
+
|
| 289 |
+
Path Parameters:
|
| 290 |
+
- file: The source file path (URL encoded if necessary)
|
| 291 |
+
- dest: The destination file path (URL encoded if necessary)
|
| 292 |
+
|
| 293 |
+
Query Parameters:
|
| 294 |
+
- overwrite (optional): If "false", prevents overwriting existing files. Defaults to "true".
|
| 295 |
+
- full_info (optional): If "true", returns detailed file information (path, size, modified time).
|
| 296 |
+
If "false", returns only the relative file path.
|
| 297 |
+
|
| 298 |
+
Returns:
|
| 299 |
+
- 400: If either 'file' or 'dest' parameter is missing
|
| 300 |
+
- 403: If either requested path is not allowed
|
| 301 |
+
- 404: If the source file does not exist
|
| 302 |
+
- 409: If overwrite=false and the destination file already exists
|
| 303 |
+
- 200: JSON response with either:
|
| 304 |
+
- Full file information (if full_info=true)
|
| 305 |
+
- Relative file path (if full_info=false)
|
| 306 |
+
"""
|
| 307 |
+
source = get_user_data_path(request, check_exists=True)
|
| 308 |
+
if not isinstance(source, str):
|
| 309 |
+
return source
|
| 310 |
+
|
| 311 |
+
dest = get_user_data_path(request, check_exists=False, param="dest")
|
| 312 |
+
if not isinstance(source, str):
|
| 313 |
+
return dest
|
| 314 |
+
|
| 315 |
+
overwrite = request.query.get("overwrite", 'true') != "false"
|
| 316 |
+
full_info = request.query.get('full_info', 'false').lower() == "true"
|
| 317 |
+
|
| 318 |
+
if not overwrite and os.path.exists(dest):
|
| 319 |
+
return web.Response(status=409, text="File already exists")
|
| 320 |
+
|
| 321 |
+
logging.info(f"moving '{source}' -> '{dest}'")
|
| 322 |
+
shutil.move(source, dest)
|
| 323 |
+
|
| 324 |
+
user_path = self.get_request_user_filepath(request, None)
|
| 325 |
+
if full_info:
|
| 326 |
+
resp = get_file_info(dest, user_path)
|
| 327 |
+
else:
|
| 328 |
+
resp = os.path.relpath(dest, user_path)
|
| 329 |
+
|
| 330 |
+
return web.json_response(resp)
|
comfy/checkpoint_pickle.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pickle
|
| 2 |
+
|
| 3 |
+
load = pickle.load
|
| 4 |
+
|
| 5 |
+
class Empty:
|
| 6 |
+
pass
|
| 7 |
+
|
| 8 |
+
class Unpickler(pickle.Unpickler):
|
| 9 |
+
def find_class(self, module, name):
|
| 10 |
+
#TODO: safe unpickle
|
| 11 |
+
if module.startswith("pytorch_lightning"):
|
| 12 |
+
return Empty
|
| 13 |
+
return super().find_class(module, name)
|
comfy/cldm/cldm.py
ADDED
|
@@ -0,0 +1,433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#taken from: https://github.com/lllyasviel/ControlNet
|
| 2 |
+
#and modified
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
|
| 7 |
+
from ..ldm.modules.diffusionmodules.util import (
|
| 8 |
+
timestep_embedding,
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
from ..ldm.modules.attention import SpatialTransformer
|
| 12 |
+
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
|
| 13 |
+
from ..ldm.util import exists
|
| 14 |
+
from .control_types import UNION_CONTROLNET_TYPES
|
| 15 |
+
from collections import OrderedDict
|
| 16 |
+
import comfy.ops
|
| 17 |
+
from comfy.ldm.modules.attention import optimized_attention
|
| 18 |
+
|
| 19 |
+
class OptimizedAttention(nn.Module):
|
| 20 |
+
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
|
| 21 |
+
super().__init__()
|
| 22 |
+
self.heads = nhead
|
| 23 |
+
self.c = c
|
| 24 |
+
|
| 25 |
+
self.in_proj = operations.Linear(c, c * 3, bias=True, dtype=dtype, device=device)
|
| 26 |
+
self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
|
| 27 |
+
|
| 28 |
+
def forward(self, x):
|
| 29 |
+
x = self.in_proj(x)
|
| 30 |
+
q, k, v = x.split(self.c, dim=2)
|
| 31 |
+
out = optimized_attention(q, k, v, self.heads)
|
| 32 |
+
return self.out_proj(out)
|
| 33 |
+
|
| 34 |
+
class QuickGELU(nn.Module):
|
| 35 |
+
def forward(self, x: torch.Tensor):
|
| 36 |
+
return x * torch.sigmoid(1.702 * x)
|
| 37 |
+
|
| 38 |
+
class ResBlockUnionControlnet(nn.Module):
|
| 39 |
+
def __init__(self, dim, nhead, dtype=None, device=None, operations=None):
|
| 40 |
+
super().__init__()
|
| 41 |
+
self.attn = OptimizedAttention(dim, nhead, dtype=dtype, device=device, operations=operations)
|
| 42 |
+
self.ln_1 = operations.LayerNorm(dim, dtype=dtype, device=device)
|
| 43 |
+
self.mlp = nn.Sequential(
|
| 44 |
+
OrderedDict([("c_fc", operations.Linear(dim, dim * 4, dtype=dtype, device=device)), ("gelu", QuickGELU()),
|
| 45 |
+
("c_proj", operations.Linear(dim * 4, dim, dtype=dtype, device=device))]))
|
| 46 |
+
self.ln_2 = operations.LayerNorm(dim, dtype=dtype, device=device)
|
| 47 |
+
|
| 48 |
+
def attention(self, x: torch.Tensor):
|
| 49 |
+
return self.attn(x)
|
| 50 |
+
|
| 51 |
+
def forward(self, x: torch.Tensor):
|
| 52 |
+
x = x + self.attention(self.ln_1(x))
|
| 53 |
+
x = x + self.mlp(self.ln_2(x))
|
| 54 |
+
return x
|
| 55 |
+
|
| 56 |
+
class ControlledUnetModel(UNetModel):
|
| 57 |
+
#implemented in the ldm unet
|
| 58 |
+
pass
|
| 59 |
+
|
| 60 |
+
class ControlNet(nn.Module):
|
| 61 |
+
def __init__(
|
| 62 |
+
self,
|
| 63 |
+
image_size,
|
| 64 |
+
in_channels,
|
| 65 |
+
model_channels,
|
| 66 |
+
hint_channels,
|
| 67 |
+
num_res_blocks,
|
| 68 |
+
dropout=0,
|
| 69 |
+
channel_mult=(1, 2, 4, 8),
|
| 70 |
+
conv_resample=True,
|
| 71 |
+
dims=2,
|
| 72 |
+
num_classes=None,
|
| 73 |
+
use_checkpoint=False,
|
| 74 |
+
dtype=torch.float32,
|
| 75 |
+
num_heads=-1,
|
| 76 |
+
num_head_channels=-1,
|
| 77 |
+
num_heads_upsample=-1,
|
| 78 |
+
use_scale_shift_norm=False,
|
| 79 |
+
resblock_updown=False,
|
| 80 |
+
use_new_attention_order=False,
|
| 81 |
+
use_spatial_transformer=False, # custom transformer support
|
| 82 |
+
transformer_depth=1, # custom transformer support
|
| 83 |
+
context_dim=None, # custom transformer support
|
| 84 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
| 85 |
+
legacy=True,
|
| 86 |
+
disable_self_attentions=None,
|
| 87 |
+
num_attention_blocks=None,
|
| 88 |
+
disable_middle_self_attn=False,
|
| 89 |
+
use_linear_in_transformer=False,
|
| 90 |
+
adm_in_channels=None,
|
| 91 |
+
transformer_depth_middle=None,
|
| 92 |
+
transformer_depth_output=None,
|
| 93 |
+
attn_precision=None,
|
| 94 |
+
union_controlnet_num_control_type=None,
|
| 95 |
+
device=None,
|
| 96 |
+
operations=comfy.ops.disable_weight_init,
|
| 97 |
+
**kwargs,
|
| 98 |
+
):
|
| 99 |
+
super().__init__()
|
| 100 |
+
assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
|
| 101 |
+
if use_spatial_transformer:
|
| 102 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
| 103 |
+
|
| 104 |
+
if context_dim is not None:
|
| 105 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
| 106 |
+
# from omegaconf.listconfig import ListConfig
|
| 107 |
+
# if type(context_dim) == ListConfig:
|
| 108 |
+
# context_dim = list(context_dim)
|
| 109 |
+
|
| 110 |
+
if num_heads_upsample == -1:
|
| 111 |
+
num_heads_upsample = num_heads
|
| 112 |
+
|
| 113 |
+
if num_heads == -1:
|
| 114 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
| 115 |
+
|
| 116 |
+
if num_head_channels == -1:
|
| 117 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
| 118 |
+
|
| 119 |
+
self.dims = dims
|
| 120 |
+
self.image_size = image_size
|
| 121 |
+
self.in_channels = in_channels
|
| 122 |
+
self.model_channels = model_channels
|
| 123 |
+
|
| 124 |
+
if isinstance(num_res_blocks, int):
|
| 125 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
| 126 |
+
else:
|
| 127 |
+
if len(num_res_blocks) != len(channel_mult):
|
| 128 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
| 129 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
| 130 |
+
self.num_res_blocks = num_res_blocks
|
| 131 |
+
|
| 132 |
+
if disable_self_attentions is not None:
|
| 133 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
| 134 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
| 135 |
+
if num_attention_blocks is not None:
|
| 136 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
| 137 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
| 138 |
+
|
| 139 |
+
transformer_depth = transformer_depth[:]
|
| 140 |
+
|
| 141 |
+
self.dropout = dropout
|
| 142 |
+
self.channel_mult = channel_mult
|
| 143 |
+
self.conv_resample = conv_resample
|
| 144 |
+
self.num_classes = num_classes
|
| 145 |
+
self.use_checkpoint = use_checkpoint
|
| 146 |
+
self.dtype = dtype
|
| 147 |
+
self.num_heads = num_heads
|
| 148 |
+
self.num_head_channels = num_head_channels
|
| 149 |
+
self.num_heads_upsample = num_heads_upsample
|
| 150 |
+
self.predict_codebook_ids = n_embed is not None
|
| 151 |
+
|
| 152 |
+
time_embed_dim = model_channels * 4
|
| 153 |
+
self.time_embed = nn.Sequential(
|
| 154 |
+
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
|
| 155 |
+
nn.SiLU(),
|
| 156 |
+
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
if self.num_classes is not None:
|
| 160 |
+
if isinstance(self.num_classes, int):
|
| 161 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
| 162 |
+
elif self.num_classes == "continuous":
|
| 163 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
| 164 |
+
elif self.num_classes == "sequential":
|
| 165 |
+
assert adm_in_channels is not None
|
| 166 |
+
self.label_emb = nn.Sequential(
|
| 167 |
+
nn.Sequential(
|
| 168 |
+
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
|
| 169 |
+
nn.SiLU(),
|
| 170 |
+
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
| 171 |
+
)
|
| 172 |
+
)
|
| 173 |
+
else:
|
| 174 |
+
raise ValueError()
|
| 175 |
+
|
| 176 |
+
self.input_blocks = nn.ModuleList(
|
| 177 |
+
[
|
| 178 |
+
TimestepEmbedSequential(
|
| 179 |
+
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
| 180 |
+
)
|
| 181 |
+
]
|
| 182 |
+
)
|
| 183 |
+
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)])
|
| 184 |
+
|
| 185 |
+
self.input_hint_block = TimestepEmbedSequential(
|
| 186 |
+
operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device),
|
| 187 |
+
nn.SiLU(),
|
| 188 |
+
operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device),
|
| 189 |
+
nn.SiLU(),
|
| 190 |
+
operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
| 191 |
+
nn.SiLU(),
|
| 192 |
+
operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device),
|
| 193 |
+
nn.SiLU(),
|
| 194 |
+
operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
| 195 |
+
nn.SiLU(),
|
| 196 |
+
operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device),
|
| 197 |
+
nn.SiLU(),
|
| 198 |
+
operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
| 199 |
+
nn.SiLU(),
|
| 200 |
+
operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
self._feature_size = model_channels
|
| 204 |
+
input_block_chans = [model_channels]
|
| 205 |
+
ch = model_channels
|
| 206 |
+
ds = 1
|
| 207 |
+
for level, mult in enumerate(channel_mult):
|
| 208 |
+
for nr in range(self.num_res_blocks[level]):
|
| 209 |
+
layers = [
|
| 210 |
+
ResBlock(
|
| 211 |
+
ch,
|
| 212 |
+
time_embed_dim,
|
| 213 |
+
dropout,
|
| 214 |
+
out_channels=mult * model_channels,
|
| 215 |
+
dims=dims,
|
| 216 |
+
use_checkpoint=use_checkpoint,
|
| 217 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 218 |
+
dtype=self.dtype,
|
| 219 |
+
device=device,
|
| 220 |
+
operations=operations,
|
| 221 |
+
)
|
| 222 |
+
]
|
| 223 |
+
ch = mult * model_channels
|
| 224 |
+
num_transformers = transformer_depth.pop(0)
|
| 225 |
+
if num_transformers > 0:
|
| 226 |
+
if num_head_channels == -1:
|
| 227 |
+
dim_head = ch // num_heads
|
| 228 |
+
else:
|
| 229 |
+
num_heads = ch // num_head_channels
|
| 230 |
+
dim_head = num_head_channels
|
| 231 |
+
if legacy:
|
| 232 |
+
#num_heads = 1
|
| 233 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 234 |
+
if exists(disable_self_attentions):
|
| 235 |
+
disabled_sa = disable_self_attentions[level]
|
| 236 |
+
else:
|
| 237 |
+
disabled_sa = False
|
| 238 |
+
|
| 239 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
| 240 |
+
layers.append(
|
| 241 |
+
SpatialTransformer(
|
| 242 |
+
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
| 243 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
| 244 |
+
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
|
| 245 |
+
)
|
| 246 |
+
)
|
| 247 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
| 248 |
+
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
|
| 249 |
+
self._feature_size += ch
|
| 250 |
+
input_block_chans.append(ch)
|
| 251 |
+
if level != len(channel_mult) - 1:
|
| 252 |
+
out_ch = ch
|
| 253 |
+
self.input_blocks.append(
|
| 254 |
+
TimestepEmbedSequential(
|
| 255 |
+
ResBlock(
|
| 256 |
+
ch,
|
| 257 |
+
time_embed_dim,
|
| 258 |
+
dropout,
|
| 259 |
+
out_channels=out_ch,
|
| 260 |
+
dims=dims,
|
| 261 |
+
use_checkpoint=use_checkpoint,
|
| 262 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 263 |
+
down=True,
|
| 264 |
+
dtype=self.dtype,
|
| 265 |
+
device=device,
|
| 266 |
+
operations=operations
|
| 267 |
+
)
|
| 268 |
+
if resblock_updown
|
| 269 |
+
else Downsample(
|
| 270 |
+
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
|
| 271 |
+
)
|
| 272 |
+
)
|
| 273 |
+
)
|
| 274 |
+
ch = out_ch
|
| 275 |
+
input_block_chans.append(ch)
|
| 276 |
+
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
|
| 277 |
+
ds *= 2
|
| 278 |
+
self._feature_size += ch
|
| 279 |
+
|
| 280 |
+
if num_head_channels == -1:
|
| 281 |
+
dim_head = ch // num_heads
|
| 282 |
+
else:
|
| 283 |
+
num_heads = ch // num_head_channels
|
| 284 |
+
dim_head = num_head_channels
|
| 285 |
+
if legacy:
|
| 286 |
+
#num_heads = 1
|
| 287 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 288 |
+
mid_block = [
|
| 289 |
+
ResBlock(
|
| 290 |
+
ch,
|
| 291 |
+
time_embed_dim,
|
| 292 |
+
dropout,
|
| 293 |
+
dims=dims,
|
| 294 |
+
use_checkpoint=use_checkpoint,
|
| 295 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 296 |
+
dtype=self.dtype,
|
| 297 |
+
device=device,
|
| 298 |
+
operations=operations
|
| 299 |
+
)]
|
| 300 |
+
if transformer_depth_middle >= 0:
|
| 301 |
+
mid_block += [SpatialTransformer( # always uses a self-attn
|
| 302 |
+
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
| 303 |
+
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
| 304 |
+
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
|
| 305 |
+
),
|
| 306 |
+
ResBlock(
|
| 307 |
+
ch,
|
| 308 |
+
time_embed_dim,
|
| 309 |
+
dropout,
|
| 310 |
+
dims=dims,
|
| 311 |
+
use_checkpoint=use_checkpoint,
|
| 312 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 313 |
+
dtype=self.dtype,
|
| 314 |
+
device=device,
|
| 315 |
+
operations=operations
|
| 316 |
+
)]
|
| 317 |
+
self.middle_block = TimestepEmbedSequential(*mid_block)
|
| 318 |
+
self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)
|
| 319 |
+
self._feature_size += ch
|
| 320 |
+
|
| 321 |
+
if union_controlnet_num_control_type is not None:
|
| 322 |
+
self.num_control_type = union_controlnet_num_control_type
|
| 323 |
+
num_trans_channel = 320
|
| 324 |
+
num_trans_head = 8
|
| 325 |
+
num_trans_layer = 1
|
| 326 |
+
num_proj_channel = 320
|
| 327 |
+
# task_scale_factor = num_trans_channel ** 0.5
|
| 328 |
+
self.task_embedding = nn.Parameter(torch.empty(self.num_control_type, num_trans_channel, dtype=self.dtype, device=device))
|
| 329 |
+
|
| 330 |
+
self.transformer_layes = nn.Sequential(*[ResBlockUnionControlnet(num_trans_channel, num_trans_head, dtype=self.dtype, device=device, operations=operations) for _ in range(num_trans_layer)])
|
| 331 |
+
self.spatial_ch_projs = operations.Linear(num_trans_channel, num_proj_channel, dtype=self.dtype, device=device)
|
| 332 |
+
#-----------------------------------------------------------------------------------------------------
|
| 333 |
+
|
| 334 |
+
control_add_embed_dim = 256
|
| 335 |
+
class ControlAddEmbedding(nn.Module):
|
| 336 |
+
def __init__(self, in_dim, out_dim, num_control_type, dtype=None, device=None, operations=None):
|
| 337 |
+
super().__init__()
|
| 338 |
+
self.num_control_type = num_control_type
|
| 339 |
+
self.in_dim = in_dim
|
| 340 |
+
self.linear_1 = operations.Linear(in_dim * num_control_type, out_dim, dtype=dtype, device=device)
|
| 341 |
+
self.linear_2 = operations.Linear(out_dim, out_dim, dtype=dtype, device=device)
|
| 342 |
+
def forward(self, control_type, dtype, device):
|
| 343 |
+
c_type = torch.zeros((self.num_control_type,), device=device)
|
| 344 |
+
c_type[control_type] = 1.0
|
| 345 |
+
c_type = timestep_embedding(c_type.flatten(), self.in_dim, repeat_only=False).to(dtype).reshape((-1, self.num_control_type * self.in_dim))
|
| 346 |
+
return self.linear_2(torch.nn.functional.silu(self.linear_1(c_type)))
|
| 347 |
+
|
| 348 |
+
self.control_add_embedding = ControlAddEmbedding(control_add_embed_dim, time_embed_dim, self.num_control_type, dtype=self.dtype, device=device, operations=operations)
|
| 349 |
+
else:
|
| 350 |
+
self.task_embedding = None
|
| 351 |
+
self.control_add_embedding = None
|
| 352 |
+
|
| 353 |
+
def union_controlnet_merge(self, hint, control_type, emb, context):
|
| 354 |
+
# Equivalent to: https://github.com/xinsir6/ControlNetPlus/tree/main
|
| 355 |
+
inputs = []
|
| 356 |
+
condition_list = []
|
| 357 |
+
|
| 358 |
+
for idx in range(min(1, len(control_type))):
|
| 359 |
+
controlnet_cond = self.input_hint_block(hint[idx], emb, context)
|
| 360 |
+
feat_seq = torch.mean(controlnet_cond, dim=(2, 3))
|
| 361 |
+
if idx < len(control_type):
|
| 362 |
+
feat_seq += self.task_embedding[control_type[idx]].to(dtype=feat_seq.dtype, device=feat_seq.device)
|
| 363 |
+
|
| 364 |
+
inputs.append(feat_seq.unsqueeze(1))
|
| 365 |
+
condition_list.append(controlnet_cond)
|
| 366 |
+
|
| 367 |
+
x = torch.cat(inputs, dim=1)
|
| 368 |
+
x = self.transformer_layes(x)
|
| 369 |
+
controlnet_cond_fuser = None
|
| 370 |
+
for idx in range(len(control_type)):
|
| 371 |
+
alpha = self.spatial_ch_projs(x[:, idx])
|
| 372 |
+
alpha = alpha.unsqueeze(-1).unsqueeze(-1)
|
| 373 |
+
o = condition_list[idx] + alpha
|
| 374 |
+
if controlnet_cond_fuser is None:
|
| 375 |
+
controlnet_cond_fuser = o
|
| 376 |
+
else:
|
| 377 |
+
controlnet_cond_fuser += o
|
| 378 |
+
return controlnet_cond_fuser
|
| 379 |
+
|
| 380 |
+
def make_zero_conv(self, channels, operations=None, dtype=None, device=None):
|
| 381 |
+
return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device))
|
| 382 |
+
|
| 383 |
+
def forward(self, x, hint, timesteps, context, y=None, **kwargs):
|
| 384 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
| 385 |
+
emb = self.time_embed(t_emb)
|
| 386 |
+
|
| 387 |
+
guided_hint = None
|
| 388 |
+
if self.control_add_embedding is not None: #Union Controlnet
|
| 389 |
+
control_type = kwargs.get("control_type", [])
|
| 390 |
+
|
| 391 |
+
if any([c >= self.num_control_type for c in control_type]):
|
| 392 |
+
max_type = max(control_type)
|
| 393 |
+
max_type_name = {
|
| 394 |
+
v: k for k, v in UNION_CONTROLNET_TYPES.items()
|
| 395 |
+
}[max_type]
|
| 396 |
+
raise ValueError(
|
| 397 |
+
f"Control type {max_type_name}({max_type}) is out of range for the number of control types" +
|
| 398 |
+
f"({self.num_control_type}) supported.\n" +
|
| 399 |
+
"Please consider using the ProMax ControlNet Union model.\n" +
|
| 400 |
+
"https://huggingface.co/xinsir/controlnet-union-sdxl-1.0/tree/main"
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
+
emb += self.control_add_embedding(control_type, emb.dtype, emb.device)
|
| 404 |
+
if len(control_type) > 0:
|
| 405 |
+
if len(hint.shape) < 5:
|
| 406 |
+
hint = hint.unsqueeze(dim=0)
|
| 407 |
+
guided_hint = self.union_controlnet_merge(hint, control_type, emb, context)
|
| 408 |
+
|
| 409 |
+
if guided_hint is None:
|
| 410 |
+
guided_hint = self.input_hint_block(hint, emb, context)
|
| 411 |
+
|
| 412 |
+
out_output = []
|
| 413 |
+
out_middle = []
|
| 414 |
+
|
| 415 |
+
if self.num_classes is not None:
|
| 416 |
+
assert y.shape[0] == x.shape[0]
|
| 417 |
+
emb = emb + self.label_emb(y)
|
| 418 |
+
|
| 419 |
+
h = x
|
| 420 |
+
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
|
| 421 |
+
if guided_hint is not None:
|
| 422 |
+
h = module(h, emb, context)
|
| 423 |
+
h += guided_hint
|
| 424 |
+
guided_hint = None
|
| 425 |
+
else:
|
| 426 |
+
h = module(h, emb, context)
|
| 427 |
+
out_output.append(zero_conv(h, emb, context))
|
| 428 |
+
|
| 429 |
+
h = self.middle_block(h, emb, context)
|
| 430 |
+
out_middle.append(self.middle_block_out(h, emb, context))
|
| 431 |
+
|
| 432 |
+
return {"middle": out_middle, "output": out_output}
|
| 433 |
+
|
comfy/cldm/control_types.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
UNION_CONTROLNET_TYPES = {
|
| 2 |
+
"openpose": 0,
|
| 3 |
+
"depth": 1,
|
| 4 |
+
"hed/pidi/scribble/ted": 2,
|
| 5 |
+
"canny/lineart/anime_lineart/mlsd": 3,
|
| 6 |
+
"normal": 4,
|
| 7 |
+
"segment": 5,
|
| 8 |
+
"tile": 6,
|
| 9 |
+
"repaint": 7,
|
| 10 |
+
}
|
comfy/cldm/dit_embedder.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from typing import List, Optional, Tuple
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from torch import Tensor
|
| 7 |
+
|
| 8 |
+
from comfy.ldm.modules.diffusionmodules.mmdit import DismantledBlock, PatchEmbed, VectorEmbedder, TimestepEmbedder, get_2d_sincos_pos_embed_torch
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class ControlNetEmbedder(nn.Module):
|
| 12 |
+
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
img_size: int,
|
| 16 |
+
patch_size: int,
|
| 17 |
+
in_chans: int,
|
| 18 |
+
attention_head_dim: int,
|
| 19 |
+
num_attention_heads: int,
|
| 20 |
+
adm_in_channels: int,
|
| 21 |
+
num_layers: int,
|
| 22 |
+
main_model_double: int,
|
| 23 |
+
double_y_emb: bool,
|
| 24 |
+
device: torch.device,
|
| 25 |
+
dtype: torch.dtype,
|
| 26 |
+
pos_embed_max_size: Optional[int] = None,
|
| 27 |
+
operations = None,
|
| 28 |
+
):
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.main_model_double = main_model_double
|
| 31 |
+
self.dtype = dtype
|
| 32 |
+
self.hidden_size = num_attention_heads * attention_head_dim
|
| 33 |
+
self.patch_size = patch_size
|
| 34 |
+
self.x_embedder = PatchEmbed(
|
| 35 |
+
img_size=img_size,
|
| 36 |
+
patch_size=patch_size,
|
| 37 |
+
in_chans=in_chans,
|
| 38 |
+
embed_dim=self.hidden_size,
|
| 39 |
+
strict_img_size=pos_embed_max_size is None,
|
| 40 |
+
device=device,
|
| 41 |
+
dtype=dtype,
|
| 42 |
+
operations=operations,
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
self.t_embedder = TimestepEmbedder(self.hidden_size, dtype=dtype, device=device, operations=operations)
|
| 46 |
+
|
| 47 |
+
self.double_y_emb = double_y_emb
|
| 48 |
+
if self.double_y_emb:
|
| 49 |
+
self.orig_y_embedder = VectorEmbedder(
|
| 50 |
+
adm_in_channels, self.hidden_size, dtype, device, operations=operations
|
| 51 |
+
)
|
| 52 |
+
self.y_embedder = VectorEmbedder(
|
| 53 |
+
self.hidden_size, self.hidden_size, dtype, device, operations=operations
|
| 54 |
+
)
|
| 55 |
+
else:
|
| 56 |
+
self.y_embedder = VectorEmbedder(
|
| 57 |
+
adm_in_channels, self.hidden_size, dtype, device, operations=operations
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
self.transformer_blocks = nn.ModuleList(
|
| 61 |
+
DismantledBlock(
|
| 62 |
+
hidden_size=self.hidden_size, num_heads=num_attention_heads, qkv_bias=True,
|
| 63 |
+
dtype=dtype, device=device, operations=operations
|
| 64 |
+
)
|
| 65 |
+
for _ in range(num_layers)
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# self.use_y_embedder = pooled_projection_dim != self.time_text_embed.text_embedder.linear_1.in_features
|
| 69 |
+
# TODO double check this logic when 8b
|
| 70 |
+
self.use_y_embedder = True
|
| 71 |
+
|
| 72 |
+
self.controlnet_blocks = nn.ModuleList([])
|
| 73 |
+
for _ in range(len(self.transformer_blocks)):
|
| 74 |
+
controlnet_block = operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)
|
| 75 |
+
self.controlnet_blocks.append(controlnet_block)
|
| 76 |
+
|
| 77 |
+
self.pos_embed_input = PatchEmbed(
|
| 78 |
+
img_size=img_size,
|
| 79 |
+
patch_size=patch_size,
|
| 80 |
+
in_chans=in_chans,
|
| 81 |
+
embed_dim=self.hidden_size,
|
| 82 |
+
strict_img_size=False,
|
| 83 |
+
device=device,
|
| 84 |
+
dtype=dtype,
|
| 85 |
+
operations=operations,
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
def forward(
|
| 89 |
+
self,
|
| 90 |
+
x: torch.Tensor,
|
| 91 |
+
timesteps: torch.Tensor,
|
| 92 |
+
y: Optional[torch.Tensor] = None,
|
| 93 |
+
context: Optional[torch.Tensor] = None,
|
| 94 |
+
hint = None,
|
| 95 |
+
) -> Tuple[Tensor, List[Tensor]]:
|
| 96 |
+
x_shape = list(x.shape)
|
| 97 |
+
x = self.x_embedder(x)
|
| 98 |
+
if not self.double_y_emb:
|
| 99 |
+
h = (x_shape[-2] + 1) // self.patch_size
|
| 100 |
+
w = (x_shape[-1] + 1) // self.patch_size
|
| 101 |
+
x += get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, device=x.device)
|
| 102 |
+
c = self.t_embedder(timesteps, dtype=x.dtype)
|
| 103 |
+
if y is not None and self.y_embedder is not None:
|
| 104 |
+
if self.double_y_emb:
|
| 105 |
+
y = self.orig_y_embedder(y)
|
| 106 |
+
y = self.y_embedder(y)
|
| 107 |
+
c = c + y
|
| 108 |
+
|
| 109 |
+
x = x + self.pos_embed_input(hint)
|
| 110 |
+
|
| 111 |
+
block_out = ()
|
| 112 |
+
|
| 113 |
+
repeat = math.ceil(self.main_model_double / len(self.transformer_blocks))
|
| 114 |
+
for i in range(len(self.transformer_blocks)):
|
| 115 |
+
out = self.transformer_blocks[i](x, c)
|
| 116 |
+
if not self.double_y_emb:
|
| 117 |
+
x = out
|
| 118 |
+
block_out += (self.controlnet_blocks[i](out),) * repeat
|
| 119 |
+
|
| 120 |
+
return {"output": block_out}
|
comfy/cldm/mmdit.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from typing import Optional
|
| 3 |
+
import comfy.ldm.modules.diffusionmodules.mmdit
|
| 4 |
+
|
| 5 |
+
class ControlNet(comfy.ldm.modules.diffusionmodules.mmdit.MMDiT):
|
| 6 |
+
def __init__(
|
| 7 |
+
self,
|
| 8 |
+
num_blocks = None,
|
| 9 |
+
control_latent_channels = None,
|
| 10 |
+
dtype = None,
|
| 11 |
+
device = None,
|
| 12 |
+
operations = None,
|
| 13 |
+
**kwargs,
|
| 14 |
+
):
|
| 15 |
+
super().__init__(dtype=dtype, device=device, operations=operations, final_layer=False, num_blocks=num_blocks, **kwargs)
|
| 16 |
+
# controlnet_blocks
|
| 17 |
+
self.controlnet_blocks = torch.nn.ModuleList([])
|
| 18 |
+
for _ in range(len(self.joint_blocks)):
|
| 19 |
+
self.controlnet_blocks.append(operations.Linear(self.hidden_size, self.hidden_size, device=device, dtype=dtype))
|
| 20 |
+
|
| 21 |
+
if control_latent_channels is None:
|
| 22 |
+
control_latent_channels = self.in_channels
|
| 23 |
+
|
| 24 |
+
self.pos_embed_input = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(
|
| 25 |
+
None,
|
| 26 |
+
self.patch_size,
|
| 27 |
+
control_latent_channels,
|
| 28 |
+
self.hidden_size,
|
| 29 |
+
bias=True,
|
| 30 |
+
strict_img_size=False,
|
| 31 |
+
dtype=dtype,
|
| 32 |
+
device=device,
|
| 33 |
+
operations=operations
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
def forward(
|
| 37 |
+
self,
|
| 38 |
+
x: torch.Tensor,
|
| 39 |
+
timesteps: torch.Tensor,
|
| 40 |
+
y: Optional[torch.Tensor] = None,
|
| 41 |
+
context: Optional[torch.Tensor] = None,
|
| 42 |
+
hint = None,
|
| 43 |
+
) -> torch.Tensor:
|
| 44 |
+
|
| 45 |
+
#weird sd3 controlnet specific stuff
|
| 46 |
+
y = torch.zeros_like(y)
|
| 47 |
+
|
| 48 |
+
if self.context_processor is not None:
|
| 49 |
+
context = self.context_processor(context)
|
| 50 |
+
|
| 51 |
+
hw = x.shape[-2:]
|
| 52 |
+
x = self.x_embedder(x) + self.cropped_pos_embed(hw, device=x.device).to(dtype=x.dtype, device=x.device)
|
| 53 |
+
x += self.pos_embed_input(hint)
|
| 54 |
+
|
| 55 |
+
c = self.t_embedder(timesteps, dtype=x.dtype)
|
| 56 |
+
if y is not None and self.y_embedder is not None:
|
| 57 |
+
y = self.y_embedder(y)
|
| 58 |
+
c = c + y
|
| 59 |
+
|
| 60 |
+
if context is not None:
|
| 61 |
+
context = self.context_embedder(context)
|
| 62 |
+
|
| 63 |
+
output = []
|
| 64 |
+
|
| 65 |
+
blocks = len(self.joint_blocks)
|
| 66 |
+
for i in range(blocks):
|
| 67 |
+
context, x = self.joint_blocks[i](
|
| 68 |
+
context,
|
| 69 |
+
x,
|
| 70 |
+
c=c,
|
| 71 |
+
use_checkpoint=self.use_checkpoint,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
out = self.controlnet_blocks[i](x)
|
| 75 |
+
count = self.depth // blocks
|
| 76 |
+
if i == blocks - 1:
|
| 77 |
+
count -= 1
|
| 78 |
+
for j in range(count):
|
| 79 |
+
output.append(out)
|
| 80 |
+
|
| 81 |
+
return {"output": output}
|
comfy/cli_args.py
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import enum
|
| 3 |
+
import os
|
| 4 |
+
from typing import Optional
|
| 5 |
+
import comfy.options
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class EnumAction(argparse.Action):
|
| 9 |
+
"""
|
| 10 |
+
Argparse action for handling Enums
|
| 11 |
+
"""
|
| 12 |
+
def __init__(self, **kwargs):
|
| 13 |
+
# Pop off the type value
|
| 14 |
+
enum_type = kwargs.pop("type", None)
|
| 15 |
+
|
| 16 |
+
# Ensure an Enum subclass is provided
|
| 17 |
+
if enum_type is None:
|
| 18 |
+
raise ValueError("type must be assigned an Enum when using EnumAction")
|
| 19 |
+
if not issubclass(enum_type, enum.Enum):
|
| 20 |
+
raise TypeError("type must be an Enum when using EnumAction")
|
| 21 |
+
|
| 22 |
+
# Generate choices from the Enum
|
| 23 |
+
choices = tuple(e.value for e in enum_type)
|
| 24 |
+
kwargs.setdefault("choices", choices)
|
| 25 |
+
kwargs.setdefault("metavar", f"[{','.join(list(choices))}]")
|
| 26 |
+
|
| 27 |
+
super(EnumAction, self).__init__(**kwargs)
|
| 28 |
+
|
| 29 |
+
self._enum = enum_type
|
| 30 |
+
|
| 31 |
+
def __call__(self, parser, namespace, values, option_string=None):
|
| 32 |
+
# Convert value back into an Enum
|
| 33 |
+
value = self._enum(values)
|
| 34 |
+
setattr(namespace, self.dest, value)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
parser = argparse.ArgumentParser()
|
| 38 |
+
|
| 39 |
+
parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0,::", help="Specify the IP address to listen on (default: 127.0.0.1). You can give a list of ip addresses by separating them with a comma like: 127.2.2.2,127.3.3.3 If --listen is provided without an argument, it defaults to 0.0.0.0,:: (listens on all ipv4 and ipv6)")
|
| 40 |
+
parser.add_argument("--port", type=int, default=8188, help="Set the listen port.")
|
| 41 |
+
parser.add_argument("--tls-keyfile", type=str, help="Path to TLS (SSL) key file. Enables TLS, makes app accessible at https://... requires --tls-certfile to function")
|
| 42 |
+
parser.add_argument("--tls-certfile", type=str, help="Path to TLS (SSL) certificate file. Enables TLS, makes app accessible at https://... requires --tls-keyfile to function")
|
| 43 |
+
parser.add_argument("--enable-cors-header", type=str, default=None, metavar="ORIGIN", nargs="?", const="*", help="Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'.")
|
| 44 |
+
parser.add_argument("--max-upload-size", type=float, default=100, help="Set the maximum upload size in MB.")
|
| 45 |
+
|
| 46 |
+
parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.")
|
| 47 |
+
parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory.")
|
| 48 |
+
parser.add_argument("--temp-directory", type=str, default=None, help="Set the ComfyUI temp directory (default is in the ComfyUI directory).")
|
| 49 |
+
parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory.")
|
| 50 |
+
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
|
| 51 |
+
parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
|
| 52 |
+
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
|
| 53 |
+
cm_group = parser.add_mutually_exclusive_group()
|
| 54 |
+
cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
|
| 55 |
+
cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
fp_group = parser.add_mutually_exclusive_group()
|
| 59 |
+
fp_group.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).")
|
| 60 |
+
fp_group.add_argument("--force-fp16", action="store_true", help="Force fp16.")
|
| 61 |
+
|
| 62 |
+
fpunet_group = parser.add_mutually_exclusive_group()
|
| 63 |
+
fpunet_group.add_argument("--fp32-unet", action="store_true", help="Run the diffusion model in fp32.")
|
| 64 |
+
fpunet_group.add_argument("--fp64-unet", action="store_true", help="Run the diffusion model in fp64.")
|
| 65 |
+
fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the diffusion model in bf16.")
|
| 66 |
+
fpunet_group.add_argument("--fp16-unet", action="store_true", help="Run the diffusion model in fp16")
|
| 67 |
+
fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.")
|
| 68 |
+
fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.")
|
| 69 |
+
|
| 70 |
+
fpvae_group = parser.add_mutually_exclusive_group()
|
| 71 |
+
fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.")
|
| 72 |
+
fpvae_group.add_argument("--fp32-vae", action="store_true", help="Run the VAE in full precision fp32.")
|
| 73 |
+
fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16.")
|
| 74 |
+
|
| 75 |
+
parser.add_argument("--cpu-vae", action="store_true", help="Run the VAE on the CPU.")
|
| 76 |
+
|
| 77 |
+
fpte_group = parser.add_mutually_exclusive_group()
|
| 78 |
+
fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Store text encoder weights in fp8 (e4m3fn variant).")
|
| 79 |
+
fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).")
|
| 80 |
+
fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.")
|
| 81 |
+
fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.")
|
| 82 |
+
|
| 83 |
+
parser.add_argument("--force-channels-last", action="store_true", help="Force channels last format when inferencing the models.")
|
| 84 |
+
|
| 85 |
+
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
|
| 86 |
+
|
| 87 |
+
parser.add_argument("--oneapi-device-selector", type=str, default=None, metavar="SELECTOR_STRING", help="Sets the oneAPI device(s) this instance will use.")
|
| 88 |
+
parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize default when loading models with Intel's Extension for Pytorch.")
|
| 89 |
+
|
| 90 |
+
class LatentPreviewMethod(enum.Enum):
|
| 91 |
+
NoPreviews = "none"
|
| 92 |
+
Auto = "auto"
|
| 93 |
+
Latent2RGB = "latent2rgb"
|
| 94 |
+
TAESD = "taesd"
|
| 95 |
+
|
| 96 |
+
parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
|
| 97 |
+
|
| 98 |
+
parser.add_argument("--preview-size", type=int, default=512, help="Sets the maximum preview size for sampler nodes.")
|
| 99 |
+
|
| 100 |
+
cache_group = parser.add_mutually_exclusive_group()
|
| 101 |
+
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
|
| 102 |
+
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
|
| 103 |
+
|
| 104 |
+
attn_group = parser.add_mutually_exclusive_group()
|
| 105 |
+
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
|
| 106 |
+
attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
|
| 107 |
+
attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
|
| 108 |
+
attn_group.add_argument("--use-sage-attention", action="store_true", help="Use sage attention.")
|
| 109 |
+
|
| 110 |
+
parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")
|
| 111 |
+
|
| 112 |
+
upcast = parser.add_mutually_exclusive_group()
|
| 113 |
+
upcast.add_argument("--force-upcast-attention", action="store_true", help="Force enable attention upcasting, please report if it fixes black images.")
|
| 114 |
+
upcast.add_argument("--dont-upcast-attention", action="store_true", help="Disable all upcasting of attention. Should be unnecessary except for debugging.")
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
vram_group = parser.add_mutually_exclusive_group()
|
| 118 |
+
vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).")
|
| 119 |
+
vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.")
|
| 120 |
+
vram_group.add_argument("--normalvram", action="store_true", help="Used to force normal vram use if lowvram gets automatically enabled.")
|
| 121 |
+
vram_group.add_argument("--lowvram", action="store_true", help="Split the unet in parts to use less vram.")
|
| 122 |
+
vram_group.add_argument("--novram", action="store_true", help="When lowvram isn't enough.")
|
| 123 |
+
vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).")
|
| 124 |
+
|
| 125 |
+
parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reserved depending on your OS.")
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")
|
| 129 |
+
|
| 130 |
+
parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
|
| 131 |
+
parser.add_argument("--deterministic", action="store_true", help="Make pytorch use slower deterministic algorithms when it can. Note that this might not make images deterministic in all cases.")
|
| 132 |
+
parser.add_argument("--fast", action="store_true", help="Enable some untested and potentially quality deteriorating optimizations.")
|
| 133 |
+
|
| 134 |
+
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
|
| 135 |
+
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
|
| 136 |
+
parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).")
|
| 137 |
+
|
| 138 |
+
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
|
| 139 |
+
parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.")
|
| 140 |
+
|
| 141 |
+
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
|
| 142 |
+
|
| 143 |
+
parser.add_argument("--verbose", default='INFO', const='DEBUG', nargs="?", choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Set the logging level')
|
| 144 |
+
parser.add_argument("--log-stdout", action="store_true", help="Send normal process output to stdout instead of stderr (default).")
|
| 145 |
+
|
| 146 |
+
# The default built-in provider hosted under web/
|
| 147 |
+
DEFAULT_VERSION_STRING = "comfyanonymous/ComfyUI@latest"
|
| 148 |
+
|
| 149 |
+
parser.add_argument(
|
| 150 |
+
"--front-end-version",
|
| 151 |
+
type=str,
|
| 152 |
+
default=DEFAULT_VERSION_STRING,
|
| 153 |
+
help="""
|
| 154 |
+
Specifies the version of the frontend to be used. This command needs internet connectivity to query and
|
| 155 |
+
download available frontend implementations from GitHub releases.
|
| 156 |
+
|
| 157 |
+
The version string should be in the format of:
|
| 158 |
+
[repoOwner]/[repoName]@[version]
|
| 159 |
+
where version is one of: "latest" or a valid version number (e.g. "1.0.0")
|
| 160 |
+
""",
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
def is_valid_directory(path: Optional[str]) -> Optional[str]:
|
| 164 |
+
"""Validate if the given path is a directory."""
|
| 165 |
+
if path is None:
|
| 166 |
+
return None
|
| 167 |
+
|
| 168 |
+
if not os.path.isdir(path):
|
| 169 |
+
raise argparse.ArgumentTypeError(f"{path} is not a valid directory.")
|
| 170 |
+
return path
|
| 171 |
+
|
| 172 |
+
parser.add_argument(
|
| 173 |
+
"--front-end-root",
|
| 174 |
+
type=is_valid_directory,
|
| 175 |
+
default=None,
|
| 176 |
+
help="The local filesystem path to the directory where the frontend is located. Overrides --front-end-version.",
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
parser.add_argument("--user-directory", type=is_valid_directory, default=None, help="Set the ComfyUI user directory with an absolute path.")
|
| 180 |
+
|
| 181 |
+
if comfy.options.args_parsing:
|
| 182 |
+
args = parser.parse_args()
|
| 183 |
+
else:
|
| 184 |
+
args = parser.parse_args([])
|
| 185 |
+
|
| 186 |
+
if args.windows_standalone_build:
|
| 187 |
+
args.auto_launch = True
|
| 188 |
+
|
| 189 |
+
if args.disable_auto_launch:
|
| 190 |
+
args.auto_launch = False
|
comfy/clip_config_bigg.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"CLIPTextModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"bos_token_id": 0,
|
| 7 |
+
"dropout": 0.0,
|
| 8 |
+
"eos_token_id": 49407,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_size": 1280,
|
| 11 |
+
"initializer_factor": 1.0,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 5120,
|
| 14 |
+
"layer_norm_eps": 1e-05,
|
| 15 |
+
"max_position_embeddings": 77,
|
| 16 |
+
"model_type": "clip_text_model",
|
| 17 |
+
"num_attention_heads": 20,
|
| 18 |
+
"num_hidden_layers": 32,
|
| 19 |
+
"pad_token_id": 1,
|
| 20 |
+
"projection_dim": 1280,
|
| 21 |
+
"torch_dtype": "float32",
|
| 22 |
+
"vocab_size": 49408
|
| 23 |
+
}
|
comfy/clip_model.py
ADDED
|
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from comfy.ldm.modules.attention import optimized_attention_for_device
|
| 3 |
+
import comfy.ops
|
| 4 |
+
|
| 5 |
+
class CLIPAttention(torch.nn.Module):
|
| 6 |
+
def __init__(self, embed_dim, heads, dtype, device, operations):
|
| 7 |
+
super().__init__()
|
| 8 |
+
|
| 9 |
+
self.heads = heads
|
| 10 |
+
self.q_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
| 11 |
+
self.k_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
| 12 |
+
self.v_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
| 13 |
+
|
| 14 |
+
self.out_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
| 15 |
+
|
| 16 |
+
def forward(self, x, mask=None, optimized_attention=None):
|
| 17 |
+
q = self.q_proj(x)
|
| 18 |
+
k = self.k_proj(x)
|
| 19 |
+
v = self.v_proj(x)
|
| 20 |
+
|
| 21 |
+
out = optimized_attention(q, k, v, self.heads, mask)
|
| 22 |
+
return self.out_proj(out)
|
| 23 |
+
|
| 24 |
+
ACTIVATIONS = {"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
|
| 25 |
+
"gelu": torch.nn.functional.gelu,
|
| 26 |
+
"gelu_pytorch_tanh": lambda a: torch.nn.functional.gelu(a, approximate="tanh"),
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
class CLIPMLP(torch.nn.Module):
|
| 30 |
+
def __init__(self, embed_dim, intermediate_size, activation, dtype, device, operations):
|
| 31 |
+
super().__init__()
|
| 32 |
+
self.fc1 = operations.Linear(embed_dim, intermediate_size, bias=True, dtype=dtype, device=device)
|
| 33 |
+
self.activation = ACTIVATIONS[activation]
|
| 34 |
+
self.fc2 = operations.Linear(intermediate_size, embed_dim, bias=True, dtype=dtype, device=device)
|
| 35 |
+
|
| 36 |
+
def forward(self, x):
|
| 37 |
+
x = self.fc1(x)
|
| 38 |
+
x = self.activation(x)
|
| 39 |
+
x = self.fc2(x)
|
| 40 |
+
return x
|
| 41 |
+
|
| 42 |
+
class CLIPLayer(torch.nn.Module):
|
| 43 |
+
def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
|
| 44 |
+
super().__init__()
|
| 45 |
+
self.layer_norm1 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
| 46 |
+
self.self_attn = CLIPAttention(embed_dim, heads, dtype, device, operations)
|
| 47 |
+
self.layer_norm2 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
| 48 |
+
self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device, operations)
|
| 49 |
+
|
| 50 |
+
def forward(self, x, mask=None, optimized_attention=None):
|
| 51 |
+
x += self.self_attn(self.layer_norm1(x), mask, optimized_attention)
|
| 52 |
+
x += self.mlp(self.layer_norm2(x))
|
| 53 |
+
return x
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class CLIPEncoder(torch.nn.Module):
|
| 57 |
+
def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
|
| 58 |
+
super().__init__()
|
| 59 |
+
self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) for i in range(num_layers)])
|
| 60 |
+
|
| 61 |
+
def forward(self, x, mask=None, intermediate_output=None):
|
| 62 |
+
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
|
| 63 |
+
|
| 64 |
+
if intermediate_output is not None:
|
| 65 |
+
if intermediate_output < 0:
|
| 66 |
+
intermediate_output = len(self.layers) + intermediate_output
|
| 67 |
+
|
| 68 |
+
intermediate = None
|
| 69 |
+
for i, l in enumerate(self.layers):
|
| 70 |
+
x = l(x, mask, optimized_attention)
|
| 71 |
+
if i == intermediate_output:
|
| 72 |
+
intermediate = x.clone()
|
| 73 |
+
return x, intermediate
|
| 74 |
+
|
| 75 |
+
class CLIPEmbeddings(torch.nn.Module):
|
| 76 |
+
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None, operations=None):
|
| 77 |
+
super().__init__()
|
| 78 |
+
self.token_embedding = operations.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
|
| 79 |
+
self.position_embedding = operations.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
| 80 |
+
|
| 81 |
+
def forward(self, input_tokens, dtype=torch.float32):
|
| 82 |
+
return self.token_embedding(input_tokens, out_dtype=dtype) + comfy.ops.cast_to(self.position_embedding.weight, dtype=dtype, device=input_tokens.device)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
class CLIPTextModel_(torch.nn.Module):
|
| 86 |
+
def __init__(self, config_dict, dtype, device, operations):
|
| 87 |
+
num_layers = config_dict["num_hidden_layers"]
|
| 88 |
+
embed_dim = config_dict["hidden_size"]
|
| 89 |
+
heads = config_dict["num_attention_heads"]
|
| 90 |
+
intermediate_size = config_dict["intermediate_size"]
|
| 91 |
+
intermediate_activation = config_dict["hidden_act"]
|
| 92 |
+
num_positions = config_dict["max_position_embeddings"]
|
| 93 |
+
self.eos_token_id = config_dict["eos_token_id"]
|
| 94 |
+
|
| 95 |
+
super().__init__()
|
| 96 |
+
self.embeddings = CLIPEmbeddings(embed_dim, num_positions=num_positions, dtype=dtype, device=device, operations=operations)
|
| 97 |
+
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
| 98 |
+
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
| 99 |
+
|
| 100 |
+
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32):
|
| 101 |
+
x = self.embeddings(input_tokens, dtype=dtype)
|
| 102 |
+
mask = None
|
| 103 |
+
if attention_mask is not None:
|
| 104 |
+
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
|
| 105 |
+
mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
|
| 106 |
+
|
| 107 |
+
causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
|
| 108 |
+
if mask is not None:
|
| 109 |
+
mask += causal_mask
|
| 110 |
+
else:
|
| 111 |
+
mask = causal_mask
|
| 112 |
+
|
| 113 |
+
x, i = self.encoder(x, mask=mask, intermediate_output=intermediate_output)
|
| 114 |
+
x = self.final_layer_norm(x)
|
| 115 |
+
if i is not None and final_layer_norm_intermediate:
|
| 116 |
+
i = self.final_layer_norm(i)
|
| 117 |
+
|
| 118 |
+
pooled_output = x[torch.arange(x.shape[0], device=x.device), (torch.round(input_tokens).to(dtype=torch.int, device=x.device) == self.eos_token_id).int().argmax(dim=-1),]
|
| 119 |
+
return x, i, pooled_output
|
| 120 |
+
|
| 121 |
+
class CLIPTextModel(torch.nn.Module):
|
| 122 |
+
def __init__(self, config_dict, dtype, device, operations):
|
| 123 |
+
super().__init__()
|
| 124 |
+
self.num_layers = config_dict["num_hidden_layers"]
|
| 125 |
+
self.text_model = CLIPTextModel_(config_dict, dtype, device, operations)
|
| 126 |
+
embed_dim = config_dict["hidden_size"]
|
| 127 |
+
self.text_projection = operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
|
| 128 |
+
self.dtype = dtype
|
| 129 |
+
|
| 130 |
+
def get_input_embeddings(self):
|
| 131 |
+
return self.text_model.embeddings.token_embedding
|
| 132 |
+
|
| 133 |
+
def set_input_embeddings(self, embeddings):
|
| 134 |
+
self.text_model.embeddings.token_embedding = embeddings
|
| 135 |
+
|
| 136 |
+
def forward(self, *args, **kwargs):
|
| 137 |
+
x = self.text_model(*args, **kwargs)
|
| 138 |
+
out = self.text_projection(x[2])
|
| 139 |
+
return (x[0], x[1], out, x[2])
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
class CLIPVisionEmbeddings(torch.nn.Module):
|
| 143 |
+
def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, model_type="", dtype=None, device=None, operations=None):
|
| 144 |
+
super().__init__()
|
| 145 |
+
|
| 146 |
+
num_patches = (image_size // patch_size) ** 2
|
| 147 |
+
if model_type == "siglip_vision_model":
|
| 148 |
+
self.class_embedding = None
|
| 149 |
+
patch_bias = True
|
| 150 |
+
else:
|
| 151 |
+
num_patches = num_patches + 1
|
| 152 |
+
self.class_embedding = torch.nn.Parameter(torch.empty(embed_dim, dtype=dtype, device=device))
|
| 153 |
+
patch_bias = False
|
| 154 |
+
|
| 155 |
+
self.patch_embedding = operations.Conv2d(
|
| 156 |
+
in_channels=num_channels,
|
| 157 |
+
out_channels=embed_dim,
|
| 158 |
+
kernel_size=patch_size,
|
| 159 |
+
stride=patch_size,
|
| 160 |
+
bias=patch_bias,
|
| 161 |
+
dtype=dtype,
|
| 162 |
+
device=device
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
self.position_embedding = operations.Embedding(num_patches, embed_dim, dtype=dtype, device=device)
|
| 166 |
+
|
| 167 |
+
def forward(self, pixel_values):
|
| 168 |
+
embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2)
|
| 169 |
+
if self.class_embedding is not None:
|
| 170 |
+
embeds = torch.cat([comfy.ops.cast_to_input(self.class_embedding, embeds).expand(pixel_values.shape[0], 1, -1), embeds], dim=1)
|
| 171 |
+
return embeds + comfy.ops.cast_to_input(self.position_embedding.weight, embeds)
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
class CLIPVision(torch.nn.Module):
|
| 175 |
+
def __init__(self, config_dict, dtype, device, operations):
|
| 176 |
+
super().__init__()
|
| 177 |
+
num_layers = config_dict["num_hidden_layers"]
|
| 178 |
+
embed_dim = config_dict["hidden_size"]
|
| 179 |
+
heads = config_dict["num_attention_heads"]
|
| 180 |
+
intermediate_size = config_dict["intermediate_size"]
|
| 181 |
+
intermediate_activation = config_dict["hidden_act"]
|
| 182 |
+
model_type = config_dict["model_type"]
|
| 183 |
+
|
| 184 |
+
self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], model_type=model_type, dtype=dtype, device=device, operations=operations)
|
| 185 |
+
if model_type == "siglip_vision_model":
|
| 186 |
+
self.pre_layrnorm = lambda a: a
|
| 187 |
+
self.output_layernorm = True
|
| 188 |
+
else:
|
| 189 |
+
self.pre_layrnorm = operations.LayerNorm(embed_dim)
|
| 190 |
+
self.output_layernorm = False
|
| 191 |
+
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
| 192 |
+
self.post_layernorm = operations.LayerNorm(embed_dim)
|
| 193 |
+
|
| 194 |
+
def forward(self, pixel_values, attention_mask=None, intermediate_output=None):
|
| 195 |
+
x = self.embeddings(pixel_values)
|
| 196 |
+
x = self.pre_layrnorm(x)
|
| 197 |
+
#TODO: attention_mask?
|
| 198 |
+
x, i = self.encoder(x, mask=None, intermediate_output=intermediate_output)
|
| 199 |
+
if self.output_layernorm:
|
| 200 |
+
x = self.post_layernorm(x)
|
| 201 |
+
pooled_output = x
|
| 202 |
+
else:
|
| 203 |
+
pooled_output = self.post_layernorm(x[:, 0, :])
|
| 204 |
+
return x, i, pooled_output
|
| 205 |
+
|
| 206 |
+
class CLIPVisionModelProjection(torch.nn.Module):
|
| 207 |
+
def __init__(self, config_dict, dtype, device, operations):
|
| 208 |
+
super().__init__()
|
| 209 |
+
self.vision_model = CLIPVision(config_dict, dtype, device, operations)
|
| 210 |
+
if "projection_dim" in config_dict:
|
| 211 |
+
self.visual_projection = operations.Linear(config_dict["hidden_size"], config_dict["projection_dim"], bias=False)
|
| 212 |
+
else:
|
| 213 |
+
self.visual_projection = lambda a: a
|
| 214 |
+
|
| 215 |
+
def forward(self, *args, **kwargs):
|
| 216 |
+
x = self.vision_model(*args, **kwargs)
|
| 217 |
+
out = self.visual_projection(x[2])
|
| 218 |
+
return (x[0], x[1], out)
|
comfy/clip_vision.py
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
import json
|
| 5 |
+
import logging
|
| 6 |
+
|
| 7 |
+
import comfy.ops
|
| 8 |
+
import comfy.model_patcher
|
| 9 |
+
import comfy.model_management
|
| 10 |
+
import comfy.utils
|
| 11 |
+
import comfy.clip_model
|
| 12 |
+
|
| 13 |
+
class Output:
|
| 14 |
+
def __getitem__(self, key):
|
| 15 |
+
return getattr(self, key)
|
| 16 |
+
def __setitem__(self, key, item):
|
| 17 |
+
setattr(self, key, item)
|
| 18 |
+
|
| 19 |
+
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
|
| 20 |
+
mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
|
| 21 |
+
std = torch.tensor(std, device=image.device, dtype=image.dtype)
|
| 22 |
+
image = image.movedim(-1, 1)
|
| 23 |
+
if not (image.shape[2] == size and image.shape[3] == size):
|
| 24 |
+
if crop:
|
| 25 |
+
scale = (size / min(image.shape[2], image.shape[3]))
|
| 26 |
+
scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3]))
|
| 27 |
+
else:
|
| 28 |
+
scale_size = (size, size)
|
| 29 |
+
|
| 30 |
+
image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True)
|
| 31 |
+
h = (image.shape[2] - size)//2
|
| 32 |
+
w = (image.shape[3] - size)//2
|
| 33 |
+
image = image[:,:,h:h+size,w:w+size]
|
| 34 |
+
image = torch.clip((255. * image), 0, 255).round() / 255.0
|
| 35 |
+
return (image - mean.view([3,1,1])) / std.view([3,1,1])
|
| 36 |
+
|
| 37 |
+
class ClipVisionModel():
|
| 38 |
+
def __init__(self, json_config):
|
| 39 |
+
with open(json_config) as f:
|
| 40 |
+
config = json.load(f)
|
| 41 |
+
|
| 42 |
+
self.image_size = config.get("image_size", 224)
|
| 43 |
+
self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073])
|
| 44 |
+
self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711])
|
| 45 |
+
self.load_device = comfy.model_management.text_encoder_device()
|
| 46 |
+
offload_device = comfy.model_management.text_encoder_offload_device()
|
| 47 |
+
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
|
| 48 |
+
self.model = comfy.clip_model.CLIPVisionModelProjection(config, self.dtype, offload_device, comfy.ops.manual_cast)
|
| 49 |
+
self.model.eval()
|
| 50 |
+
|
| 51 |
+
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
| 52 |
+
|
| 53 |
+
def load_sd(self, sd):
|
| 54 |
+
return self.model.load_state_dict(sd, strict=False)
|
| 55 |
+
|
| 56 |
+
def get_sd(self):
|
| 57 |
+
return self.model.state_dict()
|
| 58 |
+
|
| 59 |
+
def encode_image(self, image, crop=True):
|
| 60 |
+
comfy.model_management.load_model_gpu(self.patcher)
|
| 61 |
+
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
|
| 62 |
+
out = self.model(pixel_values=pixel_values, intermediate_output=-2)
|
| 63 |
+
|
| 64 |
+
outputs = Output()
|
| 65 |
+
outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
|
| 66 |
+
outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
|
| 67 |
+
outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
|
| 68 |
+
return outputs
|
| 69 |
+
|
| 70 |
+
def convert_to_transformers(sd, prefix):
|
| 71 |
+
sd_k = sd.keys()
|
| 72 |
+
if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k:
|
| 73 |
+
keys_to_replace = {
|
| 74 |
+
"{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding",
|
| 75 |
+
"{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight",
|
| 76 |
+
"{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight",
|
| 77 |
+
"{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias",
|
| 78 |
+
"{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight",
|
| 79 |
+
"{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias",
|
| 80 |
+
"{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight",
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
for x in keys_to_replace:
|
| 84 |
+
if x in sd_k:
|
| 85 |
+
sd[keys_to_replace[x]] = sd.pop(x)
|
| 86 |
+
|
| 87 |
+
if "{}proj".format(prefix) in sd_k:
|
| 88 |
+
sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
|
| 89 |
+
|
| 90 |
+
sd = transformers_convert(sd, prefix, "vision_model.", 48)
|
| 91 |
+
else:
|
| 92 |
+
replace_prefix = {prefix: ""}
|
| 93 |
+
sd = state_dict_prefix_replace(sd, replace_prefix)
|
| 94 |
+
return sd
|
| 95 |
+
|
| 96 |
+
def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
| 97 |
+
if convert_keys:
|
| 98 |
+
sd = convert_to_transformers(sd, prefix)
|
| 99 |
+
if "vision_model.encoder.layers.47.layer_norm1.weight" in sd:
|
| 100 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json")
|
| 101 |
+
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
|
| 102 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
|
| 103 |
+
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
|
| 104 |
+
if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152:
|
| 105 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
|
| 106 |
+
elif sd["vision_model.embeddings.position_embedding.weight"].shape[0] == 577:
|
| 107 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
|
| 108 |
+
else:
|
| 109 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
|
| 110 |
+
else:
|
| 111 |
+
return None
|
| 112 |
+
|
| 113 |
+
clip = ClipVisionModel(json_config)
|
| 114 |
+
m, u = clip.load_sd(sd)
|
| 115 |
+
if len(m) > 0:
|
| 116 |
+
logging.warning("missing clip vision: {}".format(m))
|
| 117 |
+
u = set(u)
|
| 118 |
+
keys = list(sd.keys())
|
| 119 |
+
for k in keys:
|
| 120 |
+
if k not in u:
|
| 121 |
+
sd.pop(k)
|
| 122 |
+
return clip
|
| 123 |
+
|
| 124 |
+
def load(ckpt_path):
|
| 125 |
+
sd = load_torch_file(ckpt_path)
|
| 126 |
+
if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd:
|
| 127 |
+
return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True)
|
| 128 |
+
else:
|
| 129 |
+
return load_clipvision_from_sd(sd)
|
comfy/clip_vision_config_g.json
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_dropout": 0.0,
|
| 3 |
+
"dropout": 0.0,
|
| 4 |
+
"hidden_act": "gelu",
|
| 5 |
+
"hidden_size": 1664,
|
| 6 |
+
"image_size": 224,
|
| 7 |
+
"initializer_factor": 1.0,
|
| 8 |
+
"initializer_range": 0.02,
|
| 9 |
+
"intermediate_size": 8192,
|
| 10 |
+
"layer_norm_eps": 1e-05,
|
| 11 |
+
"model_type": "clip_vision_model",
|
| 12 |
+
"num_attention_heads": 16,
|
| 13 |
+
"num_channels": 3,
|
| 14 |
+
"num_hidden_layers": 48,
|
| 15 |
+
"patch_size": 14,
|
| 16 |
+
"projection_dim": 1280,
|
| 17 |
+
"torch_dtype": "float32"
|
| 18 |
+
}
|
comfy/clip_vision_config_h.json
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_dropout": 0.0,
|
| 3 |
+
"dropout": 0.0,
|
| 4 |
+
"hidden_act": "gelu",
|
| 5 |
+
"hidden_size": 1280,
|
| 6 |
+
"image_size": 224,
|
| 7 |
+
"initializer_factor": 1.0,
|
| 8 |
+
"initializer_range": 0.02,
|
| 9 |
+
"intermediate_size": 5120,
|
| 10 |
+
"layer_norm_eps": 1e-05,
|
| 11 |
+
"model_type": "clip_vision_model",
|
| 12 |
+
"num_attention_heads": 16,
|
| 13 |
+
"num_channels": 3,
|
| 14 |
+
"num_hidden_layers": 32,
|
| 15 |
+
"patch_size": 14,
|
| 16 |
+
"projection_dim": 1024,
|
| 17 |
+
"torch_dtype": "float32"
|
| 18 |
+
}
|
comfy/clip_vision_config_vitl.json
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_dropout": 0.0,
|
| 3 |
+
"dropout": 0.0,
|
| 4 |
+
"hidden_act": "quick_gelu",
|
| 5 |
+
"hidden_size": 1024,
|
| 6 |
+
"image_size": 224,
|
| 7 |
+
"initializer_factor": 1.0,
|
| 8 |
+
"initializer_range": 0.02,
|
| 9 |
+
"intermediate_size": 4096,
|
| 10 |
+
"layer_norm_eps": 1e-05,
|
| 11 |
+
"model_type": "clip_vision_model",
|
| 12 |
+
"num_attention_heads": 16,
|
| 13 |
+
"num_channels": 3,
|
| 14 |
+
"num_hidden_layers": 24,
|
| 15 |
+
"patch_size": 14,
|
| 16 |
+
"projection_dim": 768,
|
| 17 |
+
"torch_dtype": "float32"
|
| 18 |
+
}
|
comfy/clip_vision_config_vitl_336.json
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_dropout": 0.0,
|
| 3 |
+
"dropout": 0.0,
|
| 4 |
+
"hidden_act": "quick_gelu",
|
| 5 |
+
"hidden_size": 1024,
|
| 6 |
+
"image_size": 336,
|
| 7 |
+
"initializer_factor": 1.0,
|
| 8 |
+
"initializer_range": 0.02,
|
| 9 |
+
"intermediate_size": 4096,
|
| 10 |
+
"layer_norm_eps": 1e-5,
|
| 11 |
+
"model_type": "clip_vision_model",
|
| 12 |
+
"num_attention_heads": 16,
|
| 13 |
+
"num_channels": 3,
|
| 14 |
+
"num_hidden_layers": 24,
|
| 15 |
+
"patch_size": 14,
|
| 16 |
+
"projection_dim": 768,
|
| 17 |
+
"torch_dtype": "float32"
|
| 18 |
+
}
|
comfy/clip_vision_siglip_384.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"num_channels": 3,
|
| 3 |
+
"hidden_act": "gelu_pytorch_tanh",
|
| 4 |
+
"hidden_size": 1152,
|
| 5 |
+
"image_size": 384,
|
| 6 |
+
"intermediate_size": 4304,
|
| 7 |
+
"model_type": "siglip_vision_model",
|
| 8 |
+
"num_attention_heads": 16,
|
| 9 |
+
"num_hidden_layers": 27,
|
| 10 |
+
"patch_size": 14,
|
| 11 |
+
"image_mean": [0.5, 0.5, 0.5],
|
| 12 |
+
"image_std": [0.5, 0.5, 0.5]
|
| 13 |
+
}
|
comfy/comfy_types/README.md
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Comfy Typing
|
| 2 |
+
## Type hinting for ComfyUI Node development
|
| 3 |
+
|
| 4 |
+
This module provides type hinting and concrete convenience types for node developers.
|
| 5 |
+
If cloned to the custom_nodes directory of ComfyUI, types can be imported using:
|
| 6 |
+
|
| 7 |
+
```python
|
| 8 |
+
from comfy.comfy_types import IO, ComfyNodeABC, CheckLazyMixin
|
| 9 |
+
|
| 10 |
+
class ExampleNode(ComfyNodeABC):
|
| 11 |
+
@classmethod
|
| 12 |
+
def INPUT_TYPES(s) -> InputTypeDict:
|
| 13 |
+
return {"required": {}}
|
| 14 |
+
```
|
| 15 |
+
|
| 16 |
+
Full example is in [examples/example_nodes.py](examples/example_nodes.py).
|
| 17 |
+
|
| 18 |
+
# Types
|
| 19 |
+
A few primary types are documented below. More complete information is available via the docstrings on each type.
|
| 20 |
+
|
| 21 |
+
## `IO`
|
| 22 |
+
|
| 23 |
+
A string enum of built-in and a few custom data types. Includes the following special types and their requisite plumbing:
|
| 24 |
+
|
| 25 |
+
- `ANY`: `"*"`
|
| 26 |
+
- `NUMBER`: `"FLOAT,INT"`
|
| 27 |
+
- `PRIMITIVE`: `"STRING,FLOAT,INT,BOOLEAN"`
|
| 28 |
+
|
| 29 |
+
## `ComfyNodeABC`
|
| 30 |
+
|
| 31 |
+
An abstract base class for nodes, offering type-hinting / autocomplete, and somewhat-alright docstrings.
|
| 32 |
+
|
| 33 |
+
### Type hinting for `INPUT_TYPES`
|
| 34 |
+
|
| 35 |
+

|
| 36 |
+
|
| 37 |
+
### `INPUT_TYPES` return dict
|
| 38 |
+
|
| 39 |
+

|
| 40 |
+
|
| 41 |
+
### Options for individual inputs
|
| 42 |
+
|
| 43 |
+

|
comfy/comfy_types/__init__.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from typing import Callable, Protocol, TypedDict, Optional, List
|
| 3 |
+
from .node_typing import IO, InputTypeDict, ComfyNodeABC, CheckLazyMixin
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class UnetApplyFunction(Protocol):
|
| 7 |
+
"""Function signature protocol on comfy.model_base.BaseModel.apply_model"""
|
| 8 |
+
|
| 9 |
+
def __call__(self, x: torch.Tensor, t: torch.Tensor, **kwargs) -> torch.Tensor:
|
| 10 |
+
pass
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class UnetApplyConds(TypedDict):
|
| 14 |
+
"""Optional conditions for unet apply function."""
|
| 15 |
+
|
| 16 |
+
c_concat: Optional[torch.Tensor]
|
| 17 |
+
c_crossattn: Optional[torch.Tensor]
|
| 18 |
+
control: Optional[torch.Tensor]
|
| 19 |
+
transformer_options: Optional[dict]
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class UnetParams(TypedDict):
|
| 23 |
+
# Tensor of shape [B, C, H, W]
|
| 24 |
+
input: torch.Tensor
|
| 25 |
+
# Tensor of shape [B]
|
| 26 |
+
timestep: torch.Tensor
|
| 27 |
+
c: UnetApplyConds
|
| 28 |
+
# List of [0, 1], [0], [1], ...
|
| 29 |
+
# 0 means conditional, 1 means conditional unconditional
|
| 30 |
+
cond_or_uncond: List[int]
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
UnetWrapperFunction = Callable[[UnetApplyFunction, UnetParams], torch.Tensor]
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
__all__ = [
|
| 37 |
+
"UnetWrapperFunction",
|
| 38 |
+
UnetApplyConds.__name__,
|
| 39 |
+
UnetParams.__name__,
|
| 40 |
+
UnetApplyFunction.__name__,
|
| 41 |
+
IO.__name__,
|
| 42 |
+
InputTypeDict.__name__,
|
| 43 |
+
ComfyNodeABC.__name__,
|
| 44 |
+
CheckLazyMixin.__name__,
|
| 45 |
+
]
|
comfy/comfy_types/examples/example_nodes.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict
|
| 2 |
+
from inspect import cleandoc
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class ExampleNode(ComfyNodeABC):
|
| 6 |
+
"""An example node that just adds 1 to an input integer.
|
| 7 |
+
|
| 8 |
+
* Requires a modern IDE to provide any benefit (detail: an IDE configured with analysis paths etc).
|
| 9 |
+
* This node is intended as an example for developers only.
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
DESCRIPTION = cleandoc(__doc__)
|
| 13 |
+
CATEGORY = "examples"
|
| 14 |
+
|
| 15 |
+
@classmethod
|
| 16 |
+
def INPUT_TYPES(s) -> InputTypeDict:
|
| 17 |
+
return {
|
| 18 |
+
"required": {
|
| 19 |
+
"input_int": (IO.INT, {"defaultInput": True}),
|
| 20 |
+
}
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
RETURN_TYPES = (IO.INT,)
|
| 24 |
+
RETURN_NAMES = ("input_plus_one",)
|
| 25 |
+
FUNCTION = "execute"
|
| 26 |
+
|
| 27 |
+
def execute(self, input_int: int):
|
| 28 |
+
return (input_int + 1,)
|
comfy/comfy_types/node_typing.py
ADDED
|
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Comfy-specific type hinting"""
|
| 2 |
+
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
from typing import Literal, TypedDict
|
| 5 |
+
from abc import ABC, abstractmethod
|
| 6 |
+
from enum import Enum
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class StrEnum(str, Enum):
|
| 10 |
+
"""Base class for string enums. Python's StrEnum is not available until 3.11."""
|
| 11 |
+
|
| 12 |
+
def __str__(self) -> str:
|
| 13 |
+
return self.value
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class IO(StrEnum):
|
| 17 |
+
"""Node input/output data types.
|
| 18 |
+
|
| 19 |
+
Includes functionality for ``"*"`` (`ANY`) and ``"MULTI,TYPES"``.
|
| 20 |
+
"""
|
| 21 |
+
|
| 22 |
+
STRING = "STRING"
|
| 23 |
+
IMAGE = "IMAGE"
|
| 24 |
+
MASK = "MASK"
|
| 25 |
+
LATENT = "LATENT"
|
| 26 |
+
BOOLEAN = "BOOLEAN"
|
| 27 |
+
INT = "INT"
|
| 28 |
+
FLOAT = "FLOAT"
|
| 29 |
+
CONDITIONING = "CONDITIONING"
|
| 30 |
+
SAMPLER = "SAMPLER"
|
| 31 |
+
SIGMAS = "SIGMAS"
|
| 32 |
+
GUIDER = "GUIDER"
|
| 33 |
+
NOISE = "NOISE"
|
| 34 |
+
CLIP = "CLIP"
|
| 35 |
+
CONTROL_NET = "CONTROL_NET"
|
| 36 |
+
VAE = "VAE"
|
| 37 |
+
MODEL = "MODEL"
|
| 38 |
+
CLIP_VISION = "CLIP_VISION"
|
| 39 |
+
CLIP_VISION_OUTPUT = "CLIP_VISION_OUTPUT"
|
| 40 |
+
STYLE_MODEL = "STYLE_MODEL"
|
| 41 |
+
GLIGEN = "GLIGEN"
|
| 42 |
+
UPSCALE_MODEL = "UPSCALE_MODEL"
|
| 43 |
+
AUDIO = "AUDIO"
|
| 44 |
+
WEBCAM = "WEBCAM"
|
| 45 |
+
POINT = "POINT"
|
| 46 |
+
FACE_ANALYSIS = "FACE_ANALYSIS"
|
| 47 |
+
BBOX = "BBOX"
|
| 48 |
+
SEGS = "SEGS"
|
| 49 |
+
|
| 50 |
+
ANY = "*"
|
| 51 |
+
"""Always matches any type, but at a price.
|
| 52 |
+
|
| 53 |
+
Causes some functionality issues (e.g. reroutes, link types), and should be avoided whenever possible.
|
| 54 |
+
"""
|
| 55 |
+
NUMBER = "FLOAT,INT"
|
| 56 |
+
"""A float or an int - could be either"""
|
| 57 |
+
PRIMITIVE = "STRING,FLOAT,INT,BOOLEAN"
|
| 58 |
+
"""Could be any of: string, float, int, or bool"""
|
| 59 |
+
|
| 60 |
+
def __ne__(self, value: object) -> bool:
|
| 61 |
+
if self == "*" or value == "*":
|
| 62 |
+
return False
|
| 63 |
+
if not isinstance(value, str):
|
| 64 |
+
return True
|
| 65 |
+
a = frozenset(self.split(","))
|
| 66 |
+
b = frozenset(value.split(","))
|
| 67 |
+
return not (b.issubset(a) or a.issubset(b))
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class InputTypeOptions(TypedDict):
|
| 71 |
+
"""Provides type hinting for the return type of the INPUT_TYPES node function.
|
| 72 |
+
|
| 73 |
+
Due to IDE limitations with unions, for now all options are available for all types (e.g. `label_on` is hinted even when the type is not `IO.BOOLEAN`).
|
| 74 |
+
|
| 75 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_datatypes
|
| 76 |
+
"""
|
| 77 |
+
|
| 78 |
+
default: bool | str | float | int | list | tuple
|
| 79 |
+
"""The default value of the widget"""
|
| 80 |
+
defaultInput: bool
|
| 81 |
+
"""Defaults to an input slot rather than a widget"""
|
| 82 |
+
forceInput: bool
|
| 83 |
+
"""`defaultInput` and also don't allow converting to a widget"""
|
| 84 |
+
lazy: bool
|
| 85 |
+
"""Declares that this input uses lazy evaluation"""
|
| 86 |
+
rawLink: bool
|
| 87 |
+
"""When a link exists, rather than receiving the evaluated value, you will receive the link (i.e. `["nodeId", <outputIndex>]`). Designed for node expansion."""
|
| 88 |
+
tooltip: str
|
| 89 |
+
"""Tooltip for the input (or widget), shown on pointer hover"""
|
| 90 |
+
# class InputTypeNumber(InputTypeOptions):
|
| 91 |
+
# default: float | int
|
| 92 |
+
min: float
|
| 93 |
+
"""The minimum value of a number (``FLOAT`` | ``INT``)"""
|
| 94 |
+
max: float
|
| 95 |
+
"""The maximum value of a number (``FLOAT`` | ``INT``)"""
|
| 96 |
+
step: float
|
| 97 |
+
"""The amount to increment or decrement a widget by when stepping up/down (``FLOAT`` | ``INT``)"""
|
| 98 |
+
round: float
|
| 99 |
+
"""Floats are rounded by this value (``FLOAT``)"""
|
| 100 |
+
# class InputTypeBoolean(InputTypeOptions):
|
| 101 |
+
# default: bool
|
| 102 |
+
label_on: str
|
| 103 |
+
"""The label to use in the UI when the bool is True (``BOOLEAN``)"""
|
| 104 |
+
label_on: str
|
| 105 |
+
"""The label to use in the UI when the bool is False (``BOOLEAN``)"""
|
| 106 |
+
# class InputTypeString(InputTypeOptions):
|
| 107 |
+
# default: str
|
| 108 |
+
multiline: bool
|
| 109 |
+
"""Use a multiline text box (``STRING``)"""
|
| 110 |
+
placeholder: str
|
| 111 |
+
"""Placeholder text to display in the UI when empty (``STRING``)"""
|
| 112 |
+
# Deprecated:
|
| 113 |
+
# defaultVal: str
|
| 114 |
+
dynamicPrompts: bool
|
| 115 |
+
"""Causes the front-end to evaluate dynamic prompts (``STRING``)"""
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
class HiddenInputTypeDict(TypedDict):
|
| 119 |
+
"""Provides type hinting for the hidden entry of node INPUT_TYPES."""
|
| 120 |
+
|
| 121 |
+
node_id: Literal["UNIQUE_ID"]
|
| 122 |
+
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
|
| 123 |
+
unique_id: Literal["UNIQUE_ID"]
|
| 124 |
+
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
|
| 125 |
+
prompt: Literal["PROMPT"]
|
| 126 |
+
"""PROMPT is the complete prompt sent by the client to the server. See the prompt object for a full description."""
|
| 127 |
+
extra_pnginfo: Literal["EXTRA_PNGINFO"]
|
| 128 |
+
"""EXTRA_PNGINFO is a dictionary that will be copied into the metadata of any .png files saved. Custom nodes can store additional information in this dictionary for saving (or as a way to communicate with a downstream node)."""
|
| 129 |
+
dynprompt: Literal["DYNPROMPT"]
|
| 130 |
+
"""DYNPROMPT is an instance of comfy_execution.graph.DynamicPrompt. It differs from PROMPT in that it may mutate during the course of execution in response to Node Expansion."""
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
class InputTypeDict(TypedDict):
|
| 134 |
+
"""Provides type hinting for node INPUT_TYPES.
|
| 135 |
+
|
| 136 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_more_on_inputs
|
| 137 |
+
"""
|
| 138 |
+
|
| 139 |
+
required: dict[str, tuple[IO, InputTypeOptions]]
|
| 140 |
+
"""Describes all inputs that must be connected for the node to execute."""
|
| 141 |
+
optional: dict[str, tuple[IO, InputTypeOptions]]
|
| 142 |
+
"""Describes inputs which do not need to be connected."""
|
| 143 |
+
hidden: HiddenInputTypeDict
|
| 144 |
+
"""Offers advanced functionality and server-client communication.
|
| 145 |
+
|
| 146 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_more_on_inputs#hidden-inputs
|
| 147 |
+
"""
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
class ComfyNodeABC(ABC):
|
| 151 |
+
"""Abstract base class for Comfy nodes. Includes the names and expected types of attributes.
|
| 152 |
+
|
| 153 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview
|
| 154 |
+
"""
|
| 155 |
+
|
| 156 |
+
DESCRIPTION: str
|
| 157 |
+
"""Node description, shown as a tooltip when hovering over the node.
|
| 158 |
+
|
| 159 |
+
Usage::
|
| 160 |
+
|
| 161 |
+
# Explicitly define the description
|
| 162 |
+
DESCRIPTION = "Example description here."
|
| 163 |
+
|
| 164 |
+
# Use the docstring of the node class.
|
| 165 |
+
DESCRIPTION = cleandoc(__doc__)
|
| 166 |
+
"""
|
| 167 |
+
CATEGORY: str
|
| 168 |
+
"""The category of the node, as per the "Add Node" menu.
|
| 169 |
+
|
| 170 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#category
|
| 171 |
+
"""
|
| 172 |
+
EXPERIMENTAL: bool
|
| 173 |
+
"""Flags a node as experimental, informing users that it may change or not work as expected."""
|
| 174 |
+
DEPRECATED: bool
|
| 175 |
+
"""Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
|
| 176 |
+
|
| 177 |
+
@classmethod
|
| 178 |
+
@abstractmethod
|
| 179 |
+
def INPUT_TYPES(s) -> InputTypeDict:
|
| 180 |
+
"""Defines node inputs.
|
| 181 |
+
|
| 182 |
+
* Must include the ``required`` key, which describes all inputs that must be connected for the node to execute.
|
| 183 |
+
* The ``optional`` key can be added to describe inputs which do not need to be connected.
|
| 184 |
+
* The ``hidden`` key offers some advanced functionality. More info at: https://docs.comfy.org/essentials/custom_node_more_on_inputs#hidden-inputs
|
| 185 |
+
|
| 186 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#input-types
|
| 187 |
+
"""
|
| 188 |
+
return {"required": {}}
|
| 189 |
+
|
| 190 |
+
OUTPUT_NODE: bool
|
| 191 |
+
"""Flags this node as an output node, causing any inputs it requires to be executed.
|
| 192 |
+
|
| 193 |
+
If a node is not connected to any output nodes, that node will not be executed. Usage::
|
| 194 |
+
|
| 195 |
+
OUTPUT_NODE = True
|
| 196 |
+
|
| 197 |
+
From the docs:
|
| 198 |
+
|
| 199 |
+
By default, a node is not considered an output. Set ``OUTPUT_NODE = True`` to specify that it is.
|
| 200 |
+
|
| 201 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#output-node
|
| 202 |
+
"""
|
| 203 |
+
INPUT_IS_LIST: bool
|
| 204 |
+
"""A flag indicating if this node implements the additional code necessary to deal with OUTPUT_IS_LIST nodes.
|
| 205 |
+
|
| 206 |
+
All inputs of ``type`` will become ``list[type]``, regardless of how many items are passed in. This also affects ``check_lazy_status``.
|
| 207 |
+
|
| 208 |
+
From the docs:
|
| 209 |
+
|
| 210 |
+
A node can also override the default input behaviour and receive the whole list in a single call. This is done by setting a class attribute `INPUT_IS_LIST` to ``True``.
|
| 211 |
+
|
| 212 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_lists#list-processing
|
| 213 |
+
"""
|
| 214 |
+
OUTPUT_IS_LIST: tuple[bool]
|
| 215 |
+
"""A tuple indicating which node outputs are lists, but will be connected to nodes that expect individual items.
|
| 216 |
+
|
| 217 |
+
Connected nodes that do not implement `INPUT_IS_LIST` will be executed once for every item in the list.
|
| 218 |
+
|
| 219 |
+
A ``tuple[bool]``, where the items match those in `RETURN_TYPES`::
|
| 220 |
+
|
| 221 |
+
RETURN_TYPES = (IO.INT, IO.INT, IO.STRING)
|
| 222 |
+
OUTPUT_IS_LIST = (True, True, False) # The string output will be handled normally
|
| 223 |
+
|
| 224 |
+
From the docs:
|
| 225 |
+
|
| 226 |
+
In order to tell Comfy that the list being returned should not be wrapped, but treated as a series of data for sequential processing,
|
| 227 |
+
the node should provide a class attribute `OUTPUT_IS_LIST`, which is a ``tuple[bool]``, of the same length as `RETURN_TYPES`,
|
| 228 |
+
specifying which outputs which should be so treated.
|
| 229 |
+
|
| 230 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_lists#list-processing
|
| 231 |
+
"""
|
| 232 |
+
|
| 233 |
+
RETURN_TYPES: tuple[IO]
|
| 234 |
+
"""A tuple representing the outputs of this node.
|
| 235 |
+
|
| 236 |
+
Usage::
|
| 237 |
+
|
| 238 |
+
RETURN_TYPES = (IO.INT, "INT", "CUSTOM_TYPE")
|
| 239 |
+
|
| 240 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#return-types
|
| 241 |
+
"""
|
| 242 |
+
RETURN_NAMES: tuple[str]
|
| 243 |
+
"""The output slot names for each item in `RETURN_TYPES`, e.g. ``RETURN_NAMES = ("count", "filter_string")``
|
| 244 |
+
|
| 245 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#return-names
|
| 246 |
+
"""
|
| 247 |
+
OUTPUT_TOOLTIPS: tuple[str]
|
| 248 |
+
"""A tuple of strings to use as tooltips for node outputs, one for each item in `RETURN_TYPES`."""
|
| 249 |
+
FUNCTION: str
|
| 250 |
+
"""The name of the function to execute as a literal string, e.g. `FUNCTION = "execute"`
|
| 251 |
+
|
| 252 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#function
|
| 253 |
+
"""
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
class CheckLazyMixin:
|
| 257 |
+
"""Provides a basic check_lazy_status implementation and type hinting for nodes that use lazy inputs."""
|
| 258 |
+
|
| 259 |
+
def check_lazy_status(self, **kwargs) -> list[str]:
|
| 260 |
+
"""Returns a list of input names that should be evaluated.
|
| 261 |
+
|
| 262 |
+
This basic mixin impl. requires all inputs.
|
| 263 |
+
|
| 264 |
+
:kwargs: All node inputs will be included here. If the input is ``None``, it should be assumed that it has not yet been evaluated. \
|
| 265 |
+
When using ``INPUT_IS_LIST = True``, unevaluated will instead be ``(None,)``.
|
| 266 |
+
|
| 267 |
+
Params should match the nodes execution ``FUNCTION`` (self, and all inputs by name).
|
| 268 |
+
Will be executed repeatedly until it returns an empty list, or all requested items were already evaluated (and sent as params).
|
| 269 |
+
|
| 270 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_lazy_evaluation#defining-check-lazy-status
|
| 271 |
+
"""
|
| 272 |
+
|
| 273 |
+
need = [name for name in kwargs if kwargs[name] is None]
|
| 274 |
+
return need
|
comfy/conds.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import math
|
| 3 |
+
import comfy.utils
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
|
| 7 |
+
return abs(a*b) // math.gcd(a, b)
|
| 8 |
+
|
| 9 |
+
class CONDRegular:
|
| 10 |
+
def __init__(self, cond):
|
| 11 |
+
self.cond = cond
|
| 12 |
+
|
| 13 |
+
def _copy_with(self, cond):
|
| 14 |
+
return self.__class__(cond)
|
| 15 |
+
|
| 16 |
+
def process_cond(self, batch_size, device, **kwargs):
|
| 17 |
+
return self._copy_with(comfy.utils.repeat_to_batch_size(self.cond, batch_size).to(device))
|
| 18 |
+
|
| 19 |
+
def can_concat(self, other):
|
| 20 |
+
if self.cond.shape != other.cond.shape:
|
| 21 |
+
return False
|
| 22 |
+
return True
|
| 23 |
+
|
| 24 |
+
def concat(self, others):
|
| 25 |
+
conds = [self.cond]
|
| 26 |
+
for x in others:
|
| 27 |
+
conds.append(x.cond)
|
| 28 |
+
return torch.cat(conds)
|
| 29 |
+
|
| 30 |
+
class CONDNoiseShape(CONDRegular):
|
| 31 |
+
def process_cond(self, batch_size, device, area, **kwargs):
|
| 32 |
+
data = self.cond
|
| 33 |
+
if area is not None:
|
| 34 |
+
dims = len(area) // 2
|
| 35 |
+
for i in range(dims):
|
| 36 |
+
data = data.narrow(i + 2, area[i + dims], area[i])
|
| 37 |
+
|
| 38 |
+
return self._copy_with(comfy.utils.repeat_to_batch_size(data, batch_size).to(device))
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class CONDCrossAttn(CONDRegular):
|
| 42 |
+
def can_concat(self, other):
|
| 43 |
+
s1 = self.cond.shape
|
| 44 |
+
s2 = other.cond.shape
|
| 45 |
+
if s1 != s2:
|
| 46 |
+
if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
|
| 47 |
+
return False
|
| 48 |
+
|
| 49 |
+
mult_min = lcm(s1[1], s2[1])
|
| 50 |
+
diff = mult_min // min(s1[1], s2[1])
|
| 51 |
+
if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
|
| 52 |
+
return False
|
| 53 |
+
return True
|
| 54 |
+
|
| 55 |
+
def concat(self, others):
|
| 56 |
+
conds = [self.cond]
|
| 57 |
+
crossattn_max_len = self.cond.shape[1]
|
| 58 |
+
for x in others:
|
| 59 |
+
c = x.cond
|
| 60 |
+
crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
|
| 61 |
+
conds.append(c)
|
| 62 |
+
|
| 63 |
+
out = []
|
| 64 |
+
for c in conds:
|
| 65 |
+
if c.shape[1] < crossattn_max_len:
|
| 66 |
+
c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
|
| 67 |
+
out.append(c)
|
| 68 |
+
return torch.cat(out)
|
| 69 |
+
|
| 70 |
+
class CONDConstant(CONDRegular):
|
| 71 |
+
def __init__(self, cond):
|
| 72 |
+
self.cond = cond
|
| 73 |
+
|
| 74 |
+
def process_cond(self, batch_size, device, **kwargs):
|
| 75 |
+
return self._copy_with(self.cond)
|
| 76 |
+
|
| 77 |
+
def can_concat(self, other):
|
| 78 |
+
if self.cond != other.cond:
|
| 79 |
+
return False
|
| 80 |
+
return True
|
| 81 |
+
|
| 82 |
+
def concat(self, others):
|
| 83 |
+
return self.cond
|
comfy/controlnet.py
ADDED
|
@@ -0,0 +1,862 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This file is part of ComfyUI.
|
| 3 |
+
Copyright (C) 2024 Comfy
|
| 4 |
+
|
| 5 |
+
This program is free software: you can redistribute it and/or modify
|
| 6 |
+
it under the terms of the GNU General Public License as published by
|
| 7 |
+
the Free Software Foundation, either version 3 of the License, or
|
| 8 |
+
(at your option) any later version.
|
| 9 |
+
|
| 10 |
+
This program is distributed in the hope that it will be useful,
|
| 11 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
+
GNU General Public License for more details.
|
| 14 |
+
|
| 15 |
+
You should have received a copy of the GNU General Public License
|
| 16 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
import torch
|
| 21 |
+
from enum import Enum
|
| 22 |
+
import math
|
| 23 |
+
import os
|
| 24 |
+
import logging
|
| 25 |
+
import comfy.utils
|
| 26 |
+
import comfy.model_management
|
| 27 |
+
import comfy.model_detection
|
| 28 |
+
import comfy.model_patcher
|
| 29 |
+
import comfy.ops
|
| 30 |
+
import comfy.latent_formats
|
| 31 |
+
|
| 32 |
+
import comfy.cldm.cldm
|
| 33 |
+
import comfy.t2i_adapter.adapter
|
| 34 |
+
import comfy.ldm.cascade.controlnet
|
| 35 |
+
import comfy.cldm.mmdit
|
| 36 |
+
import comfy.ldm.hydit.controlnet
|
| 37 |
+
import comfy.ldm.flux.controlnet
|
| 38 |
+
import comfy.cldm.dit_embedder
|
| 39 |
+
from typing import TYPE_CHECKING
|
| 40 |
+
if TYPE_CHECKING:
|
| 41 |
+
from comfy.hooks import HookGroup
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
| 45 |
+
current_batch_size = tensor.shape[0]
|
| 46 |
+
#print(current_batch_size, target_batch_size)
|
| 47 |
+
if current_batch_size == 1:
|
| 48 |
+
return tensor
|
| 49 |
+
|
| 50 |
+
per_batch = target_batch_size // batched_number
|
| 51 |
+
tensor = tensor[:per_batch]
|
| 52 |
+
|
| 53 |
+
if per_batch > tensor.shape[0]:
|
| 54 |
+
tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
|
| 55 |
+
|
| 56 |
+
current_batch_size = tensor.shape[0]
|
| 57 |
+
if current_batch_size == target_batch_size:
|
| 58 |
+
return tensor
|
| 59 |
+
else:
|
| 60 |
+
return torch.cat([tensor] * batched_number, dim=0)
|
| 61 |
+
|
| 62 |
+
class StrengthType(Enum):
|
| 63 |
+
CONSTANT = 1
|
| 64 |
+
LINEAR_UP = 2
|
| 65 |
+
|
| 66 |
+
class ControlBase:
|
| 67 |
+
def __init__(self):
|
| 68 |
+
self.cond_hint_original = None
|
| 69 |
+
self.cond_hint = None
|
| 70 |
+
self.strength = 1.0
|
| 71 |
+
self.timestep_percent_range = (0.0, 1.0)
|
| 72 |
+
self.latent_format = None
|
| 73 |
+
self.vae = None
|
| 74 |
+
self.global_average_pooling = False
|
| 75 |
+
self.timestep_range = None
|
| 76 |
+
self.compression_ratio = 8
|
| 77 |
+
self.upscale_algorithm = 'nearest-exact'
|
| 78 |
+
self.extra_args = {}
|
| 79 |
+
self.previous_controlnet = None
|
| 80 |
+
self.extra_conds = []
|
| 81 |
+
self.strength_type = StrengthType.CONSTANT
|
| 82 |
+
self.concat_mask = False
|
| 83 |
+
self.extra_concat_orig = []
|
| 84 |
+
self.extra_concat = None
|
| 85 |
+
self.extra_hooks: HookGroup = None
|
| 86 |
+
self.preprocess_image = lambda a: a
|
| 87 |
+
|
| 88 |
+
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None, extra_concat=[]):
|
| 89 |
+
self.cond_hint_original = cond_hint
|
| 90 |
+
self.strength = strength
|
| 91 |
+
self.timestep_percent_range = timestep_percent_range
|
| 92 |
+
if self.latent_format is not None:
|
| 93 |
+
if vae is None:
|
| 94 |
+
logging.warning("WARNING: no VAE provided to the controlnet apply node when this controlnet requires one.")
|
| 95 |
+
self.vae = vae
|
| 96 |
+
self.extra_concat_orig = extra_concat.copy()
|
| 97 |
+
if self.concat_mask and len(self.extra_concat_orig) == 0:
|
| 98 |
+
self.extra_concat_orig.append(torch.tensor([[[[1.0]]]]))
|
| 99 |
+
return self
|
| 100 |
+
|
| 101 |
+
def pre_run(self, model, percent_to_timestep_function):
|
| 102 |
+
self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
|
| 103 |
+
if self.previous_controlnet is not None:
|
| 104 |
+
self.previous_controlnet.pre_run(model, percent_to_timestep_function)
|
| 105 |
+
|
| 106 |
+
def set_previous_controlnet(self, controlnet):
|
| 107 |
+
self.previous_controlnet = controlnet
|
| 108 |
+
return self
|
| 109 |
+
|
| 110 |
+
def cleanup(self):
|
| 111 |
+
if self.previous_controlnet is not None:
|
| 112 |
+
self.previous_controlnet.cleanup()
|
| 113 |
+
|
| 114 |
+
self.cond_hint = None
|
| 115 |
+
self.extra_concat = None
|
| 116 |
+
self.timestep_range = None
|
| 117 |
+
|
| 118 |
+
def get_models(self):
|
| 119 |
+
out = []
|
| 120 |
+
if self.previous_controlnet is not None:
|
| 121 |
+
out += self.previous_controlnet.get_models()
|
| 122 |
+
return out
|
| 123 |
+
|
| 124 |
+
def get_extra_hooks(self):
|
| 125 |
+
out = []
|
| 126 |
+
if self.extra_hooks is not None:
|
| 127 |
+
out.append(self.extra_hooks)
|
| 128 |
+
if self.previous_controlnet is not None:
|
| 129 |
+
out += self.previous_controlnet.get_extra_hooks()
|
| 130 |
+
return out
|
| 131 |
+
|
| 132 |
+
def copy_to(self, c):
|
| 133 |
+
c.cond_hint_original = self.cond_hint_original
|
| 134 |
+
c.strength = self.strength
|
| 135 |
+
c.timestep_percent_range = self.timestep_percent_range
|
| 136 |
+
c.global_average_pooling = self.global_average_pooling
|
| 137 |
+
c.compression_ratio = self.compression_ratio
|
| 138 |
+
c.upscale_algorithm = self.upscale_algorithm
|
| 139 |
+
c.latent_format = self.latent_format
|
| 140 |
+
c.extra_args = self.extra_args.copy()
|
| 141 |
+
c.vae = self.vae
|
| 142 |
+
c.extra_conds = self.extra_conds.copy()
|
| 143 |
+
c.strength_type = self.strength_type
|
| 144 |
+
c.concat_mask = self.concat_mask
|
| 145 |
+
c.extra_concat_orig = self.extra_concat_orig.copy()
|
| 146 |
+
c.extra_hooks = self.extra_hooks.clone() if self.extra_hooks else None
|
| 147 |
+
c.preprocess_image = self.preprocess_image
|
| 148 |
+
|
| 149 |
+
def inference_memory_requirements(self, dtype):
|
| 150 |
+
if self.previous_controlnet is not None:
|
| 151 |
+
return self.previous_controlnet.inference_memory_requirements(dtype)
|
| 152 |
+
return 0
|
| 153 |
+
|
| 154 |
+
def control_merge(self, control, control_prev, output_dtype):
|
| 155 |
+
out = {'input':[], 'middle':[], 'output': []}
|
| 156 |
+
|
| 157 |
+
for key in control:
|
| 158 |
+
control_output = control[key]
|
| 159 |
+
applied_to = set()
|
| 160 |
+
for i in range(len(control_output)):
|
| 161 |
+
x = control_output[i]
|
| 162 |
+
if x is not None:
|
| 163 |
+
if self.global_average_pooling:
|
| 164 |
+
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
|
| 165 |
+
|
| 166 |
+
if x not in applied_to: #memory saving strategy, allow shared tensors and only apply strength to shared tensors once
|
| 167 |
+
applied_to.add(x)
|
| 168 |
+
if self.strength_type == StrengthType.CONSTANT:
|
| 169 |
+
x *= self.strength
|
| 170 |
+
elif self.strength_type == StrengthType.LINEAR_UP:
|
| 171 |
+
x *= (self.strength ** float(len(control_output) - i))
|
| 172 |
+
|
| 173 |
+
if output_dtype is not None and x.dtype != output_dtype:
|
| 174 |
+
x = x.to(output_dtype)
|
| 175 |
+
|
| 176 |
+
out[key].append(x)
|
| 177 |
+
|
| 178 |
+
if control_prev is not None:
|
| 179 |
+
for x in ['input', 'middle', 'output']:
|
| 180 |
+
o = out[x]
|
| 181 |
+
for i in range(len(control_prev[x])):
|
| 182 |
+
prev_val = control_prev[x][i]
|
| 183 |
+
if i >= len(o):
|
| 184 |
+
o.append(prev_val)
|
| 185 |
+
elif prev_val is not None:
|
| 186 |
+
if o[i] is None:
|
| 187 |
+
o[i] = prev_val
|
| 188 |
+
else:
|
| 189 |
+
if o[i].shape[0] < prev_val.shape[0]:
|
| 190 |
+
o[i] = prev_val + o[i]
|
| 191 |
+
else:
|
| 192 |
+
o[i] = prev_val + o[i] #TODO: change back to inplace add if shared tensors stop being an issue
|
| 193 |
+
return out
|
| 194 |
+
|
| 195 |
+
def set_extra_arg(self, argument, value=None):
|
| 196 |
+
self.extra_args[argument] = value
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
class ControlNet(ControlBase):
|
| 200 |
+
def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, latent_format=None, load_device=None, manual_cast_dtype=None, extra_conds=["y"], strength_type=StrengthType.CONSTANT, concat_mask=False, preprocess_image=lambda a: a):
|
| 201 |
+
super().__init__()
|
| 202 |
+
self.control_model = control_model
|
| 203 |
+
self.load_device = load_device
|
| 204 |
+
if control_model is not None:
|
| 205 |
+
self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
|
| 206 |
+
|
| 207 |
+
self.compression_ratio = compression_ratio
|
| 208 |
+
self.global_average_pooling = global_average_pooling
|
| 209 |
+
self.model_sampling_current = None
|
| 210 |
+
self.manual_cast_dtype = manual_cast_dtype
|
| 211 |
+
self.latent_format = latent_format
|
| 212 |
+
self.extra_conds += extra_conds
|
| 213 |
+
self.strength_type = strength_type
|
| 214 |
+
self.concat_mask = concat_mask
|
| 215 |
+
self.preprocess_image = preprocess_image
|
| 216 |
+
|
| 217 |
+
def get_control(self, x_noisy, t, cond, batched_number, transformer_options):
|
| 218 |
+
control_prev = None
|
| 219 |
+
if self.previous_controlnet is not None:
|
| 220 |
+
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number, transformer_options)
|
| 221 |
+
|
| 222 |
+
if self.timestep_range is not None:
|
| 223 |
+
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
| 224 |
+
if control_prev is not None:
|
| 225 |
+
return control_prev
|
| 226 |
+
else:
|
| 227 |
+
return None
|
| 228 |
+
|
| 229 |
+
dtype = self.control_model.dtype
|
| 230 |
+
if self.manual_cast_dtype is not None:
|
| 231 |
+
dtype = self.manual_cast_dtype
|
| 232 |
+
|
| 233 |
+
if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
|
| 234 |
+
if self.cond_hint is not None:
|
| 235 |
+
del self.cond_hint
|
| 236 |
+
self.cond_hint = None
|
| 237 |
+
compression_ratio = self.compression_ratio
|
| 238 |
+
if self.vae is not None:
|
| 239 |
+
compression_ratio *= self.vae.downscale_ratio
|
| 240 |
+
else:
|
| 241 |
+
if self.latent_format is not None:
|
| 242 |
+
raise ValueError("This Controlnet needs a VAE but none was provided, please use a ControlNetApply node with a VAE input and connect it.")
|
| 243 |
+
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
|
| 244 |
+
self.cond_hint = self.preprocess_image(self.cond_hint)
|
| 245 |
+
if self.vae is not None:
|
| 246 |
+
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
|
| 247 |
+
self.cond_hint = self.vae.encode(self.cond_hint.movedim(1, -1))
|
| 248 |
+
comfy.model_management.load_models_gpu(loaded_models)
|
| 249 |
+
if self.latent_format is not None:
|
| 250 |
+
self.cond_hint = self.latent_format.process_in(self.cond_hint)
|
| 251 |
+
if len(self.extra_concat_orig) > 0:
|
| 252 |
+
to_concat = []
|
| 253 |
+
for c in self.extra_concat_orig:
|
| 254 |
+
c = c.to(self.cond_hint.device)
|
| 255 |
+
c = comfy.utils.common_upscale(c, self.cond_hint.shape[3], self.cond_hint.shape[2], self.upscale_algorithm, "center")
|
| 256 |
+
to_concat.append(comfy.utils.repeat_to_batch_size(c, self.cond_hint.shape[0]))
|
| 257 |
+
self.cond_hint = torch.cat([self.cond_hint] + to_concat, dim=1)
|
| 258 |
+
|
| 259 |
+
self.cond_hint = self.cond_hint.to(device=x_noisy.device, dtype=dtype)
|
| 260 |
+
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
| 261 |
+
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
| 262 |
+
|
| 263 |
+
context = cond.get('crossattn_controlnet', cond['c_crossattn'])
|
| 264 |
+
extra = self.extra_args.copy()
|
| 265 |
+
for c in self.extra_conds:
|
| 266 |
+
temp = cond.get(c, None)
|
| 267 |
+
if temp is not None:
|
| 268 |
+
extra[c] = temp.to(dtype)
|
| 269 |
+
|
| 270 |
+
timestep = self.model_sampling_current.timestep(t)
|
| 271 |
+
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
|
| 272 |
+
|
| 273 |
+
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=context.to(dtype), **extra)
|
| 274 |
+
return self.control_merge(control, control_prev, output_dtype=None)
|
| 275 |
+
|
| 276 |
+
def copy(self):
|
| 277 |
+
c = ControlNet(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
|
| 278 |
+
c.control_model = self.control_model
|
| 279 |
+
c.control_model_wrapped = self.control_model_wrapped
|
| 280 |
+
self.copy_to(c)
|
| 281 |
+
return c
|
| 282 |
+
|
| 283 |
+
def get_models(self):
|
| 284 |
+
out = super().get_models()
|
| 285 |
+
out.append(self.control_model_wrapped)
|
| 286 |
+
return out
|
| 287 |
+
|
| 288 |
+
def pre_run(self, model, percent_to_timestep_function):
|
| 289 |
+
super().pre_run(model, percent_to_timestep_function)
|
| 290 |
+
self.model_sampling_current = model.model_sampling
|
| 291 |
+
|
| 292 |
+
def cleanup(self):
|
| 293 |
+
self.model_sampling_current = None
|
| 294 |
+
super().cleanup()
|
| 295 |
+
|
| 296 |
+
class ControlLoraOps:
|
| 297 |
+
class Linear(torch.nn.Module, comfy.ops.CastWeightBiasOp):
|
| 298 |
+
def __init__(self, in_features: int, out_features: int, bias: bool = True,
|
| 299 |
+
device=None, dtype=None) -> None:
|
| 300 |
+
super().__init__()
|
| 301 |
+
self.in_features = in_features
|
| 302 |
+
self.out_features = out_features
|
| 303 |
+
self.weight = None
|
| 304 |
+
self.up = None
|
| 305 |
+
self.down = None
|
| 306 |
+
self.bias = None
|
| 307 |
+
|
| 308 |
+
def forward(self, input):
|
| 309 |
+
weight, bias = comfy.ops.cast_bias_weight(self, input)
|
| 310 |
+
if self.up is not None:
|
| 311 |
+
return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
|
| 312 |
+
else:
|
| 313 |
+
return torch.nn.functional.linear(input, weight, bias)
|
| 314 |
+
|
| 315 |
+
class Conv2d(torch.nn.Module, comfy.ops.CastWeightBiasOp):
|
| 316 |
+
def __init__(
|
| 317 |
+
self,
|
| 318 |
+
in_channels,
|
| 319 |
+
out_channels,
|
| 320 |
+
kernel_size,
|
| 321 |
+
stride=1,
|
| 322 |
+
padding=0,
|
| 323 |
+
dilation=1,
|
| 324 |
+
groups=1,
|
| 325 |
+
bias=True,
|
| 326 |
+
padding_mode='zeros',
|
| 327 |
+
device=None,
|
| 328 |
+
dtype=None
|
| 329 |
+
):
|
| 330 |
+
super().__init__()
|
| 331 |
+
self.in_channels = in_channels
|
| 332 |
+
self.out_channels = out_channels
|
| 333 |
+
self.kernel_size = kernel_size
|
| 334 |
+
self.stride = stride
|
| 335 |
+
self.padding = padding
|
| 336 |
+
self.dilation = dilation
|
| 337 |
+
self.transposed = False
|
| 338 |
+
self.output_padding = 0
|
| 339 |
+
self.groups = groups
|
| 340 |
+
self.padding_mode = padding_mode
|
| 341 |
+
|
| 342 |
+
self.weight = None
|
| 343 |
+
self.bias = None
|
| 344 |
+
self.up = None
|
| 345 |
+
self.down = None
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def forward(self, input):
|
| 349 |
+
weight, bias = comfy.ops.cast_bias_weight(self, input)
|
| 350 |
+
if self.up is not None:
|
| 351 |
+
return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
|
| 352 |
+
else:
|
| 353 |
+
return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
class ControlLora(ControlNet):
|
| 357 |
+
def __init__(self, control_weights, global_average_pooling=False, model_options={}): #TODO? model_options
|
| 358 |
+
ControlBase.__init__(self)
|
| 359 |
+
self.control_weights = control_weights
|
| 360 |
+
self.global_average_pooling = global_average_pooling
|
| 361 |
+
self.extra_conds += ["y"]
|
| 362 |
+
|
| 363 |
+
def pre_run(self, model, percent_to_timestep_function):
|
| 364 |
+
super().pre_run(model, percent_to_timestep_function)
|
| 365 |
+
controlnet_config = model.model_config.unet_config.copy()
|
| 366 |
+
controlnet_config.pop("out_channels")
|
| 367 |
+
controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
|
| 368 |
+
self.manual_cast_dtype = model.manual_cast_dtype
|
| 369 |
+
dtype = model.get_dtype()
|
| 370 |
+
if self.manual_cast_dtype is None:
|
| 371 |
+
class control_lora_ops(ControlLoraOps, comfy.ops.disable_weight_init):
|
| 372 |
+
pass
|
| 373 |
+
else:
|
| 374 |
+
class control_lora_ops(ControlLoraOps, comfy.ops.manual_cast):
|
| 375 |
+
pass
|
| 376 |
+
dtype = self.manual_cast_dtype
|
| 377 |
+
|
| 378 |
+
controlnet_config["operations"] = control_lora_ops
|
| 379 |
+
controlnet_config["dtype"] = dtype
|
| 380 |
+
self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
|
| 381 |
+
self.control_model.to(comfy.model_management.get_torch_device())
|
| 382 |
+
diffusion_model = model.diffusion_model
|
| 383 |
+
sd = diffusion_model.state_dict()
|
| 384 |
+
|
| 385 |
+
for k in sd:
|
| 386 |
+
weight = sd[k]
|
| 387 |
+
try:
|
| 388 |
+
comfy.utils.set_attr_param(self.control_model, k, weight)
|
| 389 |
+
except:
|
| 390 |
+
pass
|
| 391 |
+
|
| 392 |
+
for k in self.control_weights:
|
| 393 |
+
if k not in {"lora_controlnet"}:
|
| 394 |
+
comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
|
| 395 |
+
|
| 396 |
+
def copy(self):
|
| 397 |
+
c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
|
| 398 |
+
self.copy_to(c)
|
| 399 |
+
return c
|
| 400 |
+
|
| 401 |
+
def cleanup(self):
|
| 402 |
+
del self.control_model
|
| 403 |
+
self.control_model = None
|
| 404 |
+
super().cleanup()
|
| 405 |
+
|
| 406 |
+
def get_models(self):
|
| 407 |
+
out = ControlBase.get_models(self)
|
| 408 |
+
return out
|
| 409 |
+
|
| 410 |
+
def inference_memory_requirements(self, dtype):
|
| 411 |
+
return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
|
| 412 |
+
|
| 413 |
+
def controlnet_config(sd, model_options={}):
|
| 414 |
+
model_config = comfy.model_detection.model_config_from_unet(sd, "", True)
|
| 415 |
+
|
| 416 |
+
unet_dtype = model_options.get("dtype", None)
|
| 417 |
+
if unet_dtype is None:
|
| 418 |
+
weight_dtype = comfy.utils.weight_dtype(sd)
|
| 419 |
+
|
| 420 |
+
supported_inference_dtypes = list(model_config.supported_inference_dtypes)
|
| 421 |
+
if weight_dtype is not None:
|
| 422 |
+
supported_inference_dtypes.append(weight_dtype)
|
| 423 |
+
|
| 424 |
+
unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes)
|
| 425 |
+
|
| 426 |
+
load_device = comfy.model_management.get_torch_device()
|
| 427 |
+
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
|
| 428 |
+
|
| 429 |
+
operations = model_options.get("custom_operations", None)
|
| 430 |
+
if operations is None:
|
| 431 |
+
operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype, disable_fast_fp8=True)
|
| 432 |
+
|
| 433 |
+
offload_device = comfy.model_management.unet_offload_device()
|
| 434 |
+
return model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device
|
| 435 |
+
|
| 436 |
+
def controlnet_load_state_dict(control_model, sd):
|
| 437 |
+
missing, unexpected = control_model.load_state_dict(sd, strict=False)
|
| 438 |
+
|
| 439 |
+
if len(missing) > 0:
|
| 440 |
+
logging.warning("missing controlnet keys: {}".format(missing))
|
| 441 |
+
|
| 442 |
+
if len(unexpected) > 0:
|
| 443 |
+
logging.debug("unexpected controlnet keys: {}".format(unexpected))
|
| 444 |
+
return control_model
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
def load_controlnet_mmdit(sd, model_options={}):
|
| 448 |
+
new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
|
| 449 |
+
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(new_sd, model_options=model_options)
|
| 450 |
+
num_blocks = comfy.model_detection.count_blocks(new_sd, 'joint_blocks.{}.')
|
| 451 |
+
for k in sd:
|
| 452 |
+
new_sd[k] = sd[k]
|
| 453 |
+
|
| 454 |
+
concat_mask = False
|
| 455 |
+
control_latent_channels = new_sd.get("pos_embed_input.proj.weight").shape[1]
|
| 456 |
+
if control_latent_channels == 17: #inpaint controlnet
|
| 457 |
+
concat_mask = True
|
| 458 |
+
|
| 459 |
+
control_model = comfy.cldm.mmdit.ControlNet(num_blocks=num_blocks, control_latent_channels=control_latent_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
|
| 460 |
+
control_model = controlnet_load_state_dict(control_model, new_sd)
|
| 461 |
+
|
| 462 |
+
latent_format = comfy.latent_formats.SD3()
|
| 463 |
+
latent_format.shift_factor = 0 #SD3 controlnet weirdness
|
| 464 |
+
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
|
| 465 |
+
return control
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
class ControlNetSD35(ControlNet):
|
| 469 |
+
def pre_run(self, model, percent_to_timestep_function):
|
| 470 |
+
if self.control_model.double_y_emb:
|
| 471 |
+
missing, unexpected = self.control_model.orig_y_embedder.load_state_dict(model.diffusion_model.y_embedder.state_dict(), strict=False)
|
| 472 |
+
else:
|
| 473 |
+
missing, unexpected = self.control_model.x_embedder.load_state_dict(model.diffusion_model.x_embedder.state_dict(), strict=False)
|
| 474 |
+
super().pre_run(model, percent_to_timestep_function)
|
| 475 |
+
|
| 476 |
+
def copy(self):
|
| 477 |
+
c = ControlNetSD35(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
|
| 478 |
+
c.control_model = self.control_model
|
| 479 |
+
c.control_model_wrapped = self.control_model_wrapped
|
| 480 |
+
self.copy_to(c)
|
| 481 |
+
return c
|
| 482 |
+
|
| 483 |
+
def load_controlnet_sd35(sd, model_options={}):
|
| 484 |
+
control_type = -1
|
| 485 |
+
if "control_type" in sd:
|
| 486 |
+
control_type = round(sd.pop("control_type").item())
|
| 487 |
+
|
| 488 |
+
# blur_cnet = control_type == 0
|
| 489 |
+
canny_cnet = control_type == 1
|
| 490 |
+
depth_cnet = control_type == 2
|
| 491 |
+
|
| 492 |
+
new_sd = {}
|
| 493 |
+
for k in comfy.utils.MMDIT_MAP_BASIC:
|
| 494 |
+
if k[1] in sd:
|
| 495 |
+
new_sd[k[0]] = sd.pop(k[1])
|
| 496 |
+
for k in sd:
|
| 497 |
+
new_sd[k] = sd[k]
|
| 498 |
+
sd = new_sd
|
| 499 |
+
|
| 500 |
+
y_emb_shape = sd["y_embedder.mlp.0.weight"].shape
|
| 501 |
+
depth = y_emb_shape[0] // 64
|
| 502 |
+
hidden_size = 64 * depth
|
| 503 |
+
num_heads = depth
|
| 504 |
+
head_dim = hidden_size // num_heads
|
| 505 |
+
num_blocks = comfy.model_detection.count_blocks(new_sd, 'transformer_blocks.{}.')
|
| 506 |
+
|
| 507 |
+
load_device = comfy.model_management.get_torch_device()
|
| 508 |
+
offload_device = comfy.model_management.unet_offload_device()
|
| 509 |
+
unet_dtype = comfy.model_management.unet_dtype(model_params=-1)
|
| 510 |
+
|
| 511 |
+
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
|
| 512 |
+
|
| 513 |
+
operations = model_options.get("custom_operations", None)
|
| 514 |
+
if operations is None:
|
| 515 |
+
operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype, disable_fast_fp8=True)
|
| 516 |
+
|
| 517 |
+
control_model = comfy.cldm.dit_embedder.ControlNetEmbedder(img_size=None,
|
| 518 |
+
patch_size=2,
|
| 519 |
+
in_chans=16,
|
| 520 |
+
num_layers=num_blocks,
|
| 521 |
+
main_model_double=depth,
|
| 522 |
+
double_y_emb=y_emb_shape[0] == y_emb_shape[1],
|
| 523 |
+
attention_head_dim=head_dim,
|
| 524 |
+
num_attention_heads=num_heads,
|
| 525 |
+
adm_in_channels=2048,
|
| 526 |
+
device=offload_device,
|
| 527 |
+
dtype=unet_dtype,
|
| 528 |
+
operations=operations)
|
| 529 |
+
|
| 530 |
+
control_model = controlnet_load_state_dict(control_model, sd)
|
| 531 |
+
|
| 532 |
+
latent_format = comfy.latent_formats.SD3()
|
| 533 |
+
preprocess_image = lambda a: a
|
| 534 |
+
if canny_cnet:
|
| 535 |
+
preprocess_image = lambda a: (a * 255 * 0.5 + 0.5)
|
| 536 |
+
elif depth_cnet:
|
| 537 |
+
preprocess_image = lambda a: 1.0 - a
|
| 538 |
+
|
| 539 |
+
control = ControlNetSD35(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, preprocess_image=preprocess_image)
|
| 540 |
+
return control
|
| 541 |
+
|
| 542 |
+
|
| 543 |
+
|
| 544 |
+
def load_controlnet_hunyuandit(controlnet_data, model_options={}):
|
| 545 |
+
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(controlnet_data, model_options=model_options)
|
| 546 |
+
|
| 547 |
+
control_model = comfy.ldm.hydit.controlnet.HunYuanControlNet(operations=operations, device=offload_device, dtype=unet_dtype)
|
| 548 |
+
control_model = controlnet_load_state_dict(control_model, controlnet_data)
|
| 549 |
+
|
| 550 |
+
latent_format = comfy.latent_formats.SDXL()
|
| 551 |
+
extra_conds = ['text_embedding_mask', 'encoder_hidden_states_t5', 'text_embedding_mask_t5', 'image_meta_size', 'style', 'cos_cis_img', 'sin_cis_img']
|
| 552 |
+
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds, strength_type=StrengthType.CONSTANT)
|
| 553 |
+
return control
|
| 554 |
+
|
| 555 |
+
def load_controlnet_flux_xlabs_mistoline(sd, mistoline=False, model_options={}):
|
| 556 |
+
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(sd, model_options=model_options)
|
| 557 |
+
control_model = comfy.ldm.flux.controlnet.ControlNetFlux(mistoline=mistoline, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
|
| 558 |
+
control_model = controlnet_load_state_dict(control_model, sd)
|
| 559 |
+
extra_conds = ['y', 'guidance']
|
| 560 |
+
control = ControlNet(control_model, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
|
| 561 |
+
return control
|
| 562 |
+
|
| 563 |
+
def load_controlnet_flux_instantx(sd, model_options={}):
|
| 564 |
+
new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
|
| 565 |
+
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(new_sd, model_options=model_options)
|
| 566 |
+
for k in sd:
|
| 567 |
+
new_sd[k] = sd[k]
|
| 568 |
+
|
| 569 |
+
num_union_modes = 0
|
| 570 |
+
union_cnet = "controlnet_mode_embedder.weight"
|
| 571 |
+
if union_cnet in new_sd:
|
| 572 |
+
num_union_modes = new_sd[union_cnet].shape[0]
|
| 573 |
+
|
| 574 |
+
control_latent_channels = new_sd.get("pos_embed_input.weight").shape[1] // 4
|
| 575 |
+
concat_mask = False
|
| 576 |
+
if control_latent_channels == 17:
|
| 577 |
+
concat_mask = True
|
| 578 |
+
|
| 579 |
+
control_model = comfy.ldm.flux.controlnet.ControlNetFlux(latent_input=True, num_union_modes=num_union_modes, control_latent_channels=control_latent_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
|
| 580 |
+
control_model = controlnet_load_state_dict(control_model, new_sd)
|
| 581 |
+
|
| 582 |
+
latent_format = comfy.latent_formats.Flux()
|
| 583 |
+
extra_conds = ['y', 'guidance']
|
| 584 |
+
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
|
| 585 |
+
return control
|
| 586 |
+
|
| 587 |
+
def convert_mistoline(sd):
|
| 588 |
+
return comfy.utils.state_dict_prefix_replace(sd, {"single_controlnet_blocks.": "controlnet_single_blocks."})
|
| 589 |
+
|
| 590 |
+
|
| 591 |
+
def load_controlnet_state_dict(state_dict, model=None, model_options={}):
|
| 592 |
+
controlnet_data = state_dict
|
| 593 |
+
if 'after_proj_list.18.bias' in controlnet_data.keys(): #Hunyuan DiT
|
| 594 |
+
return load_controlnet_hunyuandit(controlnet_data, model_options=model_options)
|
| 595 |
+
|
| 596 |
+
if "lora_controlnet" in controlnet_data:
|
| 597 |
+
return ControlLora(controlnet_data, model_options=model_options)
|
| 598 |
+
|
| 599 |
+
controlnet_config = None
|
| 600 |
+
supported_inference_dtypes = None
|
| 601 |
+
|
| 602 |
+
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
|
| 603 |
+
controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data)
|
| 604 |
+
diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
|
| 605 |
+
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
|
| 606 |
+
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
|
| 607 |
+
|
| 608 |
+
count = 0
|
| 609 |
+
loop = True
|
| 610 |
+
while loop:
|
| 611 |
+
suffix = [".weight", ".bias"]
|
| 612 |
+
for s in suffix:
|
| 613 |
+
k_in = "controlnet_down_blocks.{}{}".format(count, s)
|
| 614 |
+
k_out = "zero_convs.{}.0{}".format(count, s)
|
| 615 |
+
if k_in not in controlnet_data:
|
| 616 |
+
loop = False
|
| 617 |
+
break
|
| 618 |
+
diffusers_keys[k_in] = k_out
|
| 619 |
+
count += 1
|
| 620 |
+
|
| 621 |
+
count = 0
|
| 622 |
+
loop = True
|
| 623 |
+
while loop:
|
| 624 |
+
suffix = [".weight", ".bias"]
|
| 625 |
+
for s in suffix:
|
| 626 |
+
if count == 0:
|
| 627 |
+
k_in = "controlnet_cond_embedding.conv_in{}".format(s)
|
| 628 |
+
else:
|
| 629 |
+
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
|
| 630 |
+
k_out = "input_hint_block.{}{}".format(count * 2, s)
|
| 631 |
+
if k_in not in controlnet_data:
|
| 632 |
+
k_in = "controlnet_cond_embedding.conv_out{}".format(s)
|
| 633 |
+
loop = False
|
| 634 |
+
diffusers_keys[k_in] = k_out
|
| 635 |
+
count += 1
|
| 636 |
+
|
| 637 |
+
new_sd = {}
|
| 638 |
+
for k in diffusers_keys:
|
| 639 |
+
if k in controlnet_data:
|
| 640 |
+
new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
|
| 641 |
+
|
| 642 |
+
if "control_add_embedding.linear_1.bias" in controlnet_data: #Union Controlnet
|
| 643 |
+
controlnet_config["union_controlnet_num_control_type"] = controlnet_data["task_embedding"].shape[0]
|
| 644 |
+
for k in list(controlnet_data.keys()):
|
| 645 |
+
new_k = k.replace('.attn.in_proj_', '.attn.in_proj.')
|
| 646 |
+
new_sd[new_k] = controlnet_data.pop(k)
|
| 647 |
+
|
| 648 |
+
leftover_keys = controlnet_data.keys()
|
| 649 |
+
if len(leftover_keys) > 0:
|
| 650 |
+
logging.warning("leftover keys: {}".format(leftover_keys))
|
| 651 |
+
controlnet_data = new_sd
|
| 652 |
+
elif "controlnet_blocks.0.weight" in controlnet_data:
|
| 653 |
+
if "double_blocks.0.img_attn.norm.key_norm.scale" in controlnet_data:
|
| 654 |
+
return load_controlnet_flux_xlabs_mistoline(controlnet_data, model_options=model_options)
|
| 655 |
+
elif "pos_embed_input.proj.weight" in controlnet_data:
|
| 656 |
+
if "transformer_blocks.0.adaLN_modulation.1.bias" in controlnet_data:
|
| 657 |
+
return load_controlnet_sd35(controlnet_data, model_options=model_options) #Stability sd3.5 format
|
| 658 |
+
else:
|
| 659 |
+
return load_controlnet_mmdit(controlnet_data, model_options=model_options) #SD3 diffusers controlnet
|
| 660 |
+
elif "controlnet_x_embedder.weight" in controlnet_data:
|
| 661 |
+
return load_controlnet_flux_instantx(controlnet_data, model_options=model_options)
|
| 662 |
+
elif "controlnet_blocks.0.linear.weight" in controlnet_data: #mistoline flux
|
| 663 |
+
return load_controlnet_flux_xlabs_mistoline(convert_mistoline(controlnet_data), mistoline=True, model_options=model_options)
|
| 664 |
+
|
| 665 |
+
pth_key = 'control_model.zero_convs.0.0.weight'
|
| 666 |
+
pth = False
|
| 667 |
+
key = 'zero_convs.0.0.weight'
|
| 668 |
+
if pth_key in controlnet_data:
|
| 669 |
+
pth = True
|
| 670 |
+
key = pth_key
|
| 671 |
+
prefix = "control_model."
|
| 672 |
+
elif key in controlnet_data:
|
| 673 |
+
prefix = ""
|
| 674 |
+
else:
|
| 675 |
+
net = load_t2i_adapter(controlnet_data, model_options=model_options)
|
| 676 |
+
if net is None:
|
| 677 |
+
logging.error("error could not detect control model type.")
|
| 678 |
+
return net
|
| 679 |
+
|
| 680 |
+
if controlnet_config is None:
|
| 681 |
+
model_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, True)
|
| 682 |
+
supported_inference_dtypes = list(model_config.supported_inference_dtypes)
|
| 683 |
+
controlnet_config = model_config.unet_config
|
| 684 |
+
|
| 685 |
+
unet_dtype = model_options.get("dtype", None)
|
| 686 |
+
if unet_dtype is None:
|
| 687 |
+
weight_dtype = comfy.utils.weight_dtype(controlnet_data)
|
| 688 |
+
|
| 689 |
+
if supported_inference_dtypes is None:
|
| 690 |
+
supported_inference_dtypes = [comfy.model_management.unet_dtype()]
|
| 691 |
+
|
| 692 |
+
if weight_dtype is not None:
|
| 693 |
+
supported_inference_dtypes.append(weight_dtype)
|
| 694 |
+
|
| 695 |
+
unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes)
|
| 696 |
+
|
| 697 |
+
load_device = comfy.model_management.get_torch_device()
|
| 698 |
+
|
| 699 |
+
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
|
| 700 |
+
operations = model_options.get("custom_operations", None)
|
| 701 |
+
if operations is None:
|
| 702 |
+
operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype)
|
| 703 |
+
|
| 704 |
+
controlnet_config["operations"] = operations
|
| 705 |
+
controlnet_config["dtype"] = unet_dtype
|
| 706 |
+
controlnet_config["device"] = comfy.model_management.unet_offload_device()
|
| 707 |
+
controlnet_config.pop("out_channels")
|
| 708 |
+
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
|
| 709 |
+
control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
|
| 710 |
+
|
| 711 |
+
if pth:
|
| 712 |
+
if 'difference' in controlnet_data:
|
| 713 |
+
if model is not None:
|
| 714 |
+
comfy.model_management.load_models_gpu([model])
|
| 715 |
+
model_sd = model.model_state_dict()
|
| 716 |
+
for x in controlnet_data:
|
| 717 |
+
c_m = "control_model."
|
| 718 |
+
if x.startswith(c_m):
|
| 719 |
+
sd_key = "diffusion_model.{}".format(x[len(c_m):])
|
| 720 |
+
if sd_key in model_sd:
|
| 721 |
+
cd = controlnet_data[x]
|
| 722 |
+
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
|
| 723 |
+
else:
|
| 724 |
+
logging.warning("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
|
| 725 |
+
|
| 726 |
+
class WeightsLoader(torch.nn.Module):
|
| 727 |
+
pass
|
| 728 |
+
w = WeightsLoader()
|
| 729 |
+
w.control_model = control_model
|
| 730 |
+
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
|
| 731 |
+
else:
|
| 732 |
+
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
|
| 733 |
+
|
| 734 |
+
if len(missing) > 0:
|
| 735 |
+
logging.warning("missing controlnet keys: {}".format(missing))
|
| 736 |
+
|
| 737 |
+
if len(unexpected) > 0:
|
| 738 |
+
logging.debug("unexpected controlnet keys: {}".format(unexpected))
|
| 739 |
+
|
| 740 |
+
global_average_pooling = model_options.get("global_average_pooling", False)
|
| 741 |
+
control = ControlNet(control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
|
| 742 |
+
return control
|
| 743 |
+
|
| 744 |
+
def load_controlnet(ckpt_path, model=None, model_options={}):
|
| 745 |
+
if "global_average_pooling" not in model_options:
|
| 746 |
+
filename = os.path.splitext(ckpt_path)[0]
|
| 747 |
+
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
|
| 748 |
+
model_options["global_average_pooling"] = True
|
| 749 |
+
|
| 750 |
+
cnet = load_controlnet_state_dict(comfy.utils.load_torch_file(ckpt_path, safe_load=True), model=model, model_options=model_options)
|
| 751 |
+
if cnet is None:
|
| 752 |
+
logging.error("error checkpoint does not contain controlnet or t2i adapter data {}".format(ckpt_path))
|
| 753 |
+
return cnet
|
| 754 |
+
|
| 755 |
+
class T2IAdapter(ControlBase):
|
| 756 |
+
def __init__(self, t2i_model, channels_in, compression_ratio, upscale_algorithm, device=None):
|
| 757 |
+
super().__init__()
|
| 758 |
+
self.t2i_model = t2i_model
|
| 759 |
+
self.channels_in = channels_in
|
| 760 |
+
self.control_input = None
|
| 761 |
+
self.compression_ratio = compression_ratio
|
| 762 |
+
self.upscale_algorithm = upscale_algorithm
|
| 763 |
+
if device is None:
|
| 764 |
+
device = comfy.model_management.get_torch_device()
|
| 765 |
+
self.device = device
|
| 766 |
+
|
| 767 |
+
def scale_image_to(self, width, height):
|
| 768 |
+
unshuffle_amount = self.t2i_model.unshuffle_amount
|
| 769 |
+
width = math.ceil(width / unshuffle_amount) * unshuffle_amount
|
| 770 |
+
height = math.ceil(height / unshuffle_amount) * unshuffle_amount
|
| 771 |
+
return width, height
|
| 772 |
+
|
| 773 |
+
def get_control(self, x_noisy, t, cond, batched_number, transformer_options):
|
| 774 |
+
control_prev = None
|
| 775 |
+
if self.previous_controlnet is not None:
|
| 776 |
+
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number, transformer_options)
|
| 777 |
+
|
| 778 |
+
if self.timestep_range is not None:
|
| 779 |
+
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
| 780 |
+
if control_prev is not None:
|
| 781 |
+
return control_prev
|
| 782 |
+
else:
|
| 783 |
+
return None
|
| 784 |
+
|
| 785 |
+
if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
|
| 786 |
+
if self.cond_hint is not None:
|
| 787 |
+
del self.cond_hint
|
| 788 |
+
self.control_input = None
|
| 789 |
+
self.cond_hint = None
|
| 790 |
+
width, height = self.scale_image_to(x_noisy.shape[3] * self.compression_ratio, x_noisy.shape[2] * self.compression_ratio)
|
| 791 |
+
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, self.upscale_algorithm, "center").float().to(self.device)
|
| 792 |
+
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
|
| 793 |
+
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
|
| 794 |
+
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
| 795 |
+
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
| 796 |
+
if self.control_input is None:
|
| 797 |
+
self.t2i_model.to(x_noisy.dtype)
|
| 798 |
+
self.t2i_model.to(self.device)
|
| 799 |
+
self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype))
|
| 800 |
+
self.t2i_model.cpu()
|
| 801 |
+
|
| 802 |
+
control_input = {}
|
| 803 |
+
for k in self.control_input:
|
| 804 |
+
control_input[k] = list(map(lambda a: None if a is None else a.clone(), self.control_input[k]))
|
| 805 |
+
|
| 806 |
+
return self.control_merge(control_input, control_prev, x_noisy.dtype)
|
| 807 |
+
|
| 808 |
+
def copy(self):
|
| 809 |
+
c = T2IAdapter(self.t2i_model, self.channels_in, self.compression_ratio, self.upscale_algorithm)
|
| 810 |
+
self.copy_to(c)
|
| 811 |
+
return c
|
| 812 |
+
|
| 813 |
+
def load_t2i_adapter(t2i_data, model_options={}): #TODO: model_options
|
| 814 |
+
compression_ratio = 8
|
| 815 |
+
upscale_algorithm = 'nearest-exact'
|
| 816 |
+
|
| 817 |
+
if 'adapter' in t2i_data:
|
| 818 |
+
t2i_data = t2i_data['adapter']
|
| 819 |
+
if 'adapter.body.0.resnets.0.block1.weight' in t2i_data: #diffusers format
|
| 820 |
+
prefix_replace = {}
|
| 821 |
+
for i in range(4):
|
| 822 |
+
for j in range(2):
|
| 823 |
+
prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j)
|
| 824 |
+
prefix_replace["adapter.body.{}.".format(i, )] = "body.{}.".format(i * 2)
|
| 825 |
+
prefix_replace["adapter."] = ""
|
| 826 |
+
t2i_data = comfy.utils.state_dict_prefix_replace(t2i_data, prefix_replace)
|
| 827 |
+
keys = t2i_data.keys()
|
| 828 |
+
|
| 829 |
+
if "body.0.in_conv.weight" in keys:
|
| 830 |
+
cin = t2i_data['body.0.in_conv.weight'].shape[1]
|
| 831 |
+
model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
|
| 832 |
+
elif 'conv_in.weight' in keys:
|
| 833 |
+
cin = t2i_data['conv_in.weight'].shape[1]
|
| 834 |
+
channel = t2i_data['conv_in.weight'].shape[0]
|
| 835 |
+
ksize = t2i_data['body.0.block2.weight'].shape[2]
|
| 836 |
+
use_conv = False
|
| 837 |
+
down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
|
| 838 |
+
if len(down_opts) > 0:
|
| 839 |
+
use_conv = True
|
| 840 |
+
xl = False
|
| 841 |
+
if cin == 256 or cin == 768:
|
| 842 |
+
xl = True
|
| 843 |
+
model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
|
| 844 |
+
elif "backbone.0.0.weight" in keys:
|
| 845 |
+
model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.0.weight'].shape[1], proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63])
|
| 846 |
+
compression_ratio = 32
|
| 847 |
+
upscale_algorithm = 'bilinear'
|
| 848 |
+
elif "backbone.10.blocks.0.weight" in keys:
|
| 849 |
+
model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.weight'].shape[1], bottleneck_mode="large", proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63])
|
| 850 |
+
compression_ratio = 1
|
| 851 |
+
upscale_algorithm = 'nearest-exact'
|
| 852 |
+
else:
|
| 853 |
+
return None
|
| 854 |
+
|
| 855 |
+
missing, unexpected = model_ad.load_state_dict(t2i_data)
|
| 856 |
+
if len(missing) > 0:
|
| 857 |
+
logging.warning("t2i missing {}".format(missing))
|
| 858 |
+
|
| 859 |
+
if len(unexpected) > 0:
|
| 860 |
+
logging.debug("t2i unexpected {}".format(unexpected))
|
| 861 |
+
|
| 862 |
+
return T2IAdapter(model_ad, model_ad.input_channels, compression_ratio, upscale_algorithm)
|
comfy/diffusers_convert.py
ADDED
|
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import torch
|
| 3 |
+
import logging
|
| 4 |
+
|
| 5 |
+
# conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py
|
| 6 |
+
|
| 7 |
+
# =================#
|
| 8 |
+
# UNet Conversion #
|
| 9 |
+
# =================#
|
| 10 |
+
|
| 11 |
+
unet_conversion_map = [
|
| 12 |
+
# (stable-diffusion, HF Diffusers)
|
| 13 |
+
("time_embed.0.weight", "time_embedding.linear_1.weight"),
|
| 14 |
+
("time_embed.0.bias", "time_embedding.linear_1.bias"),
|
| 15 |
+
("time_embed.2.weight", "time_embedding.linear_2.weight"),
|
| 16 |
+
("time_embed.2.bias", "time_embedding.linear_2.bias"),
|
| 17 |
+
("input_blocks.0.0.weight", "conv_in.weight"),
|
| 18 |
+
("input_blocks.0.0.bias", "conv_in.bias"),
|
| 19 |
+
("out.0.weight", "conv_norm_out.weight"),
|
| 20 |
+
("out.0.bias", "conv_norm_out.bias"),
|
| 21 |
+
("out.2.weight", "conv_out.weight"),
|
| 22 |
+
("out.2.bias", "conv_out.bias"),
|
| 23 |
+
]
|
| 24 |
+
|
| 25 |
+
unet_conversion_map_resnet = [
|
| 26 |
+
# (stable-diffusion, HF Diffusers)
|
| 27 |
+
("in_layers.0", "norm1"),
|
| 28 |
+
("in_layers.2", "conv1"),
|
| 29 |
+
("out_layers.0", "norm2"),
|
| 30 |
+
("out_layers.3", "conv2"),
|
| 31 |
+
("emb_layers.1", "time_emb_proj"),
|
| 32 |
+
("skip_connection", "conv_shortcut"),
|
| 33 |
+
]
|
| 34 |
+
|
| 35 |
+
unet_conversion_map_layer = []
|
| 36 |
+
# hardcoded number of downblocks and resnets/attentions...
|
| 37 |
+
# would need smarter logic for other networks.
|
| 38 |
+
for i in range(4):
|
| 39 |
+
# loop over downblocks/upblocks
|
| 40 |
+
|
| 41 |
+
for j in range(2):
|
| 42 |
+
# loop over resnets/attentions for downblocks
|
| 43 |
+
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
| 44 |
+
sd_down_res_prefix = f"input_blocks.{3 * i + j + 1}.0."
|
| 45 |
+
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
| 46 |
+
|
| 47 |
+
if i < 3:
|
| 48 |
+
# no attention layers in down_blocks.3
|
| 49 |
+
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
| 50 |
+
sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1."
|
| 51 |
+
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
| 52 |
+
|
| 53 |
+
for j in range(3):
|
| 54 |
+
# loop over resnets/attentions for upblocks
|
| 55 |
+
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
| 56 |
+
sd_up_res_prefix = f"output_blocks.{3 * i + j}.0."
|
| 57 |
+
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
| 58 |
+
|
| 59 |
+
if i > 0:
|
| 60 |
+
# no attention layers in up_blocks.0
|
| 61 |
+
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
| 62 |
+
sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1."
|
| 63 |
+
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
| 64 |
+
|
| 65 |
+
if i < 3:
|
| 66 |
+
# no downsample in down_blocks.3
|
| 67 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
| 68 |
+
sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op."
|
| 69 |
+
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
| 70 |
+
|
| 71 |
+
# no upsample in up_blocks.3
|
| 72 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
| 73 |
+
sd_upsample_prefix = f"output_blocks.{3 * i + 2}.{1 if i == 0 else 2}."
|
| 74 |
+
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
| 75 |
+
|
| 76 |
+
hf_mid_atn_prefix = "mid_block.attentions.0."
|
| 77 |
+
sd_mid_atn_prefix = "middle_block.1."
|
| 78 |
+
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
| 79 |
+
|
| 80 |
+
for j in range(2):
|
| 81 |
+
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
| 82 |
+
sd_mid_res_prefix = f"middle_block.{2 * j}."
|
| 83 |
+
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def convert_unet_state_dict(unet_state_dict):
|
| 87 |
+
# buyer beware: this is a *brittle* function,
|
| 88 |
+
# and correct output requires that all of these pieces interact in
|
| 89 |
+
# the exact order in which I have arranged them.
|
| 90 |
+
mapping = {k: k for k in unet_state_dict.keys()}
|
| 91 |
+
for sd_name, hf_name in unet_conversion_map:
|
| 92 |
+
mapping[hf_name] = sd_name
|
| 93 |
+
for k, v in mapping.items():
|
| 94 |
+
if "resnets" in k:
|
| 95 |
+
for sd_part, hf_part in unet_conversion_map_resnet:
|
| 96 |
+
v = v.replace(hf_part, sd_part)
|
| 97 |
+
mapping[k] = v
|
| 98 |
+
for k, v in mapping.items():
|
| 99 |
+
for sd_part, hf_part in unet_conversion_map_layer:
|
| 100 |
+
v = v.replace(hf_part, sd_part)
|
| 101 |
+
mapping[k] = v
|
| 102 |
+
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
|
| 103 |
+
return new_state_dict
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
# ================#
|
| 107 |
+
# VAE Conversion #
|
| 108 |
+
# ================#
|
| 109 |
+
|
| 110 |
+
vae_conversion_map = [
|
| 111 |
+
# (stable-diffusion, HF Diffusers)
|
| 112 |
+
("nin_shortcut", "conv_shortcut"),
|
| 113 |
+
("norm_out", "conv_norm_out"),
|
| 114 |
+
("mid.attn_1.", "mid_block.attentions.0."),
|
| 115 |
+
]
|
| 116 |
+
|
| 117 |
+
for i in range(4):
|
| 118 |
+
# down_blocks have two resnets
|
| 119 |
+
for j in range(2):
|
| 120 |
+
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
|
| 121 |
+
sd_down_prefix = f"encoder.down.{i}.block.{j}."
|
| 122 |
+
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
|
| 123 |
+
|
| 124 |
+
if i < 3:
|
| 125 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
|
| 126 |
+
sd_downsample_prefix = f"down.{i}.downsample."
|
| 127 |
+
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
|
| 128 |
+
|
| 129 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
| 130 |
+
sd_upsample_prefix = f"up.{3 - i}.upsample."
|
| 131 |
+
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
|
| 132 |
+
|
| 133 |
+
# up_blocks have three resnets
|
| 134 |
+
# also, up blocks in hf are numbered in reverse from sd
|
| 135 |
+
for j in range(3):
|
| 136 |
+
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
|
| 137 |
+
sd_up_prefix = f"decoder.up.{3 - i}.block.{j}."
|
| 138 |
+
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
|
| 139 |
+
|
| 140 |
+
# this part accounts for mid blocks in both the encoder and the decoder
|
| 141 |
+
for i in range(2):
|
| 142 |
+
hf_mid_res_prefix = f"mid_block.resnets.{i}."
|
| 143 |
+
sd_mid_res_prefix = f"mid.block_{i + 1}."
|
| 144 |
+
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
| 145 |
+
|
| 146 |
+
vae_conversion_map_attn = [
|
| 147 |
+
# (stable-diffusion, HF Diffusers)
|
| 148 |
+
("norm.", "group_norm."),
|
| 149 |
+
("q.", "query."),
|
| 150 |
+
("k.", "key."),
|
| 151 |
+
("v.", "value."),
|
| 152 |
+
("q.", "to_q."),
|
| 153 |
+
("k.", "to_k."),
|
| 154 |
+
("v.", "to_v."),
|
| 155 |
+
("proj_out.", "to_out.0."),
|
| 156 |
+
("proj_out.", "proj_attn."),
|
| 157 |
+
]
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def reshape_weight_for_sd(w, conv3d=False):
|
| 161 |
+
# convert HF linear weights to SD conv2d weights
|
| 162 |
+
if conv3d:
|
| 163 |
+
return w.reshape(*w.shape, 1, 1, 1)
|
| 164 |
+
else:
|
| 165 |
+
return w.reshape(*w.shape, 1, 1)
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def convert_vae_state_dict(vae_state_dict):
|
| 169 |
+
mapping = {k: k for k in vae_state_dict.keys()}
|
| 170 |
+
conv3d = False
|
| 171 |
+
for k, v in mapping.items():
|
| 172 |
+
for sd_part, hf_part in vae_conversion_map:
|
| 173 |
+
v = v.replace(hf_part, sd_part)
|
| 174 |
+
if v.endswith(".conv.weight"):
|
| 175 |
+
if not conv3d and vae_state_dict[k].ndim == 5:
|
| 176 |
+
conv3d = True
|
| 177 |
+
mapping[k] = v
|
| 178 |
+
for k, v in mapping.items():
|
| 179 |
+
if "attentions" in k:
|
| 180 |
+
for sd_part, hf_part in vae_conversion_map_attn:
|
| 181 |
+
v = v.replace(hf_part, sd_part)
|
| 182 |
+
mapping[k] = v
|
| 183 |
+
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
| 184 |
+
weights_to_convert = ["q", "k", "v", "proj_out"]
|
| 185 |
+
for k, v in new_state_dict.items():
|
| 186 |
+
for weight_name in weights_to_convert:
|
| 187 |
+
if f"mid.attn_1.{weight_name}.weight" in k:
|
| 188 |
+
logging.debug(f"Reshaping {k} for SD format")
|
| 189 |
+
new_state_dict[k] = reshape_weight_for_sd(v, conv3d=conv3d)
|
| 190 |
+
return new_state_dict
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
# =========================#
|
| 194 |
+
# Text Encoder Conversion #
|
| 195 |
+
# =========================#
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
textenc_conversion_lst = [
|
| 199 |
+
# (stable-diffusion, HF Diffusers)
|
| 200 |
+
("resblocks.", "text_model.encoder.layers."),
|
| 201 |
+
("ln_1", "layer_norm1"),
|
| 202 |
+
("ln_2", "layer_norm2"),
|
| 203 |
+
(".c_fc.", ".fc1."),
|
| 204 |
+
(".c_proj.", ".fc2."),
|
| 205 |
+
(".attn", ".self_attn"),
|
| 206 |
+
("ln_final.", "transformer.text_model.final_layer_norm."),
|
| 207 |
+
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
|
| 208 |
+
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
|
| 209 |
+
]
|
| 210 |
+
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
|
| 211 |
+
textenc_pattern = re.compile("|".join(protected.keys()))
|
| 212 |
+
|
| 213 |
+
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
|
| 214 |
+
code2idx = {"q": 0, "k": 1, "v": 2}
|
| 215 |
+
|
| 216 |
+
# This function exists because at the time of writing torch.cat can't do fp8 with cuda
|
| 217 |
+
def cat_tensors(tensors):
|
| 218 |
+
x = 0
|
| 219 |
+
for t in tensors:
|
| 220 |
+
x += t.shape[0]
|
| 221 |
+
|
| 222 |
+
shape = [x] + list(tensors[0].shape)[1:]
|
| 223 |
+
out = torch.empty(shape, device=tensors[0].device, dtype=tensors[0].dtype)
|
| 224 |
+
|
| 225 |
+
x = 0
|
| 226 |
+
for t in tensors:
|
| 227 |
+
out[x:x + t.shape[0]] = t
|
| 228 |
+
x += t.shape[0]
|
| 229 |
+
|
| 230 |
+
return out
|
| 231 |
+
|
| 232 |
+
def convert_text_enc_state_dict_v20(text_enc_dict, prefix=""):
|
| 233 |
+
new_state_dict = {}
|
| 234 |
+
capture_qkv_weight = {}
|
| 235 |
+
capture_qkv_bias = {}
|
| 236 |
+
for k, v in text_enc_dict.items():
|
| 237 |
+
if not k.startswith(prefix):
|
| 238 |
+
continue
|
| 239 |
+
if (
|
| 240 |
+
k.endswith(".self_attn.q_proj.weight")
|
| 241 |
+
or k.endswith(".self_attn.k_proj.weight")
|
| 242 |
+
or k.endswith(".self_attn.v_proj.weight")
|
| 243 |
+
):
|
| 244 |
+
k_pre = k[: -len(".q_proj.weight")]
|
| 245 |
+
k_code = k[-len("q_proj.weight")]
|
| 246 |
+
if k_pre not in capture_qkv_weight:
|
| 247 |
+
capture_qkv_weight[k_pre] = [None, None, None]
|
| 248 |
+
capture_qkv_weight[k_pre][code2idx[k_code]] = v
|
| 249 |
+
continue
|
| 250 |
+
|
| 251 |
+
if (
|
| 252 |
+
k.endswith(".self_attn.q_proj.bias")
|
| 253 |
+
or k.endswith(".self_attn.k_proj.bias")
|
| 254 |
+
or k.endswith(".self_attn.v_proj.bias")
|
| 255 |
+
):
|
| 256 |
+
k_pre = k[: -len(".q_proj.bias")]
|
| 257 |
+
k_code = k[-len("q_proj.bias")]
|
| 258 |
+
if k_pre not in capture_qkv_bias:
|
| 259 |
+
capture_qkv_bias[k_pre] = [None, None, None]
|
| 260 |
+
capture_qkv_bias[k_pre][code2idx[k_code]] = v
|
| 261 |
+
continue
|
| 262 |
+
|
| 263 |
+
text_proj = "transformer.text_projection.weight"
|
| 264 |
+
if k.endswith(text_proj):
|
| 265 |
+
new_state_dict[k.replace(text_proj, "text_projection")] = v.transpose(0, 1).contiguous()
|
| 266 |
+
else:
|
| 267 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
|
| 268 |
+
new_state_dict[relabelled_key] = v
|
| 269 |
+
|
| 270 |
+
for k_pre, tensors in capture_qkv_weight.items():
|
| 271 |
+
if None in tensors:
|
| 272 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
| 273 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
| 274 |
+
new_state_dict[relabelled_key + ".in_proj_weight"] = cat_tensors(tensors)
|
| 275 |
+
|
| 276 |
+
for k_pre, tensors in capture_qkv_bias.items():
|
| 277 |
+
if None in tensors:
|
| 278 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
| 279 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
| 280 |
+
new_state_dict[relabelled_key + ".in_proj_bias"] = cat_tensors(tensors)
|
| 281 |
+
|
| 282 |
+
return new_state_dict
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
def convert_text_enc_state_dict(text_enc_dict):
|
| 286 |
+
return text_enc_dict
|
| 287 |
+
|
| 288 |
+
|
comfy/diffusers_load.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import comfy.sd
|
| 4 |
+
|
| 5 |
+
def first_file(path, filenames):
|
| 6 |
+
for f in filenames:
|
| 7 |
+
p = os.path.join(path, f)
|
| 8 |
+
if os.path.exists(p):
|
| 9 |
+
return p
|
| 10 |
+
return None
|
| 11 |
+
|
| 12 |
+
def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_directory=None):
|
| 13 |
+
diffusion_model_names = ["diffusion_pytorch_model.fp16.safetensors", "diffusion_pytorch_model.safetensors", "diffusion_pytorch_model.fp16.bin", "diffusion_pytorch_model.bin"]
|
| 14 |
+
unet_path = first_file(os.path.join(model_path, "unet"), diffusion_model_names)
|
| 15 |
+
vae_path = first_file(os.path.join(model_path, "vae"), diffusion_model_names)
|
| 16 |
+
|
| 17 |
+
text_encoder_model_names = ["model.fp16.safetensors", "model.safetensors", "pytorch_model.fp16.bin", "pytorch_model.bin"]
|
| 18 |
+
text_encoder1_path = first_file(os.path.join(model_path, "text_encoder"), text_encoder_model_names)
|
| 19 |
+
text_encoder2_path = first_file(os.path.join(model_path, "text_encoder_2"), text_encoder_model_names)
|
| 20 |
+
|
| 21 |
+
text_encoder_paths = [text_encoder1_path]
|
| 22 |
+
if text_encoder2_path is not None:
|
| 23 |
+
text_encoder_paths.append(text_encoder2_path)
|
| 24 |
+
|
| 25 |
+
unet = comfy.sd.load_diffusion_model(unet_path)
|
| 26 |
+
|
| 27 |
+
clip = None
|
| 28 |
+
if output_clip:
|
| 29 |
+
clip = comfy.sd.load_clip(text_encoder_paths, embedding_directory=embedding_directory)
|
| 30 |
+
|
| 31 |
+
vae = None
|
| 32 |
+
if output_vae:
|
| 33 |
+
sd = comfy.utils.load_torch_file(vae_path)
|
| 34 |
+
vae = comfy.sd.VAE(sd=sd)
|
| 35 |
+
|
| 36 |
+
return (unet, clip, vae)
|
comfy/extra_samplers/uni_pc.py
ADDED
|
@@ -0,0 +1,873 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#code taken from: https://github.com/wl-zhao/UniPC and modified
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import math
|
| 5 |
+
import logging
|
| 6 |
+
|
| 7 |
+
from tqdm.auto import trange
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class NoiseScheduleVP:
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
schedule='discrete',
|
| 14 |
+
betas=None,
|
| 15 |
+
alphas_cumprod=None,
|
| 16 |
+
continuous_beta_0=0.1,
|
| 17 |
+
continuous_beta_1=20.,
|
| 18 |
+
):
|
| 19 |
+
r"""Create a wrapper class for the forward SDE (VP type).
|
| 20 |
+
|
| 21 |
+
***
|
| 22 |
+
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
|
| 23 |
+
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
|
| 24 |
+
***
|
| 25 |
+
|
| 26 |
+
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
|
| 27 |
+
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
|
| 28 |
+
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
|
| 29 |
+
|
| 30 |
+
log_alpha_t = self.marginal_log_mean_coeff(t)
|
| 31 |
+
sigma_t = self.marginal_std(t)
|
| 32 |
+
lambda_t = self.marginal_lambda(t)
|
| 33 |
+
|
| 34 |
+
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
|
| 35 |
+
|
| 36 |
+
t = self.inverse_lambda(lambda_t)
|
| 37 |
+
|
| 38 |
+
===============================================================
|
| 39 |
+
|
| 40 |
+
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
|
| 41 |
+
|
| 42 |
+
1. For discrete-time DPMs:
|
| 43 |
+
|
| 44 |
+
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
|
| 45 |
+
t_i = (i + 1) / N
|
| 46 |
+
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
|
| 47 |
+
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
|
| 48 |
+
|
| 49 |
+
Args:
|
| 50 |
+
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
|
| 51 |
+
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
|
| 52 |
+
|
| 53 |
+
Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
|
| 54 |
+
|
| 55 |
+
**Important**: Please pay special attention for the args for `alphas_cumprod`:
|
| 56 |
+
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
|
| 57 |
+
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
|
| 58 |
+
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
|
| 59 |
+
alpha_{t_n} = \sqrt{\hat{alpha_n}},
|
| 60 |
+
and
|
| 61 |
+
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
2. For continuous-time DPMs:
|
| 65 |
+
|
| 66 |
+
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
|
| 67 |
+
schedule are the default settings in DDPM and improved-DDPM:
|
| 68 |
+
|
| 69 |
+
Args:
|
| 70 |
+
beta_min: A `float` number. The smallest beta for the linear schedule.
|
| 71 |
+
beta_max: A `float` number. The largest beta for the linear schedule.
|
| 72 |
+
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
|
| 73 |
+
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
|
| 74 |
+
T: A `float` number. The ending time of the forward process.
|
| 75 |
+
|
| 76 |
+
===============================================================
|
| 77 |
+
|
| 78 |
+
Args:
|
| 79 |
+
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
|
| 80 |
+
'linear' or 'cosine' for continuous-time DPMs.
|
| 81 |
+
Returns:
|
| 82 |
+
A wrapper object of the forward SDE (VP type).
|
| 83 |
+
|
| 84 |
+
===============================================================
|
| 85 |
+
|
| 86 |
+
Example:
|
| 87 |
+
|
| 88 |
+
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
|
| 89 |
+
>>> ns = NoiseScheduleVP('discrete', betas=betas)
|
| 90 |
+
|
| 91 |
+
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
|
| 92 |
+
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
|
| 93 |
+
|
| 94 |
+
# For continuous-time DPMs (VPSDE), linear schedule:
|
| 95 |
+
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
|
| 96 |
+
|
| 97 |
+
"""
|
| 98 |
+
|
| 99 |
+
if schedule not in ['discrete', 'linear', 'cosine']:
|
| 100 |
+
raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
|
| 101 |
+
|
| 102 |
+
self.schedule = schedule
|
| 103 |
+
if schedule == 'discrete':
|
| 104 |
+
if betas is not None:
|
| 105 |
+
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
|
| 106 |
+
else:
|
| 107 |
+
assert alphas_cumprod is not None
|
| 108 |
+
log_alphas = 0.5 * torch.log(alphas_cumprod)
|
| 109 |
+
self.total_N = len(log_alphas)
|
| 110 |
+
self.T = 1.
|
| 111 |
+
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
|
| 112 |
+
self.log_alpha_array = log_alphas.reshape((1, -1,))
|
| 113 |
+
else:
|
| 114 |
+
self.total_N = 1000
|
| 115 |
+
self.beta_0 = continuous_beta_0
|
| 116 |
+
self.beta_1 = continuous_beta_1
|
| 117 |
+
self.cosine_s = 0.008
|
| 118 |
+
self.cosine_beta_max = 999.
|
| 119 |
+
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
|
| 120 |
+
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
|
| 121 |
+
self.schedule = schedule
|
| 122 |
+
if schedule == 'cosine':
|
| 123 |
+
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
|
| 124 |
+
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
|
| 125 |
+
self.T = 0.9946
|
| 126 |
+
else:
|
| 127 |
+
self.T = 1.
|
| 128 |
+
|
| 129 |
+
def marginal_log_mean_coeff(self, t):
|
| 130 |
+
"""
|
| 131 |
+
Compute log(alpha_t) of a given continuous-time label t in [0, T].
|
| 132 |
+
"""
|
| 133 |
+
if self.schedule == 'discrete':
|
| 134 |
+
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
|
| 135 |
+
elif self.schedule == 'linear':
|
| 136 |
+
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
|
| 137 |
+
elif self.schedule == 'cosine':
|
| 138 |
+
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
|
| 139 |
+
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
|
| 140 |
+
return log_alpha_t
|
| 141 |
+
|
| 142 |
+
def marginal_alpha(self, t):
|
| 143 |
+
"""
|
| 144 |
+
Compute alpha_t of a given continuous-time label t in [0, T].
|
| 145 |
+
"""
|
| 146 |
+
return torch.exp(self.marginal_log_mean_coeff(t))
|
| 147 |
+
|
| 148 |
+
def marginal_std(self, t):
|
| 149 |
+
"""
|
| 150 |
+
Compute sigma_t of a given continuous-time label t in [0, T].
|
| 151 |
+
"""
|
| 152 |
+
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
| 153 |
+
|
| 154 |
+
def marginal_lambda(self, t):
|
| 155 |
+
"""
|
| 156 |
+
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
| 157 |
+
"""
|
| 158 |
+
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
| 159 |
+
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
| 160 |
+
return log_mean_coeff - log_std
|
| 161 |
+
|
| 162 |
+
def inverse_lambda(self, lamb):
|
| 163 |
+
"""
|
| 164 |
+
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
|
| 165 |
+
"""
|
| 166 |
+
if self.schedule == 'linear':
|
| 167 |
+
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
| 168 |
+
Delta = self.beta_0**2 + tmp
|
| 169 |
+
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
|
| 170 |
+
elif self.schedule == 'discrete':
|
| 171 |
+
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
|
| 172 |
+
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
|
| 173 |
+
return t.reshape((-1,))
|
| 174 |
+
else:
|
| 175 |
+
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
| 176 |
+
t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
|
| 177 |
+
t = t_fn(log_alpha)
|
| 178 |
+
return t
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def model_wrapper(
|
| 182 |
+
model,
|
| 183 |
+
noise_schedule,
|
| 184 |
+
model_type="noise",
|
| 185 |
+
model_kwargs={},
|
| 186 |
+
guidance_type="uncond",
|
| 187 |
+
condition=None,
|
| 188 |
+
unconditional_condition=None,
|
| 189 |
+
guidance_scale=1.,
|
| 190 |
+
classifier_fn=None,
|
| 191 |
+
classifier_kwargs={},
|
| 192 |
+
):
|
| 193 |
+
"""Create a wrapper function for the noise prediction model.
|
| 194 |
+
|
| 195 |
+
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
|
| 196 |
+
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
|
| 197 |
+
|
| 198 |
+
We support four types of the diffusion model by setting `model_type`:
|
| 199 |
+
|
| 200 |
+
1. "noise": noise prediction model. (Trained by predicting noise).
|
| 201 |
+
|
| 202 |
+
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
|
| 203 |
+
|
| 204 |
+
3. "v": velocity prediction model. (Trained by predicting the velocity).
|
| 205 |
+
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
|
| 206 |
+
|
| 207 |
+
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
|
| 208 |
+
arXiv preprint arXiv:2202.00512 (2022).
|
| 209 |
+
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
|
| 210 |
+
arXiv preprint arXiv:2210.02303 (2022).
|
| 211 |
+
|
| 212 |
+
4. "score": marginal score function. (Trained by denoising score matching).
|
| 213 |
+
Note that the score function and the noise prediction model follows a simple relationship:
|
| 214 |
+
```
|
| 215 |
+
noise(x_t, t) = -sigma_t * score(x_t, t)
|
| 216 |
+
```
|
| 217 |
+
|
| 218 |
+
We support three types of guided sampling by DPMs by setting `guidance_type`:
|
| 219 |
+
1. "uncond": unconditional sampling by DPMs.
|
| 220 |
+
The input `model` has the following format:
|
| 221 |
+
``
|
| 222 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
| 223 |
+
``
|
| 224 |
+
|
| 225 |
+
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
|
| 226 |
+
The input `model` has the following format:
|
| 227 |
+
``
|
| 228 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
| 229 |
+
``
|
| 230 |
+
|
| 231 |
+
The input `classifier_fn` has the following format:
|
| 232 |
+
``
|
| 233 |
+
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
|
| 234 |
+
``
|
| 235 |
+
|
| 236 |
+
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
|
| 237 |
+
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
|
| 238 |
+
|
| 239 |
+
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
|
| 240 |
+
The input `model` has the following format:
|
| 241 |
+
``
|
| 242 |
+
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
|
| 243 |
+
``
|
| 244 |
+
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
|
| 245 |
+
|
| 246 |
+
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
|
| 247 |
+
arXiv preprint arXiv:2207.12598 (2022).
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
|
| 251 |
+
or continuous-time labels (i.e. epsilon to T).
|
| 252 |
+
|
| 253 |
+
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
|
| 254 |
+
``
|
| 255 |
+
def model_fn(x, t_continuous) -> noise:
|
| 256 |
+
t_input = get_model_input_time(t_continuous)
|
| 257 |
+
return noise_pred(model, x, t_input, **model_kwargs)
|
| 258 |
+
``
|
| 259 |
+
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
|
| 260 |
+
|
| 261 |
+
===============================================================
|
| 262 |
+
|
| 263 |
+
Args:
|
| 264 |
+
model: A diffusion model with the corresponding format described above.
|
| 265 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
| 266 |
+
model_type: A `str`. The parameterization type of the diffusion model.
|
| 267 |
+
"noise" or "x_start" or "v" or "score".
|
| 268 |
+
model_kwargs: A `dict`. A dict for the other inputs of the model function.
|
| 269 |
+
guidance_type: A `str`. The type of the guidance for sampling.
|
| 270 |
+
"uncond" or "classifier" or "classifier-free".
|
| 271 |
+
condition: A pytorch tensor. The condition for the guided sampling.
|
| 272 |
+
Only used for "classifier" or "classifier-free" guidance type.
|
| 273 |
+
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
|
| 274 |
+
Only used for "classifier-free" guidance type.
|
| 275 |
+
guidance_scale: A `float`. The scale for the guided sampling.
|
| 276 |
+
classifier_fn: A classifier function. Only used for the classifier guidance.
|
| 277 |
+
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
|
| 278 |
+
Returns:
|
| 279 |
+
A noise prediction model that accepts the noised data and the continuous time as the inputs.
|
| 280 |
+
"""
|
| 281 |
+
|
| 282 |
+
def get_model_input_time(t_continuous):
|
| 283 |
+
"""
|
| 284 |
+
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
|
| 285 |
+
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
|
| 286 |
+
For continuous-time DPMs, we just use `t_continuous`.
|
| 287 |
+
"""
|
| 288 |
+
if noise_schedule.schedule == 'discrete':
|
| 289 |
+
return (t_continuous - 1. / noise_schedule.total_N) * 1000.
|
| 290 |
+
else:
|
| 291 |
+
return t_continuous
|
| 292 |
+
|
| 293 |
+
def noise_pred_fn(x, t_continuous, cond=None):
|
| 294 |
+
if t_continuous.reshape((-1,)).shape[0] == 1:
|
| 295 |
+
t_continuous = t_continuous.expand((x.shape[0]))
|
| 296 |
+
t_input = get_model_input_time(t_continuous)
|
| 297 |
+
output = model(x, t_input, **model_kwargs)
|
| 298 |
+
if model_type == "noise":
|
| 299 |
+
return output
|
| 300 |
+
elif model_type == "x_start":
|
| 301 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
| 302 |
+
dims = x.dim()
|
| 303 |
+
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
|
| 304 |
+
elif model_type == "v":
|
| 305 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
| 306 |
+
dims = x.dim()
|
| 307 |
+
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
|
| 308 |
+
elif model_type == "score":
|
| 309 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
| 310 |
+
dims = x.dim()
|
| 311 |
+
return -expand_dims(sigma_t, dims) * output
|
| 312 |
+
|
| 313 |
+
def cond_grad_fn(x, t_input):
|
| 314 |
+
"""
|
| 315 |
+
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
|
| 316 |
+
"""
|
| 317 |
+
with torch.enable_grad():
|
| 318 |
+
x_in = x.detach().requires_grad_(True)
|
| 319 |
+
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
|
| 320 |
+
return torch.autograd.grad(log_prob.sum(), x_in)[0]
|
| 321 |
+
|
| 322 |
+
def model_fn(x, t_continuous):
|
| 323 |
+
"""
|
| 324 |
+
The noise predicition model function that is used for DPM-Solver.
|
| 325 |
+
"""
|
| 326 |
+
if t_continuous.reshape((-1,)).shape[0] == 1:
|
| 327 |
+
t_continuous = t_continuous.expand((x.shape[0]))
|
| 328 |
+
if guidance_type == "uncond":
|
| 329 |
+
return noise_pred_fn(x, t_continuous)
|
| 330 |
+
elif guidance_type == "classifier":
|
| 331 |
+
assert classifier_fn is not None
|
| 332 |
+
t_input = get_model_input_time(t_continuous)
|
| 333 |
+
cond_grad = cond_grad_fn(x, t_input)
|
| 334 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
| 335 |
+
noise = noise_pred_fn(x, t_continuous)
|
| 336 |
+
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
|
| 337 |
+
elif guidance_type == "classifier-free":
|
| 338 |
+
if guidance_scale == 1. or unconditional_condition is None:
|
| 339 |
+
return noise_pred_fn(x, t_continuous, cond=condition)
|
| 340 |
+
else:
|
| 341 |
+
x_in = torch.cat([x] * 2)
|
| 342 |
+
t_in = torch.cat([t_continuous] * 2)
|
| 343 |
+
c_in = torch.cat([unconditional_condition, condition])
|
| 344 |
+
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
| 345 |
+
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
| 346 |
+
|
| 347 |
+
assert model_type in ["noise", "x_start", "v"]
|
| 348 |
+
assert guidance_type in ["uncond", "classifier", "classifier-free"]
|
| 349 |
+
return model_fn
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
class UniPC:
|
| 353 |
+
def __init__(
|
| 354 |
+
self,
|
| 355 |
+
model_fn,
|
| 356 |
+
noise_schedule,
|
| 357 |
+
predict_x0=True,
|
| 358 |
+
thresholding=False,
|
| 359 |
+
max_val=1.,
|
| 360 |
+
variant='bh1',
|
| 361 |
+
):
|
| 362 |
+
"""Construct a UniPC.
|
| 363 |
+
|
| 364 |
+
We support both data_prediction and noise_prediction.
|
| 365 |
+
"""
|
| 366 |
+
self.model = model_fn
|
| 367 |
+
self.noise_schedule = noise_schedule
|
| 368 |
+
self.variant = variant
|
| 369 |
+
self.predict_x0 = predict_x0
|
| 370 |
+
self.thresholding = thresholding
|
| 371 |
+
self.max_val = max_val
|
| 372 |
+
|
| 373 |
+
def dynamic_thresholding_fn(self, x0, t=None):
|
| 374 |
+
"""
|
| 375 |
+
The dynamic thresholding method.
|
| 376 |
+
"""
|
| 377 |
+
dims = x0.dim()
|
| 378 |
+
p = self.dynamic_thresholding_ratio
|
| 379 |
+
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
| 380 |
+
s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
|
| 381 |
+
x0 = torch.clamp(x0, -s, s) / s
|
| 382 |
+
return x0
|
| 383 |
+
|
| 384 |
+
def noise_prediction_fn(self, x, t):
|
| 385 |
+
"""
|
| 386 |
+
Return the noise prediction model.
|
| 387 |
+
"""
|
| 388 |
+
return self.model(x, t)
|
| 389 |
+
|
| 390 |
+
def data_prediction_fn(self, x, t):
|
| 391 |
+
"""
|
| 392 |
+
Return the data prediction model (with thresholding).
|
| 393 |
+
"""
|
| 394 |
+
noise = self.noise_prediction_fn(x, t)
|
| 395 |
+
dims = x.dim()
|
| 396 |
+
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
| 397 |
+
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
|
| 398 |
+
if self.thresholding:
|
| 399 |
+
p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
|
| 400 |
+
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
| 401 |
+
s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
|
| 402 |
+
x0 = torch.clamp(x0, -s, s) / s
|
| 403 |
+
return x0
|
| 404 |
+
|
| 405 |
+
def model_fn(self, x, t):
|
| 406 |
+
"""
|
| 407 |
+
Convert the model to the noise prediction model or the data prediction model.
|
| 408 |
+
"""
|
| 409 |
+
if self.predict_x0:
|
| 410 |
+
return self.data_prediction_fn(x, t)
|
| 411 |
+
else:
|
| 412 |
+
return self.noise_prediction_fn(x, t)
|
| 413 |
+
|
| 414 |
+
def get_time_steps(self, skip_type, t_T, t_0, N, device):
|
| 415 |
+
"""Compute the intermediate time steps for sampling.
|
| 416 |
+
"""
|
| 417 |
+
if skip_type == 'logSNR':
|
| 418 |
+
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
|
| 419 |
+
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
|
| 420 |
+
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
|
| 421 |
+
return self.noise_schedule.inverse_lambda(logSNR_steps)
|
| 422 |
+
elif skip_type == 'time_uniform':
|
| 423 |
+
return torch.linspace(t_T, t_0, N + 1).to(device)
|
| 424 |
+
elif skip_type == 'time_quadratic':
|
| 425 |
+
t_order = 2
|
| 426 |
+
t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
|
| 427 |
+
return t
|
| 428 |
+
else:
|
| 429 |
+
raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
|
| 430 |
+
|
| 431 |
+
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
|
| 432 |
+
"""
|
| 433 |
+
Get the order of each step for sampling by the singlestep DPM-Solver.
|
| 434 |
+
"""
|
| 435 |
+
if order == 3:
|
| 436 |
+
K = steps // 3 + 1
|
| 437 |
+
if steps % 3 == 0:
|
| 438 |
+
orders = [3,] * (K - 2) + [2, 1]
|
| 439 |
+
elif steps % 3 == 1:
|
| 440 |
+
orders = [3,] * (K - 1) + [1]
|
| 441 |
+
else:
|
| 442 |
+
orders = [3,] * (K - 1) + [2]
|
| 443 |
+
elif order == 2:
|
| 444 |
+
if steps % 2 == 0:
|
| 445 |
+
K = steps // 2
|
| 446 |
+
orders = [2,] * K
|
| 447 |
+
else:
|
| 448 |
+
K = steps // 2 + 1
|
| 449 |
+
orders = [2,] * (K - 1) + [1]
|
| 450 |
+
elif order == 1:
|
| 451 |
+
K = steps
|
| 452 |
+
orders = [1,] * steps
|
| 453 |
+
else:
|
| 454 |
+
raise ValueError("'order' must be '1' or '2' or '3'.")
|
| 455 |
+
if skip_type == 'logSNR':
|
| 456 |
+
# To reproduce the results in DPM-Solver paper
|
| 457 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
|
| 458 |
+
else:
|
| 459 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
|
| 460 |
+
return timesteps_outer, orders
|
| 461 |
+
|
| 462 |
+
def denoise_to_zero_fn(self, x, s):
|
| 463 |
+
"""
|
| 464 |
+
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
|
| 465 |
+
"""
|
| 466 |
+
return self.data_prediction_fn(x, s)
|
| 467 |
+
|
| 468 |
+
def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs):
|
| 469 |
+
if len(t.shape) == 0:
|
| 470 |
+
t = t.view(-1)
|
| 471 |
+
if 'bh' in self.variant:
|
| 472 |
+
return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
|
| 473 |
+
else:
|
| 474 |
+
assert self.variant == 'vary_coeff'
|
| 475 |
+
return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
|
| 476 |
+
|
| 477 |
+
def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
|
| 478 |
+
logging.info(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
|
| 479 |
+
ns = self.noise_schedule
|
| 480 |
+
assert order <= len(model_prev_list)
|
| 481 |
+
|
| 482 |
+
# first compute rks
|
| 483 |
+
t_prev_0 = t_prev_list[-1]
|
| 484 |
+
lambda_prev_0 = ns.marginal_lambda(t_prev_0)
|
| 485 |
+
lambda_t = ns.marginal_lambda(t)
|
| 486 |
+
model_prev_0 = model_prev_list[-1]
|
| 487 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
| 488 |
+
log_alpha_t = ns.marginal_log_mean_coeff(t)
|
| 489 |
+
alpha_t = torch.exp(log_alpha_t)
|
| 490 |
+
|
| 491 |
+
h = lambda_t - lambda_prev_0
|
| 492 |
+
|
| 493 |
+
rks = []
|
| 494 |
+
D1s = []
|
| 495 |
+
for i in range(1, order):
|
| 496 |
+
t_prev_i = t_prev_list[-(i + 1)]
|
| 497 |
+
model_prev_i = model_prev_list[-(i + 1)]
|
| 498 |
+
lambda_prev_i = ns.marginal_lambda(t_prev_i)
|
| 499 |
+
rk = (lambda_prev_i - lambda_prev_0) / h
|
| 500 |
+
rks.append(rk)
|
| 501 |
+
D1s.append((model_prev_i - model_prev_0) / rk)
|
| 502 |
+
|
| 503 |
+
rks.append(1.)
|
| 504 |
+
rks = torch.tensor(rks, device=x.device)
|
| 505 |
+
|
| 506 |
+
K = len(rks)
|
| 507 |
+
# build C matrix
|
| 508 |
+
C = []
|
| 509 |
+
|
| 510 |
+
col = torch.ones_like(rks)
|
| 511 |
+
for k in range(1, K + 1):
|
| 512 |
+
C.append(col)
|
| 513 |
+
col = col * rks / (k + 1)
|
| 514 |
+
C = torch.stack(C, dim=1)
|
| 515 |
+
|
| 516 |
+
if len(D1s) > 0:
|
| 517 |
+
D1s = torch.stack(D1s, dim=1) # (B, K)
|
| 518 |
+
C_inv_p = torch.linalg.inv(C[:-1, :-1])
|
| 519 |
+
A_p = C_inv_p
|
| 520 |
+
|
| 521 |
+
if use_corrector:
|
| 522 |
+
C_inv = torch.linalg.inv(C)
|
| 523 |
+
A_c = C_inv
|
| 524 |
+
|
| 525 |
+
hh = -h if self.predict_x0 else h
|
| 526 |
+
h_phi_1 = torch.expm1(hh)
|
| 527 |
+
h_phi_ks = []
|
| 528 |
+
factorial_k = 1
|
| 529 |
+
h_phi_k = h_phi_1
|
| 530 |
+
for k in range(1, K + 2):
|
| 531 |
+
h_phi_ks.append(h_phi_k)
|
| 532 |
+
h_phi_k = h_phi_k / hh - 1 / factorial_k
|
| 533 |
+
factorial_k *= (k + 1)
|
| 534 |
+
|
| 535 |
+
model_t = None
|
| 536 |
+
if self.predict_x0:
|
| 537 |
+
x_t_ = (
|
| 538 |
+
sigma_t / sigma_prev_0 * x
|
| 539 |
+
- alpha_t * h_phi_1 * model_prev_0
|
| 540 |
+
)
|
| 541 |
+
# now predictor
|
| 542 |
+
x_t = x_t_
|
| 543 |
+
if len(D1s) > 0:
|
| 544 |
+
# compute the residuals for predictor
|
| 545 |
+
for k in range(K - 1):
|
| 546 |
+
x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
|
| 547 |
+
# now corrector
|
| 548 |
+
if use_corrector:
|
| 549 |
+
model_t = self.model_fn(x_t, t)
|
| 550 |
+
D1_t = (model_t - model_prev_0)
|
| 551 |
+
x_t = x_t_
|
| 552 |
+
k = 0
|
| 553 |
+
for k in range(K - 1):
|
| 554 |
+
x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
|
| 555 |
+
x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
|
| 556 |
+
else:
|
| 557 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
| 558 |
+
x_t_ = (
|
| 559 |
+
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
|
| 560 |
+
- (sigma_t * h_phi_1) * model_prev_0
|
| 561 |
+
)
|
| 562 |
+
# now predictor
|
| 563 |
+
x_t = x_t_
|
| 564 |
+
if len(D1s) > 0:
|
| 565 |
+
# compute the residuals for predictor
|
| 566 |
+
for k in range(K - 1):
|
| 567 |
+
x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
|
| 568 |
+
# now corrector
|
| 569 |
+
if use_corrector:
|
| 570 |
+
model_t = self.model_fn(x_t, t)
|
| 571 |
+
D1_t = (model_t - model_prev_0)
|
| 572 |
+
x_t = x_t_
|
| 573 |
+
k = 0
|
| 574 |
+
for k in range(K - 1):
|
| 575 |
+
x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
|
| 576 |
+
x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
|
| 577 |
+
return x_t, model_t
|
| 578 |
+
|
| 579 |
+
def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True):
|
| 580 |
+
# print(f'using unified predictor-corrector with order {order} (solver type: B(h))')
|
| 581 |
+
ns = self.noise_schedule
|
| 582 |
+
assert order <= len(model_prev_list)
|
| 583 |
+
dims = x.dim()
|
| 584 |
+
|
| 585 |
+
# first compute rks
|
| 586 |
+
t_prev_0 = t_prev_list[-1]
|
| 587 |
+
lambda_prev_0 = ns.marginal_lambda(t_prev_0)
|
| 588 |
+
lambda_t = ns.marginal_lambda(t)
|
| 589 |
+
model_prev_0 = model_prev_list[-1]
|
| 590 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
| 591 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
| 592 |
+
alpha_t = torch.exp(log_alpha_t)
|
| 593 |
+
|
| 594 |
+
h = lambda_t - lambda_prev_0
|
| 595 |
+
|
| 596 |
+
rks = []
|
| 597 |
+
D1s = []
|
| 598 |
+
for i in range(1, order):
|
| 599 |
+
t_prev_i = t_prev_list[-(i + 1)]
|
| 600 |
+
model_prev_i = model_prev_list[-(i + 1)]
|
| 601 |
+
lambda_prev_i = ns.marginal_lambda(t_prev_i)
|
| 602 |
+
rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
|
| 603 |
+
rks.append(rk)
|
| 604 |
+
D1s.append((model_prev_i - model_prev_0) / rk)
|
| 605 |
+
|
| 606 |
+
rks.append(1.)
|
| 607 |
+
rks = torch.tensor(rks, device=x.device)
|
| 608 |
+
|
| 609 |
+
R = []
|
| 610 |
+
b = []
|
| 611 |
+
|
| 612 |
+
hh = -h[0] if self.predict_x0 else h[0]
|
| 613 |
+
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
|
| 614 |
+
h_phi_k = h_phi_1 / hh - 1
|
| 615 |
+
|
| 616 |
+
factorial_i = 1
|
| 617 |
+
|
| 618 |
+
if self.variant == 'bh1':
|
| 619 |
+
B_h = hh
|
| 620 |
+
elif self.variant == 'bh2':
|
| 621 |
+
B_h = torch.expm1(hh)
|
| 622 |
+
else:
|
| 623 |
+
raise NotImplementedError()
|
| 624 |
+
|
| 625 |
+
for i in range(1, order + 1):
|
| 626 |
+
R.append(torch.pow(rks, i - 1))
|
| 627 |
+
b.append(h_phi_k * factorial_i / B_h)
|
| 628 |
+
factorial_i *= (i + 1)
|
| 629 |
+
h_phi_k = h_phi_k / hh - 1 / factorial_i
|
| 630 |
+
|
| 631 |
+
R = torch.stack(R)
|
| 632 |
+
b = torch.tensor(b, device=x.device)
|
| 633 |
+
|
| 634 |
+
# now predictor
|
| 635 |
+
use_predictor = len(D1s) > 0 and x_t is None
|
| 636 |
+
if len(D1s) > 0:
|
| 637 |
+
D1s = torch.stack(D1s, dim=1) # (B, K)
|
| 638 |
+
if x_t is None:
|
| 639 |
+
# for order 2, we use a simplified version
|
| 640 |
+
if order == 2:
|
| 641 |
+
rhos_p = torch.tensor([0.5], device=b.device)
|
| 642 |
+
else:
|
| 643 |
+
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
|
| 644 |
+
else:
|
| 645 |
+
D1s = None
|
| 646 |
+
|
| 647 |
+
if use_corrector:
|
| 648 |
+
# print('using corrector')
|
| 649 |
+
# for order 1, we use a simplified version
|
| 650 |
+
if order == 1:
|
| 651 |
+
rhos_c = torch.tensor([0.5], device=b.device)
|
| 652 |
+
else:
|
| 653 |
+
rhos_c = torch.linalg.solve(R, b)
|
| 654 |
+
|
| 655 |
+
model_t = None
|
| 656 |
+
if self.predict_x0:
|
| 657 |
+
x_t_ = (
|
| 658 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
| 659 |
+
- expand_dims(alpha_t * h_phi_1, dims)* model_prev_0
|
| 660 |
+
)
|
| 661 |
+
|
| 662 |
+
if x_t is None:
|
| 663 |
+
if use_predictor:
|
| 664 |
+
pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
|
| 665 |
+
else:
|
| 666 |
+
pred_res = 0
|
| 667 |
+
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res
|
| 668 |
+
|
| 669 |
+
if use_corrector:
|
| 670 |
+
model_t = self.model_fn(x_t, t)
|
| 671 |
+
if D1s is not None:
|
| 672 |
+
corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
|
| 673 |
+
else:
|
| 674 |
+
corr_res = 0
|
| 675 |
+
D1_t = (model_t - model_prev_0)
|
| 676 |
+
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
|
| 677 |
+
else:
|
| 678 |
+
x_t_ = (
|
| 679 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
| 680 |
+
- expand_dims(sigma_t * h_phi_1, dims) * model_prev_0
|
| 681 |
+
)
|
| 682 |
+
if x_t is None:
|
| 683 |
+
if use_predictor:
|
| 684 |
+
pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
|
| 685 |
+
else:
|
| 686 |
+
pred_res = 0
|
| 687 |
+
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res
|
| 688 |
+
|
| 689 |
+
if use_corrector:
|
| 690 |
+
model_t = self.model_fn(x_t, t)
|
| 691 |
+
if D1s is not None:
|
| 692 |
+
corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
|
| 693 |
+
else:
|
| 694 |
+
corr_res = 0
|
| 695 |
+
D1_t = (model_t - model_prev_0)
|
| 696 |
+
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
|
| 697 |
+
return x_t, model_t
|
| 698 |
+
|
| 699 |
+
|
| 700 |
+
def sample(self, x, timesteps, t_start=None, t_end=None, order=3, skip_type='time_uniform',
|
| 701 |
+
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
|
| 702 |
+
atol=0.0078, rtol=0.05, corrector=False, callback=None, disable_pbar=False
|
| 703 |
+
):
|
| 704 |
+
# t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
| 705 |
+
# t_T = self.noise_schedule.T if t_start is None else t_start
|
| 706 |
+
steps = len(timesteps) - 1
|
| 707 |
+
if method == 'multistep':
|
| 708 |
+
assert steps >= order
|
| 709 |
+
# timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
| 710 |
+
assert timesteps.shape[0] - 1 == steps
|
| 711 |
+
# with torch.no_grad():
|
| 712 |
+
for step_index in trange(steps, disable=disable_pbar):
|
| 713 |
+
if step_index == 0:
|
| 714 |
+
vec_t = timesteps[0].expand((x.shape[0]))
|
| 715 |
+
model_prev_list = [self.model_fn(x, vec_t)]
|
| 716 |
+
t_prev_list = [vec_t]
|
| 717 |
+
elif step_index < order:
|
| 718 |
+
init_order = step_index
|
| 719 |
+
# Init the first `order` values by lower order multistep DPM-Solver.
|
| 720 |
+
# for init_order in range(1, order):
|
| 721 |
+
vec_t = timesteps[init_order].expand(x.shape[0])
|
| 722 |
+
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True)
|
| 723 |
+
if model_x is None:
|
| 724 |
+
model_x = self.model_fn(x, vec_t)
|
| 725 |
+
model_prev_list.append(model_x)
|
| 726 |
+
t_prev_list.append(vec_t)
|
| 727 |
+
else:
|
| 728 |
+
extra_final_step = 0
|
| 729 |
+
if step_index == (steps - 1):
|
| 730 |
+
extra_final_step = 1
|
| 731 |
+
for step in range(step_index, step_index + 1 + extra_final_step):
|
| 732 |
+
vec_t = timesteps[step].expand(x.shape[0])
|
| 733 |
+
if lower_order_final:
|
| 734 |
+
step_order = min(order, steps + 1 - step)
|
| 735 |
+
else:
|
| 736 |
+
step_order = order
|
| 737 |
+
# print('this step order:', step_order)
|
| 738 |
+
if step == steps:
|
| 739 |
+
# print('do not run corrector at the last step')
|
| 740 |
+
use_corrector = False
|
| 741 |
+
else:
|
| 742 |
+
use_corrector = True
|
| 743 |
+
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector)
|
| 744 |
+
for i in range(order - 1):
|
| 745 |
+
t_prev_list[i] = t_prev_list[i + 1]
|
| 746 |
+
model_prev_list[i] = model_prev_list[i + 1]
|
| 747 |
+
t_prev_list[-1] = vec_t
|
| 748 |
+
# We do not need to evaluate the final model value.
|
| 749 |
+
if step < steps:
|
| 750 |
+
if model_x is None:
|
| 751 |
+
model_x = self.model_fn(x, vec_t)
|
| 752 |
+
model_prev_list[-1] = model_x
|
| 753 |
+
if callback is not None:
|
| 754 |
+
callback({'x': x, 'i': step_index, 'denoised': model_prev_list[-1]})
|
| 755 |
+
else:
|
| 756 |
+
raise NotImplementedError()
|
| 757 |
+
# if denoise_to_zero:
|
| 758 |
+
# x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
|
| 759 |
+
return x
|
| 760 |
+
|
| 761 |
+
|
| 762 |
+
#############################################################
|
| 763 |
+
# other utility functions
|
| 764 |
+
#############################################################
|
| 765 |
+
|
| 766 |
+
def interpolate_fn(x, xp, yp):
|
| 767 |
+
"""
|
| 768 |
+
A piecewise linear function y = f(x), using xp and yp as keypoints.
|
| 769 |
+
We implement f(x) in a differentiable way (i.e. applicable for autograd).
|
| 770 |
+
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
|
| 771 |
+
|
| 772 |
+
Args:
|
| 773 |
+
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
|
| 774 |
+
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
|
| 775 |
+
yp: PyTorch tensor with shape [C, K].
|
| 776 |
+
Returns:
|
| 777 |
+
The function values f(x), with shape [N, C].
|
| 778 |
+
"""
|
| 779 |
+
N, K = x.shape[0], xp.shape[1]
|
| 780 |
+
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
|
| 781 |
+
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
|
| 782 |
+
x_idx = torch.argmin(x_indices, dim=2)
|
| 783 |
+
cand_start_idx = x_idx - 1
|
| 784 |
+
start_idx = torch.where(
|
| 785 |
+
torch.eq(x_idx, 0),
|
| 786 |
+
torch.tensor(1, device=x.device),
|
| 787 |
+
torch.where(
|
| 788 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
| 789 |
+
),
|
| 790 |
+
)
|
| 791 |
+
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
|
| 792 |
+
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
|
| 793 |
+
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
|
| 794 |
+
start_idx2 = torch.where(
|
| 795 |
+
torch.eq(x_idx, 0),
|
| 796 |
+
torch.tensor(0, device=x.device),
|
| 797 |
+
torch.where(
|
| 798 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
| 799 |
+
),
|
| 800 |
+
)
|
| 801 |
+
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
|
| 802 |
+
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
|
| 803 |
+
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
|
| 804 |
+
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
|
| 805 |
+
return cand
|
| 806 |
+
|
| 807 |
+
|
| 808 |
+
def expand_dims(v, dims):
|
| 809 |
+
"""
|
| 810 |
+
Expand the tensor `v` to the dim `dims`.
|
| 811 |
+
|
| 812 |
+
Args:
|
| 813 |
+
`v`: a PyTorch tensor with shape [N].
|
| 814 |
+
`dim`: a `int`.
|
| 815 |
+
Returns:
|
| 816 |
+
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
|
| 817 |
+
"""
|
| 818 |
+
return v[(...,) + (None,)*(dims - 1)]
|
| 819 |
+
|
| 820 |
+
|
| 821 |
+
class SigmaConvert:
|
| 822 |
+
schedule = ""
|
| 823 |
+
def marginal_log_mean_coeff(self, sigma):
|
| 824 |
+
return 0.5 * torch.log(1 / ((sigma * sigma) + 1))
|
| 825 |
+
|
| 826 |
+
def marginal_alpha(self, t):
|
| 827 |
+
return torch.exp(self.marginal_log_mean_coeff(t))
|
| 828 |
+
|
| 829 |
+
def marginal_std(self, t):
|
| 830 |
+
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
| 831 |
+
|
| 832 |
+
def marginal_lambda(self, t):
|
| 833 |
+
"""
|
| 834 |
+
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
| 835 |
+
"""
|
| 836 |
+
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
| 837 |
+
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
| 838 |
+
return log_mean_coeff - log_std
|
| 839 |
+
|
| 840 |
+
def predict_eps_sigma(model, input, sigma_in, **kwargs):
|
| 841 |
+
sigma = sigma_in.view(sigma_in.shape[:1] + (1,) * (input.ndim - 1))
|
| 842 |
+
input = input * ((sigma ** 2 + 1.0) ** 0.5)
|
| 843 |
+
return (input - model(input, sigma_in, **kwargs)) / sigma
|
| 844 |
+
|
| 845 |
+
|
| 846 |
+
def sample_unipc(model, noise, sigmas, extra_args=None, callback=None, disable=False, variant='bh1'):
|
| 847 |
+
timesteps = sigmas.clone()
|
| 848 |
+
if sigmas[-1] == 0:
|
| 849 |
+
timesteps = sigmas[:]
|
| 850 |
+
timesteps[-1] = 0.001
|
| 851 |
+
else:
|
| 852 |
+
timesteps = sigmas.clone()
|
| 853 |
+
ns = SigmaConvert()
|
| 854 |
+
|
| 855 |
+
noise = noise / torch.sqrt(1.0 + timesteps[0] ** 2.0)
|
| 856 |
+
model_type = "noise"
|
| 857 |
+
|
| 858 |
+
model_fn = model_wrapper(
|
| 859 |
+
lambda input, sigma, **kwargs: predict_eps_sigma(model, input, sigma, **kwargs),
|
| 860 |
+
ns,
|
| 861 |
+
model_type=model_type,
|
| 862 |
+
guidance_type="uncond",
|
| 863 |
+
model_kwargs=extra_args,
|
| 864 |
+
)
|
| 865 |
+
|
| 866 |
+
order = min(3, len(timesteps) - 2)
|
| 867 |
+
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, variant=variant)
|
| 868 |
+
x = uni_pc.sample(noise, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable)
|
| 869 |
+
x /= ns.marginal_alpha(timesteps[-1])
|
| 870 |
+
return x
|
| 871 |
+
|
| 872 |
+
def sample_unipc_bh2(model, noise, sigmas, extra_args=None, callback=None, disable=False):
|
| 873 |
+
return sample_unipc(model, noise, sigmas, extra_args, callback, disable, variant='bh2')
|
comfy/float.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
def calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=None):
|
| 4 |
+
mantissa_scaled = torch.where(
|
| 5 |
+
normal_mask,
|
| 6 |
+
(abs_x / (2.0 ** (exponent - EXPONENT_BIAS)) - 1.0) * (2**MANTISSA_BITS),
|
| 7 |
+
(abs_x / (2.0 ** (-EXPONENT_BIAS + 1 - MANTISSA_BITS)))
|
| 8 |
+
)
|
| 9 |
+
|
| 10 |
+
mantissa_scaled += torch.rand(mantissa_scaled.size(), dtype=mantissa_scaled.dtype, layout=mantissa_scaled.layout, device=mantissa_scaled.device, generator=generator)
|
| 11 |
+
return mantissa_scaled.floor() / (2**MANTISSA_BITS)
|
| 12 |
+
|
| 13 |
+
#Not 100% sure about this
|
| 14 |
+
def manual_stochastic_round_to_float8(x, dtype, generator=None):
|
| 15 |
+
if dtype == torch.float8_e4m3fn:
|
| 16 |
+
EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 4, 3, 7
|
| 17 |
+
elif dtype == torch.float8_e5m2:
|
| 18 |
+
EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 5, 2, 15
|
| 19 |
+
else:
|
| 20 |
+
raise ValueError("Unsupported dtype")
|
| 21 |
+
|
| 22 |
+
x = x.half()
|
| 23 |
+
sign = torch.sign(x)
|
| 24 |
+
abs_x = x.abs()
|
| 25 |
+
sign = torch.where(abs_x == 0, 0, sign)
|
| 26 |
+
|
| 27 |
+
# Combine exponent calculation and clamping
|
| 28 |
+
exponent = torch.clamp(
|
| 29 |
+
torch.floor(torch.log2(abs_x)) + EXPONENT_BIAS,
|
| 30 |
+
0, 2**EXPONENT_BITS - 1
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
# Combine mantissa calculation and rounding
|
| 34 |
+
normal_mask = ~(exponent == 0)
|
| 35 |
+
|
| 36 |
+
abs_x[:] = calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=generator)
|
| 37 |
+
|
| 38 |
+
sign *= torch.where(
|
| 39 |
+
normal_mask,
|
| 40 |
+
(2.0 ** (exponent - EXPONENT_BIAS)) * (1.0 + abs_x),
|
| 41 |
+
(2.0 ** (-EXPONENT_BIAS + 1)) * abs_x
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
inf = torch.finfo(dtype)
|
| 45 |
+
torch.clamp(sign, min=inf.min, max=inf.max, out=sign)
|
| 46 |
+
return sign
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def stochastic_rounding(value, dtype, seed=0):
|
| 51 |
+
if dtype == torch.float32:
|
| 52 |
+
return value.to(dtype=torch.float32)
|
| 53 |
+
if dtype == torch.float16:
|
| 54 |
+
return value.to(dtype=torch.float16)
|
| 55 |
+
if dtype == torch.bfloat16:
|
| 56 |
+
return value.to(dtype=torch.bfloat16)
|
| 57 |
+
if dtype == torch.float8_e4m3fn or dtype == torch.float8_e5m2:
|
| 58 |
+
generator = torch.Generator(device=value.device)
|
| 59 |
+
generator.manual_seed(seed)
|
| 60 |
+
output = torch.empty_like(value, dtype=dtype)
|
| 61 |
+
num_slices = max(1, (value.numel() / (4096 * 4096)))
|
| 62 |
+
slice_size = max(1, round(value.shape[0] / num_slices))
|
| 63 |
+
for i in range(0, value.shape[0], slice_size):
|
| 64 |
+
output[i:i+slice_size].copy_(manual_stochastic_round_to_float8(value[i:i+slice_size], dtype, generator=generator))
|
| 65 |
+
return output
|
| 66 |
+
|
| 67 |
+
return value.to(dtype=dtype)
|
comfy/gligen.py
ADDED
|
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
from .ldm.modules.attention import CrossAttention
|
| 5 |
+
from inspect import isfunction
|
| 6 |
+
import comfy.ops
|
| 7 |
+
ops = comfy.ops.manual_cast
|
| 8 |
+
|
| 9 |
+
def exists(val):
|
| 10 |
+
return val is not None
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def uniq(arr):
|
| 14 |
+
return{el: True for el in arr}.keys()
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def default(val, d):
|
| 18 |
+
if exists(val):
|
| 19 |
+
return val
|
| 20 |
+
return d() if isfunction(d) else d
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# feedforward
|
| 24 |
+
class GEGLU(nn.Module):
|
| 25 |
+
def __init__(self, dim_in, dim_out):
|
| 26 |
+
super().__init__()
|
| 27 |
+
self.proj = ops.Linear(dim_in, dim_out * 2)
|
| 28 |
+
|
| 29 |
+
def forward(self, x):
|
| 30 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
| 31 |
+
return x * torch.nn.functional.gelu(gate)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class FeedForward(nn.Module):
|
| 35 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
| 36 |
+
super().__init__()
|
| 37 |
+
inner_dim = int(dim * mult)
|
| 38 |
+
dim_out = default(dim_out, dim)
|
| 39 |
+
project_in = nn.Sequential(
|
| 40 |
+
ops.Linear(dim, inner_dim),
|
| 41 |
+
nn.GELU()
|
| 42 |
+
) if not glu else GEGLU(dim, inner_dim)
|
| 43 |
+
|
| 44 |
+
self.net = nn.Sequential(
|
| 45 |
+
project_in,
|
| 46 |
+
nn.Dropout(dropout),
|
| 47 |
+
ops.Linear(inner_dim, dim_out)
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
def forward(self, x):
|
| 51 |
+
return self.net(x)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class GatedCrossAttentionDense(nn.Module):
|
| 55 |
+
def __init__(self, query_dim, context_dim, n_heads, d_head):
|
| 56 |
+
super().__init__()
|
| 57 |
+
|
| 58 |
+
self.attn = CrossAttention(
|
| 59 |
+
query_dim=query_dim,
|
| 60 |
+
context_dim=context_dim,
|
| 61 |
+
heads=n_heads,
|
| 62 |
+
dim_head=d_head,
|
| 63 |
+
operations=ops)
|
| 64 |
+
self.ff = FeedForward(query_dim, glu=True)
|
| 65 |
+
|
| 66 |
+
self.norm1 = ops.LayerNorm(query_dim)
|
| 67 |
+
self.norm2 = ops.LayerNorm(query_dim)
|
| 68 |
+
|
| 69 |
+
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
|
| 70 |
+
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
|
| 71 |
+
|
| 72 |
+
# this can be useful: we can externally change magnitude of tanh(alpha)
|
| 73 |
+
# for example, when it is set to 0, then the entire model is same as
|
| 74 |
+
# original one
|
| 75 |
+
self.scale = 1
|
| 76 |
+
|
| 77 |
+
def forward(self, x, objs):
|
| 78 |
+
|
| 79 |
+
x = x + self.scale * \
|
| 80 |
+
torch.tanh(self.alpha_attn) * self.attn(self.norm1(x), objs, objs)
|
| 81 |
+
x = x + self.scale * \
|
| 82 |
+
torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
|
| 83 |
+
|
| 84 |
+
return x
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class GatedSelfAttentionDense(nn.Module):
|
| 88 |
+
def __init__(self, query_dim, context_dim, n_heads, d_head):
|
| 89 |
+
super().__init__()
|
| 90 |
+
|
| 91 |
+
# we need a linear projection since we need cat visual feature and obj
|
| 92 |
+
# feature
|
| 93 |
+
self.linear = ops.Linear(context_dim, query_dim)
|
| 94 |
+
|
| 95 |
+
self.attn = CrossAttention(
|
| 96 |
+
query_dim=query_dim,
|
| 97 |
+
context_dim=query_dim,
|
| 98 |
+
heads=n_heads,
|
| 99 |
+
dim_head=d_head,
|
| 100 |
+
operations=ops)
|
| 101 |
+
self.ff = FeedForward(query_dim, glu=True)
|
| 102 |
+
|
| 103 |
+
self.norm1 = ops.LayerNorm(query_dim)
|
| 104 |
+
self.norm2 = ops.LayerNorm(query_dim)
|
| 105 |
+
|
| 106 |
+
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
|
| 107 |
+
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
|
| 108 |
+
|
| 109 |
+
# this can be useful: we can externally change magnitude of tanh(alpha)
|
| 110 |
+
# for example, when it is set to 0, then the entire model is same as
|
| 111 |
+
# original one
|
| 112 |
+
self.scale = 1
|
| 113 |
+
|
| 114 |
+
def forward(self, x, objs):
|
| 115 |
+
|
| 116 |
+
N_visual = x.shape[1]
|
| 117 |
+
objs = self.linear(objs)
|
| 118 |
+
|
| 119 |
+
x = x + self.scale * torch.tanh(self.alpha_attn) * self.attn(
|
| 120 |
+
self.norm1(torch.cat([x, objs], dim=1)))[:, 0:N_visual, :]
|
| 121 |
+
x = x + self.scale * \
|
| 122 |
+
torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
|
| 123 |
+
|
| 124 |
+
return x
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
class GatedSelfAttentionDense2(nn.Module):
|
| 128 |
+
def __init__(self, query_dim, context_dim, n_heads, d_head):
|
| 129 |
+
super().__init__()
|
| 130 |
+
|
| 131 |
+
# we need a linear projection since we need cat visual feature and obj
|
| 132 |
+
# feature
|
| 133 |
+
self.linear = ops.Linear(context_dim, query_dim)
|
| 134 |
+
|
| 135 |
+
self.attn = CrossAttention(
|
| 136 |
+
query_dim=query_dim, context_dim=query_dim, dim_head=d_head, operations=ops)
|
| 137 |
+
self.ff = FeedForward(query_dim, glu=True)
|
| 138 |
+
|
| 139 |
+
self.norm1 = ops.LayerNorm(query_dim)
|
| 140 |
+
self.norm2 = ops.LayerNorm(query_dim)
|
| 141 |
+
|
| 142 |
+
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
|
| 143 |
+
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
|
| 144 |
+
|
| 145 |
+
# this can be useful: we can externally change magnitude of tanh(alpha)
|
| 146 |
+
# for example, when it is set to 0, then the entire model is same as
|
| 147 |
+
# original one
|
| 148 |
+
self.scale = 1
|
| 149 |
+
|
| 150 |
+
def forward(self, x, objs):
|
| 151 |
+
|
| 152 |
+
B, N_visual, _ = x.shape
|
| 153 |
+
B, N_ground, _ = objs.shape
|
| 154 |
+
|
| 155 |
+
objs = self.linear(objs)
|
| 156 |
+
|
| 157 |
+
# sanity check
|
| 158 |
+
size_v = math.sqrt(N_visual)
|
| 159 |
+
size_g = math.sqrt(N_ground)
|
| 160 |
+
assert int(size_v) == size_v, "Visual tokens must be square rootable"
|
| 161 |
+
assert int(size_g) == size_g, "Grounding tokens must be square rootable"
|
| 162 |
+
size_v = int(size_v)
|
| 163 |
+
size_g = int(size_g)
|
| 164 |
+
|
| 165 |
+
# select grounding token and resize it to visual token size as residual
|
| 166 |
+
out = self.attn(self.norm1(torch.cat([x, objs], dim=1)))[
|
| 167 |
+
:, N_visual:, :]
|
| 168 |
+
out = out.permute(0, 2, 1).reshape(B, -1, size_g, size_g)
|
| 169 |
+
out = torch.nn.functional.interpolate(
|
| 170 |
+
out, (size_v, size_v), mode='bicubic')
|
| 171 |
+
residual = out.reshape(B, -1, N_visual).permute(0, 2, 1)
|
| 172 |
+
|
| 173 |
+
# add residual to visual feature
|
| 174 |
+
x = x + self.scale * torch.tanh(self.alpha_attn) * residual
|
| 175 |
+
x = x + self.scale * \
|
| 176 |
+
torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
|
| 177 |
+
|
| 178 |
+
return x
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
class FourierEmbedder():
|
| 182 |
+
def __init__(self, num_freqs=64, temperature=100):
|
| 183 |
+
|
| 184 |
+
self.num_freqs = num_freqs
|
| 185 |
+
self.temperature = temperature
|
| 186 |
+
self.freq_bands = temperature ** (torch.arange(num_freqs) / num_freqs)
|
| 187 |
+
|
| 188 |
+
@torch.no_grad()
|
| 189 |
+
def __call__(self, x, cat_dim=-1):
|
| 190 |
+
"x: arbitrary shape of tensor. dim: cat dim"
|
| 191 |
+
out = []
|
| 192 |
+
for freq in self.freq_bands:
|
| 193 |
+
out.append(torch.sin(freq * x))
|
| 194 |
+
out.append(torch.cos(freq * x))
|
| 195 |
+
return torch.cat(out, cat_dim)
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
class PositionNet(nn.Module):
|
| 199 |
+
def __init__(self, in_dim, out_dim, fourier_freqs=8):
|
| 200 |
+
super().__init__()
|
| 201 |
+
self.in_dim = in_dim
|
| 202 |
+
self.out_dim = out_dim
|
| 203 |
+
|
| 204 |
+
self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs)
|
| 205 |
+
self.position_dim = fourier_freqs * 2 * 4 # 2 is sin&cos, 4 is xyxy
|
| 206 |
+
|
| 207 |
+
self.linears = nn.Sequential(
|
| 208 |
+
ops.Linear(self.in_dim + self.position_dim, 512),
|
| 209 |
+
nn.SiLU(),
|
| 210 |
+
ops.Linear(512, 512),
|
| 211 |
+
nn.SiLU(),
|
| 212 |
+
ops.Linear(512, out_dim),
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
self.null_positive_feature = torch.nn.Parameter(
|
| 216 |
+
torch.zeros([self.in_dim]))
|
| 217 |
+
self.null_position_feature = torch.nn.Parameter(
|
| 218 |
+
torch.zeros([self.position_dim]))
|
| 219 |
+
|
| 220 |
+
def forward(self, boxes, masks, positive_embeddings):
|
| 221 |
+
B, N, _ = boxes.shape
|
| 222 |
+
masks = masks.unsqueeze(-1)
|
| 223 |
+
positive_embeddings = positive_embeddings
|
| 224 |
+
|
| 225 |
+
# embedding position (it may includes padding as placeholder)
|
| 226 |
+
xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 --> B*N*C
|
| 227 |
+
|
| 228 |
+
# learnable null embedding
|
| 229 |
+
positive_null = self.null_positive_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1)
|
| 230 |
+
xyxy_null = self.null_position_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1)
|
| 231 |
+
|
| 232 |
+
# replace padding with learnable null embedding
|
| 233 |
+
positive_embeddings = positive_embeddings * \
|
| 234 |
+
masks + (1 - masks) * positive_null
|
| 235 |
+
xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null
|
| 236 |
+
|
| 237 |
+
objs = self.linears(
|
| 238 |
+
torch.cat([positive_embeddings, xyxy_embedding], dim=-1))
|
| 239 |
+
assert objs.shape == torch.Size([B, N, self.out_dim])
|
| 240 |
+
return objs
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
class Gligen(nn.Module):
|
| 244 |
+
def __init__(self, modules, position_net, key_dim):
|
| 245 |
+
super().__init__()
|
| 246 |
+
self.module_list = nn.ModuleList(modules)
|
| 247 |
+
self.position_net = position_net
|
| 248 |
+
self.key_dim = key_dim
|
| 249 |
+
self.max_objs = 30
|
| 250 |
+
self.current_device = torch.device("cpu")
|
| 251 |
+
|
| 252 |
+
def _set_position(self, boxes, masks, positive_embeddings):
|
| 253 |
+
objs = self.position_net(boxes, masks, positive_embeddings)
|
| 254 |
+
def func(x, extra_options):
|
| 255 |
+
key = extra_options["transformer_index"]
|
| 256 |
+
module = self.module_list[key]
|
| 257 |
+
return module(x, objs.to(device=x.device, dtype=x.dtype))
|
| 258 |
+
return func
|
| 259 |
+
|
| 260 |
+
def set_position(self, latent_image_shape, position_params, device):
|
| 261 |
+
batch, c, h, w = latent_image_shape
|
| 262 |
+
masks = torch.zeros([self.max_objs], device="cpu")
|
| 263 |
+
boxes = []
|
| 264 |
+
positive_embeddings = []
|
| 265 |
+
for p in position_params:
|
| 266 |
+
x1 = (p[4]) / w
|
| 267 |
+
y1 = (p[3]) / h
|
| 268 |
+
x2 = (p[4] + p[2]) / w
|
| 269 |
+
y2 = (p[3] + p[1]) / h
|
| 270 |
+
masks[len(boxes)] = 1.0
|
| 271 |
+
boxes += [torch.tensor((x1, y1, x2, y2)).unsqueeze(0)]
|
| 272 |
+
positive_embeddings += [p[0]]
|
| 273 |
+
append_boxes = []
|
| 274 |
+
append_conds = []
|
| 275 |
+
if len(boxes) < self.max_objs:
|
| 276 |
+
append_boxes = [torch.zeros(
|
| 277 |
+
[self.max_objs - len(boxes), 4], device="cpu")]
|
| 278 |
+
append_conds = [torch.zeros(
|
| 279 |
+
[self.max_objs - len(boxes), self.key_dim], device="cpu")]
|
| 280 |
+
|
| 281 |
+
box_out = torch.cat(
|
| 282 |
+
boxes + append_boxes).unsqueeze(0).repeat(batch, 1, 1)
|
| 283 |
+
masks = masks.unsqueeze(0).repeat(batch, 1)
|
| 284 |
+
conds = torch.cat(positive_embeddings +
|
| 285 |
+
append_conds).unsqueeze(0).repeat(batch, 1, 1)
|
| 286 |
+
return self._set_position(
|
| 287 |
+
box_out.to(device),
|
| 288 |
+
masks.to(device),
|
| 289 |
+
conds.to(device))
|
| 290 |
+
|
| 291 |
+
def set_empty(self, latent_image_shape, device):
|
| 292 |
+
batch, c, h, w = latent_image_shape
|
| 293 |
+
masks = torch.zeros([self.max_objs], device="cpu").repeat(batch, 1)
|
| 294 |
+
box_out = torch.zeros([self.max_objs, 4],
|
| 295 |
+
device="cpu").repeat(batch, 1, 1)
|
| 296 |
+
conds = torch.zeros([self.max_objs, self.key_dim],
|
| 297 |
+
device="cpu").repeat(batch, 1, 1)
|
| 298 |
+
return self._set_position(
|
| 299 |
+
box_out.to(device),
|
| 300 |
+
masks.to(device),
|
| 301 |
+
conds.to(device))
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
def load_gligen(sd):
|
| 305 |
+
sd_k = sd.keys()
|
| 306 |
+
output_list = []
|
| 307 |
+
key_dim = 768
|
| 308 |
+
for a in ["input_blocks", "middle_block", "output_blocks"]:
|
| 309 |
+
for b in range(20):
|
| 310 |
+
k_temp = filter(lambda k: "{}.{}.".format(a, b)
|
| 311 |
+
in k and ".fuser." in k, sd_k)
|
| 312 |
+
k_temp = map(lambda k: (k, k.split(".fuser.")[-1]), k_temp)
|
| 313 |
+
|
| 314 |
+
n_sd = {}
|
| 315 |
+
for k in k_temp:
|
| 316 |
+
n_sd[k[1]] = sd[k[0]]
|
| 317 |
+
if len(n_sd) > 0:
|
| 318 |
+
query_dim = n_sd["linear.weight"].shape[0]
|
| 319 |
+
key_dim = n_sd["linear.weight"].shape[1]
|
| 320 |
+
|
| 321 |
+
if key_dim == 768: # SD1.x
|
| 322 |
+
n_heads = 8
|
| 323 |
+
d_head = query_dim // n_heads
|
| 324 |
+
else:
|
| 325 |
+
d_head = 64
|
| 326 |
+
n_heads = query_dim // d_head
|
| 327 |
+
|
| 328 |
+
gated = GatedSelfAttentionDense(
|
| 329 |
+
query_dim, key_dim, n_heads, d_head)
|
| 330 |
+
gated.load_state_dict(n_sd, strict=False)
|
| 331 |
+
output_list.append(gated)
|
| 332 |
+
|
| 333 |
+
if "position_net.null_positive_feature" in sd_k:
|
| 334 |
+
in_dim = sd["position_net.null_positive_feature"].shape[0]
|
| 335 |
+
out_dim = sd["position_net.linears.4.weight"].shape[0]
|
| 336 |
+
|
| 337 |
+
class WeightsLoader(torch.nn.Module):
|
| 338 |
+
pass
|
| 339 |
+
w = WeightsLoader()
|
| 340 |
+
w.position_net = PositionNet(in_dim, out_dim)
|
| 341 |
+
w.load_state_dict(sd, strict=False)
|
| 342 |
+
|
| 343 |
+
gligen = Gligen(output_list, w.position_net, key_dim)
|
| 344 |
+
return gligen
|
comfy/hooks.py
ADDED
|
@@ -0,0 +1,785 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
from typing import TYPE_CHECKING, Callable
|
| 3 |
+
import enum
|
| 4 |
+
import math
|
| 5 |
+
import torch
|
| 6 |
+
import numpy as np
|
| 7 |
+
import itertools
|
| 8 |
+
import logging
|
| 9 |
+
|
| 10 |
+
if TYPE_CHECKING:
|
| 11 |
+
from comfy.model_patcher import ModelPatcher, PatcherInjection
|
| 12 |
+
from comfy.model_base import BaseModel
|
| 13 |
+
from comfy.sd import CLIP
|
| 14 |
+
import comfy.lora
|
| 15 |
+
import comfy.model_management
|
| 16 |
+
import comfy.patcher_extension
|
| 17 |
+
from node_helpers import conditioning_set_values
|
| 18 |
+
|
| 19 |
+
# #######################################################################################################
|
| 20 |
+
# Hooks explanation
|
| 21 |
+
# -------------------
|
| 22 |
+
# The purpose of hooks is to allow conds to influence sampling without the need for ComfyUI core code to
|
| 23 |
+
# make explicit special cases like it does for ControlNet and GLIGEN.
|
| 24 |
+
#
|
| 25 |
+
# This is necessary for nodes/features that are intended for use with masked or scheduled conds, or those
|
| 26 |
+
# that should run special code when a 'marked' cond is used in sampling.
|
| 27 |
+
# #######################################################################################################
|
| 28 |
+
|
| 29 |
+
class EnumHookMode(enum.Enum):
|
| 30 |
+
'''
|
| 31 |
+
Priority of hook memory optimization vs. speed, mostly related to WeightHooks.
|
| 32 |
+
|
| 33 |
+
MinVram: No caching will occur for any operations related to hooks.
|
| 34 |
+
MaxSpeed: Excess VRAM (and RAM, once VRAM is sufficiently depleted) will be used to cache hook weights when switching hook groups.
|
| 35 |
+
'''
|
| 36 |
+
MinVram = "minvram"
|
| 37 |
+
MaxSpeed = "maxspeed"
|
| 38 |
+
|
| 39 |
+
class EnumHookType(enum.Enum):
|
| 40 |
+
'''
|
| 41 |
+
Hook types, each of which has different expected behavior.
|
| 42 |
+
'''
|
| 43 |
+
Weight = "weight"
|
| 44 |
+
ObjectPatch = "object_patch"
|
| 45 |
+
AdditionalModels = "add_models"
|
| 46 |
+
TransformerOptions = "transformer_options"
|
| 47 |
+
Injections = "add_injections"
|
| 48 |
+
|
| 49 |
+
class EnumWeightTarget(enum.Enum):
|
| 50 |
+
Model = "model"
|
| 51 |
+
Clip = "clip"
|
| 52 |
+
|
| 53 |
+
class EnumHookScope(enum.Enum):
|
| 54 |
+
'''
|
| 55 |
+
Determines if hook should be limited in its influence over sampling.
|
| 56 |
+
|
| 57 |
+
AllConditioning: hook will affect all conds used in sampling.
|
| 58 |
+
HookedOnly: hook will only affect the conds it was attached to.
|
| 59 |
+
'''
|
| 60 |
+
AllConditioning = "all_conditioning"
|
| 61 |
+
HookedOnly = "hooked_only"
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class _HookRef:
|
| 65 |
+
pass
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def default_should_register(hook: Hook, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
| 69 |
+
'''Example for how custom_should_register function can look like.'''
|
| 70 |
+
return True
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def create_target_dict(target: EnumWeightTarget=None, **kwargs) -> dict[str]:
|
| 74 |
+
'''Creates base dictionary for use with Hooks' target param.'''
|
| 75 |
+
d = {}
|
| 76 |
+
if target is not None:
|
| 77 |
+
d['target'] = target
|
| 78 |
+
d.update(kwargs)
|
| 79 |
+
return d
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class Hook:
|
| 83 |
+
def __init__(self, hook_type: EnumHookType=None, hook_ref: _HookRef=None, hook_id: str=None,
|
| 84 |
+
hook_keyframe: HookKeyframeGroup=None, hook_scope=EnumHookScope.AllConditioning):
|
| 85 |
+
self.hook_type = hook_type
|
| 86 |
+
'''Enum identifying the general class of this hook.'''
|
| 87 |
+
self.hook_ref = hook_ref if hook_ref else _HookRef()
|
| 88 |
+
'''Reference shared between hook clones that have the same value. Should NOT be modified.'''
|
| 89 |
+
self.hook_id = hook_id
|
| 90 |
+
'''Optional string ID to identify hook; useful if need to consolidate duplicates at registration time.'''
|
| 91 |
+
self.hook_keyframe = hook_keyframe if hook_keyframe else HookKeyframeGroup()
|
| 92 |
+
'''Keyframe storage that can be referenced to get strength for current sampling step.'''
|
| 93 |
+
self.hook_scope = hook_scope
|
| 94 |
+
'''Scope of where this hook should apply in terms of the conds used in sampling run.'''
|
| 95 |
+
self.custom_should_register = default_should_register
|
| 96 |
+
'''Can be overriden with a compatible function to decide if this hook should be registered without the need to override .should_register'''
|
| 97 |
+
|
| 98 |
+
@property
|
| 99 |
+
def strength(self):
|
| 100 |
+
return self.hook_keyframe.strength
|
| 101 |
+
|
| 102 |
+
def initialize_timesteps(self, model: BaseModel):
|
| 103 |
+
self.reset()
|
| 104 |
+
self.hook_keyframe.initialize_timesteps(model)
|
| 105 |
+
|
| 106 |
+
def reset(self):
|
| 107 |
+
self.hook_keyframe.reset()
|
| 108 |
+
|
| 109 |
+
def clone(self):
|
| 110 |
+
c: Hook = self.__class__()
|
| 111 |
+
c.hook_type = self.hook_type
|
| 112 |
+
c.hook_ref = self.hook_ref
|
| 113 |
+
c.hook_id = self.hook_id
|
| 114 |
+
c.hook_keyframe = self.hook_keyframe
|
| 115 |
+
c.hook_scope = self.hook_scope
|
| 116 |
+
c.custom_should_register = self.custom_should_register
|
| 117 |
+
return c
|
| 118 |
+
|
| 119 |
+
def should_register(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
| 120 |
+
return self.custom_should_register(self, model, model_options, target_dict, registered)
|
| 121 |
+
|
| 122 |
+
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
| 123 |
+
raise NotImplementedError("add_hook_patches should be defined for Hook subclasses")
|
| 124 |
+
|
| 125 |
+
def __eq__(self, other: Hook):
|
| 126 |
+
return self.__class__ == other.__class__ and self.hook_ref == other.hook_ref
|
| 127 |
+
|
| 128 |
+
def __hash__(self):
|
| 129 |
+
return hash(self.hook_ref)
|
| 130 |
+
|
| 131 |
+
class WeightHook(Hook):
|
| 132 |
+
'''
|
| 133 |
+
Hook responsible for tracking weights to be applied to some model/clip.
|
| 134 |
+
|
| 135 |
+
Note, value of hook_scope is ignored and is treated as HookedOnly.
|
| 136 |
+
'''
|
| 137 |
+
def __init__(self, strength_model=1.0, strength_clip=1.0):
|
| 138 |
+
super().__init__(hook_type=EnumHookType.Weight, hook_scope=EnumHookScope.HookedOnly)
|
| 139 |
+
self.weights: dict = None
|
| 140 |
+
self.weights_clip: dict = None
|
| 141 |
+
self.need_weight_init = True
|
| 142 |
+
self._strength_model = strength_model
|
| 143 |
+
self._strength_clip = strength_clip
|
| 144 |
+
self.hook_scope = EnumHookScope.HookedOnly # this value does not matter for WeightHooks, just for docs
|
| 145 |
+
|
| 146 |
+
@property
|
| 147 |
+
def strength_model(self):
|
| 148 |
+
return self._strength_model * self.strength
|
| 149 |
+
|
| 150 |
+
@property
|
| 151 |
+
def strength_clip(self):
|
| 152 |
+
return self._strength_clip * self.strength
|
| 153 |
+
|
| 154 |
+
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
| 155 |
+
if not self.should_register(model, model_options, target_dict, registered):
|
| 156 |
+
return False
|
| 157 |
+
weights = None
|
| 158 |
+
|
| 159 |
+
target = target_dict.get('target', None)
|
| 160 |
+
if target == EnumWeightTarget.Clip:
|
| 161 |
+
strength = self._strength_clip
|
| 162 |
+
else:
|
| 163 |
+
strength = self._strength_model
|
| 164 |
+
|
| 165 |
+
if self.need_weight_init:
|
| 166 |
+
key_map = {}
|
| 167 |
+
if target == EnumWeightTarget.Clip:
|
| 168 |
+
key_map = comfy.lora.model_lora_keys_clip(model.model, key_map)
|
| 169 |
+
else:
|
| 170 |
+
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
|
| 171 |
+
weights = comfy.lora.load_lora(self.weights, key_map, log_missing=False)
|
| 172 |
+
else:
|
| 173 |
+
if target == EnumWeightTarget.Clip:
|
| 174 |
+
weights = self.weights_clip
|
| 175 |
+
else:
|
| 176 |
+
weights = self.weights
|
| 177 |
+
model.add_hook_patches(hook=self, patches=weights, strength_patch=strength)
|
| 178 |
+
registered.add(self)
|
| 179 |
+
return True
|
| 180 |
+
# TODO: add logs about any keys that were not applied
|
| 181 |
+
|
| 182 |
+
def clone(self):
|
| 183 |
+
c: WeightHook = super().clone()
|
| 184 |
+
c.weights = self.weights
|
| 185 |
+
c.weights_clip = self.weights_clip
|
| 186 |
+
c.need_weight_init = self.need_weight_init
|
| 187 |
+
c._strength_model = self._strength_model
|
| 188 |
+
c._strength_clip = self._strength_clip
|
| 189 |
+
return c
|
| 190 |
+
|
| 191 |
+
class ObjectPatchHook(Hook):
|
| 192 |
+
def __init__(self, object_patches: dict[str]=None,
|
| 193 |
+
hook_scope=EnumHookScope.AllConditioning):
|
| 194 |
+
super().__init__(hook_type=EnumHookType.ObjectPatch)
|
| 195 |
+
self.object_patches = object_patches
|
| 196 |
+
self.hook_scope = hook_scope
|
| 197 |
+
|
| 198 |
+
def clone(self):
|
| 199 |
+
c: ObjectPatchHook = super().clone()
|
| 200 |
+
c.object_patches = self.object_patches
|
| 201 |
+
return c
|
| 202 |
+
|
| 203 |
+
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
| 204 |
+
raise NotImplementedError("ObjectPatchHook is not supported yet in ComfyUI.")
|
| 205 |
+
|
| 206 |
+
class AdditionalModelsHook(Hook):
|
| 207 |
+
'''
|
| 208 |
+
Hook responsible for telling model management any additional models that should be loaded.
|
| 209 |
+
|
| 210 |
+
Note, value of hook_scope is ignored and is treated as AllConditioning.
|
| 211 |
+
'''
|
| 212 |
+
def __init__(self, models: list[ModelPatcher]=None, key: str=None):
|
| 213 |
+
super().__init__(hook_type=EnumHookType.AdditionalModels)
|
| 214 |
+
self.models = models
|
| 215 |
+
self.key = key
|
| 216 |
+
|
| 217 |
+
def clone(self):
|
| 218 |
+
c: AdditionalModelsHook = super().clone()
|
| 219 |
+
c.models = self.models.copy() if self.models else self.models
|
| 220 |
+
c.key = self.key
|
| 221 |
+
return c
|
| 222 |
+
|
| 223 |
+
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
| 224 |
+
if not self.should_register(model, model_options, target_dict, registered):
|
| 225 |
+
return False
|
| 226 |
+
registered.add(self)
|
| 227 |
+
return True
|
| 228 |
+
|
| 229 |
+
class TransformerOptionsHook(Hook):
|
| 230 |
+
'''
|
| 231 |
+
Hook responsible for adding wrappers, callbacks, patches, or anything else related to transformer_options.
|
| 232 |
+
'''
|
| 233 |
+
def __init__(self, transformers_dict: dict[str, dict[str, dict[str, list[Callable]]]]=None,
|
| 234 |
+
hook_scope=EnumHookScope.AllConditioning):
|
| 235 |
+
super().__init__(hook_type=EnumHookType.TransformerOptions)
|
| 236 |
+
self.transformers_dict = transformers_dict
|
| 237 |
+
self.hook_scope = hook_scope
|
| 238 |
+
self._skip_adding = False
|
| 239 |
+
'''Internal value used to avoid double load of transformer_options when hook_scope is AllConditioning.'''
|
| 240 |
+
|
| 241 |
+
def clone(self):
|
| 242 |
+
c: TransformerOptionsHook = super().clone()
|
| 243 |
+
c.transformers_dict = self.transformers_dict
|
| 244 |
+
c._skip_adding = self._skip_adding
|
| 245 |
+
return c
|
| 246 |
+
|
| 247 |
+
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
| 248 |
+
if not self.should_register(model, model_options, target_dict, registered):
|
| 249 |
+
return False
|
| 250 |
+
# NOTE: to_load_options will be used to manually load patches/wrappers/callbacks from hooks
|
| 251 |
+
self._skip_adding = False
|
| 252 |
+
if self.hook_scope == EnumHookScope.AllConditioning:
|
| 253 |
+
add_model_options = {"transformer_options": self.transformers_dict,
|
| 254 |
+
"to_load_options": self.transformers_dict}
|
| 255 |
+
# skip_adding if included in AllConditioning to avoid double loading
|
| 256 |
+
self._skip_adding = True
|
| 257 |
+
else:
|
| 258 |
+
add_model_options = {"to_load_options": self.transformers_dict}
|
| 259 |
+
registered.add(self)
|
| 260 |
+
comfy.patcher_extension.merge_nested_dicts(model_options, add_model_options, copy_dict1=False)
|
| 261 |
+
return True
|
| 262 |
+
|
| 263 |
+
def on_apply_hooks(self, model: ModelPatcher, transformer_options: dict[str]):
|
| 264 |
+
if not self._skip_adding:
|
| 265 |
+
comfy.patcher_extension.merge_nested_dicts(transformer_options, self.transformers_dict, copy_dict1=False)
|
| 266 |
+
|
| 267 |
+
WrapperHook = TransformerOptionsHook
|
| 268 |
+
'''Only here for backwards compatibility, WrapperHook is identical to TransformerOptionsHook.'''
|
| 269 |
+
|
| 270 |
+
class InjectionsHook(Hook):
|
| 271 |
+
def __init__(self, key: str=None, injections: list[PatcherInjection]=None,
|
| 272 |
+
hook_scope=EnumHookScope.AllConditioning):
|
| 273 |
+
super().__init__(hook_type=EnumHookType.Injections)
|
| 274 |
+
self.key = key
|
| 275 |
+
self.injections = injections
|
| 276 |
+
self.hook_scope = hook_scope
|
| 277 |
+
|
| 278 |
+
def clone(self):
|
| 279 |
+
c: InjectionsHook = super().clone()
|
| 280 |
+
c.key = self.key
|
| 281 |
+
c.injections = self.injections.copy() if self.injections else self.injections
|
| 282 |
+
return c
|
| 283 |
+
|
| 284 |
+
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
| 285 |
+
raise NotImplementedError("InjectionsHook is not supported yet in ComfyUI.")
|
| 286 |
+
|
| 287 |
+
class HookGroup:
|
| 288 |
+
'''
|
| 289 |
+
Stores groups of hooks, and allows them to be queried by type.
|
| 290 |
+
|
| 291 |
+
To prevent breaking their functionality, never modify the underlying self.hooks or self._hook_dict vars directly;
|
| 292 |
+
always use the provided functions on HookGroup.
|
| 293 |
+
'''
|
| 294 |
+
def __init__(self):
|
| 295 |
+
self.hooks: list[Hook] = []
|
| 296 |
+
self._hook_dict: dict[EnumHookType, list[Hook]] = {}
|
| 297 |
+
|
| 298 |
+
def __len__(self):
|
| 299 |
+
return len(self.hooks)
|
| 300 |
+
|
| 301 |
+
def add(self, hook: Hook):
|
| 302 |
+
if hook not in self.hooks:
|
| 303 |
+
self.hooks.append(hook)
|
| 304 |
+
self._hook_dict.setdefault(hook.hook_type, []).append(hook)
|
| 305 |
+
|
| 306 |
+
def remove(self, hook: Hook):
|
| 307 |
+
if hook in self.hooks:
|
| 308 |
+
self.hooks.remove(hook)
|
| 309 |
+
self._hook_dict[hook.hook_type].remove(hook)
|
| 310 |
+
|
| 311 |
+
def get_type(self, hook_type: EnumHookType):
|
| 312 |
+
return self._hook_dict.get(hook_type, [])
|
| 313 |
+
|
| 314 |
+
def contains(self, hook: Hook):
|
| 315 |
+
return hook in self.hooks
|
| 316 |
+
|
| 317 |
+
def is_subset_of(self, other: HookGroup):
|
| 318 |
+
self_hooks = set(self.hooks)
|
| 319 |
+
other_hooks = set(other.hooks)
|
| 320 |
+
return self_hooks.issubset(other_hooks)
|
| 321 |
+
|
| 322 |
+
def new_with_common_hooks(self, other: HookGroup):
|
| 323 |
+
c = HookGroup()
|
| 324 |
+
for hook in self.hooks:
|
| 325 |
+
if other.contains(hook):
|
| 326 |
+
c.add(hook.clone())
|
| 327 |
+
return c
|
| 328 |
+
|
| 329 |
+
def clone(self):
|
| 330 |
+
c = HookGroup()
|
| 331 |
+
for hook in self.hooks:
|
| 332 |
+
c.add(hook.clone())
|
| 333 |
+
return c
|
| 334 |
+
|
| 335 |
+
def clone_and_combine(self, other: HookGroup):
|
| 336 |
+
c = self.clone()
|
| 337 |
+
if other is not None:
|
| 338 |
+
for hook in other.hooks:
|
| 339 |
+
c.add(hook.clone())
|
| 340 |
+
return c
|
| 341 |
+
|
| 342 |
+
def set_keyframes_on_hooks(self, hook_kf: HookKeyframeGroup):
|
| 343 |
+
if hook_kf is None:
|
| 344 |
+
hook_kf = HookKeyframeGroup()
|
| 345 |
+
else:
|
| 346 |
+
hook_kf = hook_kf.clone()
|
| 347 |
+
for hook in self.hooks:
|
| 348 |
+
hook.hook_keyframe = hook_kf
|
| 349 |
+
|
| 350 |
+
def get_hooks_for_clip_schedule(self):
|
| 351 |
+
scheduled_hooks: dict[WeightHook, list[tuple[tuple[float,float], HookKeyframe]]] = {}
|
| 352 |
+
# only care about WeightHooks, for now
|
| 353 |
+
for hook in self.get_type(EnumHookType.Weight):
|
| 354 |
+
hook: WeightHook
|
| 355 |
+
hook_schedule = []
|
| 356 |
+
# if no hook keyframes, assign default value
|
| 357 |
+
if len(hook.hook_keyframe.keyframes) == 0:
|
| 358 |
+
hook_schedule.append(((0.0, 1.0), None))
|
| 359 |
+
scheduled_hooks[hook] = hook_schedule
|
| 360 |
+
continue
|
| 361 |
+
# find ranges of values
|
| 362 |
+
prev_keyframe = hook.hook_keyframe.keyframes[0]
|
| 363 |
+
for keyframe in hook.hook_keyframe.keyframes:
|
| 364 |
+
if keyframe.start_percent > prev_keyframe.start_percent and not math.isclose(keyframe.strength, prev_keyframe.strength):
|
| 365 |
+
hook_schedule.append(((prev_keyframe.start_percent, keyframe.start_percent), prev_keyframe))
|
| 366 |
+
prev_keyframe = keyframe
|
| 367 |
+
elif keyframe.start_percent == prev_keyframe.start_percent:
|
| 368 |
+
prev_keyframe = keyframe
|
| 369 |
+
# create final range, assuming last start_percent was not 1.0
|
| 370 |
+
if not math.isclose(prev_keyframe.start_percent, 1.0):
|
| 371 |
+
hook_schedule.append(((prev_keyframe.start_percent, 1.0), prev_keyframe))
|
| 372 |
+
scheduled_hooks[hook] = hook_schedule
|
| 373 |
+
# hooks should not have their schedules in a list of tuples
|
| 374 |
+
all_ranges: list[tuple[float, float]] = []
|
| 375 |
+
for range_kfs in scheduled_hooks.values():
|
| 376 |
+
for t_range, keyframe in range_kfs:
|
| 377 |
+
all_ranges.append(t_range)
|
| 378 |
+
# turn list of ranges into boundaries
|
| 379 |
+
boundaries_set = set(itertools.chain.from_iterable(all_ranges))
|
| 380 |
+
boundaries_set.add(0.0)
|
| 381 |
+
boundaries = sorted(boundaries_set)
|
| 382 |
+
real_ranges = [(boundaries[i], boundaries[i + 1]) for i in range(len(boundaries) - 1)]
|
| 383 |
+
# with real ranges defined, give appropriate hooks w/ keyframes for each range
|
| 384 |
+
scheduled_keyframes: list[tuple[tuple[float,float], list[tuple[WeightHook, HookKeyframe]]]] = []
|
| 385 |
+
for t_range in real_ranges:
|
| 386 |
+
hooks_schedule = []
|
| 387 |
+
for hook, val in scheduled_hooks.items():
|
| 388 |
+
keyframe = None
|
| 389 |
+
# check if is a keyframe that works for the current t_range
|
| 390 |
+
for stored_range, stored_kf in val:
|
| 391 |
+
# if stored start is less than current end, then fits - give it assigned keyframe
|
| 392 |
+
if stored_range[0] < t_range[1] and stored_range[1] > t_range[0]:
|
| 393 |
+
keyframe = stored_kf
|
| 394 |
+
break
|
| 395 |
+
hooks_schedule.append((hook, keyframe))
|
| 396 |
+
scheduled_keyframes.append((t_range, hooks_schedule))
|
| 397 |
+
return scheduled_keyframes
|
| 398 |
+
|
| 399 |
+
def reset(self):
|
| 400 |
+
for hook in self.hooks:
|
| 401 |
+
hook.reset()
|
| 402 |
+
|
| 403 |
+
@staticmethod
|
| 404 |
+
def combine_all_hooks(hooks_list: list[HookGroup], require_count=0) -> HookGroup:
|
| 405 |
+
actual: list[HookGroup] = []
|
| 406 |
+
for group in hooks_list:
|
| 407 |
+
if group is not None:
|
| 408 |
+
actual.append(group)
|
| 409 |
+
if len(actual) < require_count:
|
| 410 |
+
raise Exception(f"Need at least {require_count} hooks to combine, but only had {len(actual)}.")
|
| 411 |
+
# if no hooks, then return None
|
| 412 |
+
if len(actual) == 0:
|
| 413 |
+
return None
|
| 414 |
+
# if only 1 hook, just return itself without cloning
|
| 415 |
+
elif len(actual) == 1:
|
| 416 |
+
return actual[0]
|
| 417 |
+
final_hook: HookGroup = None
|
| 418 |
+
for hook in actual:
|
| 419 |
+
if final_hook is None:
|
| 420 |
+
final_hook = hook.clone()
|
| 421 |
+
else:
|
| 422 |
+
final_hook = final_hook.clone_and_combine(hook)
|
| 423 |
+
return final_hook
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
class HookKeyframe:
|
| 427 |
+
def __init__(self, strength: float, start_percent=0.0, guarantee_steps=1):
|
| 428 |
+
self.strength = strength
|
| 429 |
+
# scheduling
|
| 430 |
+
self.start_percent = float(start_percent)
|
| 431 |
+
self.start_t = 999999999.9
|
| 432 |
+
self.guarantee_steps = guarantee_steps
|
| 433 |
+
|
| 434 |
+
def get_effective_guarantee_steps(self, max_sigma: torch.Tensor):
|
| 435 |
+
'''If keyframe starts before current sampling range (max_sigma), treat as 0.'''
|
| 436 |
+
if self.start_t > max_sigma:
|
| 437 |
+
return 0
|
| 438 |
+
return self.guarantee_steps
|
| 439 |
+
|
| 440 |
+
def clone(self):
|
| 441 |
+
c = HookKeyframe(strength=self.strength,
|
| 442 |
+
start_percent=self.start_percent, guarantee_steps=self.guarantee_steps)
|
| 443 |
+
c.start_t = self.start_t
|
| 444 |
+
return c
|
| 445 |
+
|
| 446 |
+
class HookKeyframeGroup:
|
| 447 |
+
def __init__(self):
|
| 448 |
+
self.keyframes: list[HookKeyframe] = []
|
| 449 |
+
self._current_keyframe: HookKeyframe = None
|
| 450 |
+
self._current_used_steps = 0
|
| 451 |
+
self._current_index = 0
|
| 452 |
+
self._current_strength = None
|
| 453 |
+
self._curr_t = -1.
|
| 454 |
+
|
| 455 |
+
# properties shadow those of HookWeightsKeyframe
|
| 456 |
+
@property
|
| 457 |
+
def strength(self):
|
| 458 |
+
if self._current_keyframe is not None:
|
| 459 |
+
return self._current_keyframe.strength
|
| 460 |
+
return 1.0
|
| 461 |
+
|
| 462 |
+
def reset(self):
|
| 463 |
+
self._current_keyframe = None
|
| 464 |
+
self._current_used_steps = 0
|
| 465 |
+
self._current_index = 0
|
| 466 |
+
self._current_strength = None
|
| 467 |
+
self.curr_t = -1.
|
| 468 |
+
self._set_first_as_current()
|
| 469 |
+
|
| 470 |
+
def add(self, keyframe: HookKeyframe):
|
| 471 |
+
# add to end of list, then sort
|
| 472 |
+
self.keyframes.append(keyframe)
|
| 473 |
+
self.keyframes = get_sorted_list_via_attr(self.keyframes, "start_percent")
|
| 474 |
+
self._set_first_as_current()
|
| 475 |
+
|
| 476 |
+
def _set_first_as_current(self):
|
| 477 |
+
if len(self.keyframes) > 0:
|
| 478 |
+
self._current_keyframe = self.keyframes[0]
|
| 479 |
+
else:
|
| 480 |
+
self._current_keyframe = None
|
| 481 |
+
|
| 482 |
+
def has_guarantee_steps(self):
|
| 483 |
+
for kf in self.keyframes:
|
| 484 |
+
if kf.guarantee_steps > 0:
|
| 485 |
+
return True
|
| 486 |
+
return False
|
| 487 |
+
|
| 488 |
+
def has_index(self, index: int):
|
| 489 |
+
return index >= 0 and index < len(self.keyframes)
|
| 490 |
+
|
| 491 |
+
def is_empty(self):
|
| 492 |
+
return len(self.keyframes) == 0
|
| 493 |
+
|
| 494 |
+
def clone(self):
|
| 495 |
+
c = HookKeyframeGroup()
|
| 496 |
+
for keyframe in self.keyframes:
|
| 497 |
+
c.keyframes.append(keyframe.clone())
|
| 498 |
+
c._set_first_as_current()
|
| 499 |
+
return c
|
| 500 |
+
|
| 501 |
+
def initialize_timesteps(self, model: BaseModel):
|
| 502 |
+
for keyframe in self.keyframes:
|
| 503 |
+
keyframe.start_t = model.model_sampling.percent_to_sigma(keyframe.start_percent)
|
| 504 |
+
|
| 505 |
+
def prepare_current_keyframe(self, curr_t: float, transformer_options: dict[str, torch.Tensor]) -> bool:
|
| 506 |
+
if self.is_empty():
|
| 507 |
+
return False
|
| 508 |
+
if curr_t == self._curr_t:
|
| 509 |
+
return False
|
| 510 |
+
max_sigma = torch.max(transformer_options["sample_sigmas"])
|
| 511 |
+
prev_index = self._current_index
|
| 512 |
+
prev_strength = self._current_strength
|
| 513 |
+
# if met guaranteed steps, look for next keyframe in case need to switch
|
| 514 |
+
if self._current_used_steps >= self._current_keyframe.get_effective_guarantee_steps(max_sigma):
|
| 515 |
+
# if has next index, loop through and see if need to switch
|
| 516 |
+
if self.has_index(self._current_index+1):
|
| 517 |
+
for i in range(self._current_index+1, len(self.keyframes)):
|
| 518 |
+
eval_c = self.keyframes[i]
|
| 519 |
+
# check if start_t is greater or equal to curr_t
|
| 520 |
+
# NOTE: t is in terms of sigmas, not percent, so bigger number = earlier step in sampling
|
| 521 |
+
if eval_c.start_t >= curr_t:
|
| 522 |
+
self._current_index = i
|
| 523 |
+
self._current_strength = eval_c.strength
|
| 524 |
+
self._current_keyframe = eval_c
|
| 525 |
+
self._current_used_steps = 0
|
| 526 |
+
# if guarantee_steps greater than zero, stop searching for other keyframes
|
| 527 |
+
if self._current_keyframe.get_effective_guarantee_steps(max_sigma) > 0:
|
| 528 |
+
break
|
| 529 |
+
# if eval_c is outside the percent range, stop looking further
|
| 530 |
+
else: break
|
| 531 |
+
# update steps current context is used
|
| 532 |
+
self._current_used_steps += 1
|
| 533 |
+
# update current timestep this was performed on
|
| 534 |
+
self._curr_t = curr_t
|
| 535 |
+
# return True if keyframe changed, False if no change
|
| 536 |
+
return prev_index != self._current_index and prev_strength != self._current_strength
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
class InterpolationMethod:
|
| 540 |
+
LINEAR = "linear"
|
| 541 |
+
EASE_IN = "ease_in"
|
| 542 |
+
EASE_OUT = "ease_out"
|
| 543 |
+
EASE_IN_OUT = "ease_in_out"
|
| 544 |
+
|
| 545 |
+
_LIST = [LINEAR, EASE_IN, EASE_OUT, EASE_IN_OUT]
|
| 546 |
+
|
| 547 |
+
@classmethod
|
| 548 |
+
def get_weights(cls, num_from: float, num_to: float, length: int, method: str, reverse=False):
|
| 549 |
+
diff = num_to - num_from
|
| 550 |
+
if method == cls.LINEAR:
|
| 551 |
+
weights = torch.linspace(num_from, num_to, length)
|
| 552 |
+
elif method == cls.EASE_IN:
|
| 553 |
+
index = torch.linspace(0, 1, length)
|
| 554 |
+
weights = diff * np.power(index, 2) + num_from
|
| 555 |
+
elif method == cls.EASE_OUT:
|
| 556 |
+
index = torch.linspace(0, 1, length)
|
| 557 |
+
weights = diff * (1 - np.power(1 - index, 2)) + num_from
|
| 558 |
+
elif method == cls.EASE_IN_OUT:
|
| 559 |
+
index = torch.linspace(0, 1, length)
|
| 560 |
+
weights = diff * ((1 - np.cos(index * np.pi)) / 2) + num_from
|
| 561 |
+
else:
|
| 562 |
+
raise ValueError(f"Unrecognized interpolation method '{method}'.")
|
| 563 |
+
if reverse:
|
| 564 |
+
weights = weights.flip(dims=(0,))
|
| 565 |
+
return weights
|
| 566 |
+
|
| 567 |
+
def get_sorted_list_via_attr(objects: list, attr: str) -> list:
|
| 568 |
+
if not objects:
|
| 569 |
+
return objects
|
| 570 |
+
elif len(objects) <= 1:
|
| 571 |
+
return [x for x in objects]
|
| 572 |
+
# now that we know we have to sort, do it following these rules:
|
| 573 |
+
# a) if objects have same value of attribute, maintain their relative order
|
| 574 |
+
# b) perform sorting of the groups of objects with same attributes
|
| 575 |
+
unique_attrs = {}
|
| 576 |
+
for o in objects:
|
| 577 |
+
val_attr = getattr(o, attr)
|
| 578 |
+
attr_list: list = unique_attrs.get(val_attr, list())
|
| 579 |
+
attr_list.append(o)
|
| 580 |
+
if val_attr not in unique_attrs:
|
| 581 |
+
unique_attrs[val_attr] = attr_list
|
| 582 |
+
# now that we have the unique attr values grouped together in relative order, sort them by key
|
| 583 |
+
sorted_attrs = dict(sorted(unique_attrs.items()))
|
| 584 |
+
# now flatten out the dict into a list to return
|
| 585 |
+
sorted_list = []
|
| 586 |
+
for object_list in sorted_attrs.values():
|
| 587 |
+
sorted_list.extend(object_list)
|
| 588 |
+
return sorted_list
|
| 589 |
+
|
| 590 |
+
def create_transformer_options_from_hooks(model: ModelPatcher, hooks: HookGroup, transformer_options: dict[str]=None):
|
| 591 |
+
# if no hooks or is not a ModelPatcher for sampling, return empty dict
|
| 592 |
+
if hooks is None or model.is_clip:
|
| 593 |
+
return {}
|
| 594 |
+
if transformer_options is None:
|
| 595 |
+
transformer_options = {}
|
| 596 |
+
for hook in hooks.get_type(EnumHookType.TransformerOptions):
|
| 597 |
+
hook: TransformerOptionsHook
|
| 598 |
+
hook.on_apply_hooks(model, transformer_options)
|
| 599 |
+
return transformer_options
|
| 600 |
+
|
| 601 |
+
def create_hook_lora(lora: dict[str, torch.Tensor], strength_model: float, strength_clip: float):
|
| 602 |
+
hook_group = HookGroup()
|
| 603 |
+
hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip)
|
| 604 |
+
hook_group.add(hook)
|
| 605 |
+
hook.weights = lora
|
| 606 |
+
return hook_group
|
| 607 |
+
|
| 608 |
+
def create_hook_model_as_lora(weights_model, weights_clip, strength_model: float, strength_clip: float):
|
| 609 |
+
hook_group = HookGroup()
|
| 610 |
+
hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip)
|
| 611 |
+
hook_group.add(hook)
|
| 612 |
+
patches_model = None
|
| 613 |
+
patches_clip = None
|
| 614 |
+
if weights_model is not None:
|
| 615 |
+
patches_model = {}
|
| 616 |
+
for key in weights_model:
|
| 617 |
+
patches_model[key] = ("model_as_lora", (weights_model[key],))
|
| 618 |
+
if weights_clip is not None:
|
| 619 |
+
patches_clip = {}
|
| 620 |
+
for key in weights_clip:
|
| 621 |
+
patches_clip[key] = ("model_as_lora", (weights_clip[key],))
|
| 622 |
+
hook.weights = patches_model
|
| 623 |
+
hook.weights_clip = patches_clip
|
| 624 |
+
hook.need_weight_init = False
|
| 625 |
+
return hook_group
|
| 626 |
+
|
| 627 |
+
def get_patch_weights_from_model(model: ModelPatcher, discard_model_sampling=True):
|
| 628 |
+
if model is None:
|
| 629 |
+
return None
|
| 630 |
+
patches_model: dict[str, torch.Tensor] = model.model.state_dict()
|
| 631 |
+
if discard_model_sampling:
|
| 632 |
+
# do not include ANY model_sampling components of the model that should act as a patch
|
| 633 |
+
for key in list(patches_model.keys()):
|
| 634 |
+
if key.startswith("model_sampling"):
|
| 635 |
+
patches_model.pop(key, None)
|
| 636 |
+
return patches_model
|
| 637 |
+
|
| 638 |
+
# NOTE: this function shows how to register weight hooks directly on the ModelPatchers
|
| 639 |
+
def load_hook_lora_for_models(model: ModelPatcher, clip: CLIP, lora: dict[str, torch.Tensor],
|
| 640 |
+
strength_model: float, strength_clip: float):
|
| 641 |
+
key_map = {}
|
| 642 |
+
if model is not None:
|
| 643 |
+
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
|
| 644 |
+
if clip is not None:
|
| 645 |
+
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
|
| 646 |
+
|
| 647 |
+
hook_group = HookGroup()
|
| 648 |
+
hook = WeightHook()
|
| 649 |
+
hook_group.add(hook)
|
| 650 |
+
loaded: dict[str] = comfy.lora.load_lora(lora, key_map)
|
| 651 |
+
if model is not None:
|
| 652 |
+
new_modelpatcher = model.clone()
|
| 653 |
+
k = new_modelpatcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_model)
|
| 654 |
+
else:
|
| 655 |
+
k = ()
|
| 656 |
+
new_modelpatcher = None
|
| 657 |
+
|
| 658 |
+
if clip is not None:
|
| 659 |
+
new_clip = clip.clone()
|
| 660 |
+
k1 = new_clip.patcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_clip)
|
| 661 |
+
else:
|
| 662 |
+
k1 = ()
|
| 663 |
+
new_clip = None
|
| 664 |
+
k = set(k)
|
| 665 |
+
k1 = set(k1)
|
| 666 |
+
for x in loaded:
|
| 667 |
+
if (x not in k) and (x not in k1):
|
| 668 |
+
logging.warning(f"NOT LOADED {x}")
|
| 669 |
+
return (new_modelpatcher, new_clip, hook_group)
|
| 670 |
+
|
| 671 |
+
def _combine_hooks_from_values(c_dict: dict[str, HookGroup], values: dict[str, HookGroup], cache: dict[tuple[HookGroup, HookGroup], HookGroup]):
|
| 672 |
+
hooks_key = 'hooks'
|
| 673 |
+
# if hooks only exist in one dict, do what's needed so that it ends up in c_dict
|
| 674 |
+
if hooks_key not in values:
|
| 675 |
+
return
|
| 676 |
+
if hooks_key not in c_dict:
|
| 677 |
+
hooks_value = values.get(hooks_key, None)
|
| 678 |
+
if hooks_value is not None:
|
| 679 |
+
c_dict[hooks_key] = hooks_value
|
| 680 |
+
return
|
| 681 |
+
# otherwise, need to combine with minimum duplication via cache
|
| 682 |
+
hooks_tuple = (c_dict[hooks_key], values[hooks_key])
|
| 683 |
+
cached_hooks = cache.get(hooks_tuple, None)
|
| 684 |
+
if cached_hooks is None:
|
| 685 |
+
new_hooks = hooks_tuple[0].clone_and_combine(hooks_tuple[1])
|
| 686 |
+
cache[hooks_tuple] = new_hooks
|
| 687 |
+
c_dict[hooks_key] = new_hooks
|
| 688 |
+
else:
|
| 689 |
+
c_dict[hooks_key] = cache[hooks_tuple]
|
| 690 |
+
|
| 691 |
+
def conditioning_set_values_with_hooks(conditioning, values={}, append_hooks=True,
|
| 692 |
+
cache: dict[tuple[HookGroup, HookGroup], HookGroup]=None):
|
| 693 |
+
c = []
|
| 694 |
+
if cache is None:
|
| 695 |
+
cache = {}
|
| 696 |
+
for t in conditioning:
|
| 697 |
+
n = [t[0], t[1].copy()]
|
| 698 |
+
for k in values:
|
| 699 |
+
if append_hooks and k == 'hooks':
|
| 700 |
+
_combine_hooks_from_values(n[1], values, cache)
|
| 701 |
+
else:
|
| 702 |
+
n[1][k] = values[k]
|
| 703 |
+
c.append(n)
|
| 704 |
+
|
| 705 |
+
return c
|
| 706 |
+
|
| 707 |
+
def set_hooks_for_conditioning(cond, hooks: HookGroup, append_hooks=True, cache: dict[tuple[HookGroup, HookGroup], HookGroup]=None):
|
| 708 |
+
if hooks is None:
|
| 709 |
+
return cond
|
| 710 |
+
return conditioning_set_values_with_hooks(cond, {'hooks': hooks}, append_hooks=append_hooks, cache=cache)
|
| 711 |
+
|
| 712 |
+
def set_timesteps_for_conditioning(cond, timestep_range: tuple[float,float]):
|
| 713 |
+
if timestep_range is None:
|
| 714 |
+
return cond
|
| 715 |
+
return conditioning_set_values(cond, {"start_percent": timestep_range[0],
|
| 716 |
+
"end_percent": timestep_range[1]})
|
| 717 |
+
|
| 718 |
+
def set_mask_for_conditioning(cond, mask: torch.Tensor, set_cond_area: str, strength: float):
|
| 719 |
+
if mask is None:
|
| 720 |
+
return cond
|
| 721 |
+
set_area_to_bounds = False
|
| 722 |
+
if set_cond_area != 'default':
|
| 723 |
+
set_area_to_bounds = True
|
| 724 |
+
if len(mask.shape) < 3:
|
| 725 |
+
mask = mask.unsqueeze(0)
|
| 726 |
+
return conditioning_set_values(cond, {'mask': mask,
|
| 727 |
+
'set_area_to_bounds': set_area_to_bounds,
|
| 728 |
+
'mask_strength': strength})
|
| 729 |
+
|
| 730 |
+
def combine_conditioning(conds: list):
|
| 731 |
+
combined_conds = []
|
| 732 |
+
for cond in conds:
|
| 733 |
+
combined_conds.extend(cond)
|
| 734 |
+
return combined_conds
|
| 735 |
+
|
| 736 |
+
def combine_with_new_conds(conds: list, new_conds: list):
|
| 737 |
+
combined_conds = []
|
| 738 |
+
for c, new_c in zip(conds, new_conds):
|
| 739 |
+
combined_conds.append(combine_conditioning([c, new_c]))
|
| 740 |
+
return combined_conds
|
| 741 |
+
|
| 742 |
+
def set_conds_props(conds: list, strength: float, set_cond_area: str,
|
| 743 |
+
mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
|
| 744 |
+
final_conds = []
|
| 745 |
+
cache = {}
|
| 746 |
+
for c in conds:
|
| 747 |
+
# first, apply lora_hook to conditioning, if provided
|
| 748 |
+
c = set_hooks_for_conditioning(c, hooks, append_hooks=append_hooks, cache=cache)
|
| 749 |
+
# next, apply mask to conditioning
|
| 750 |
+
c = set_mask_for_conditioning(cond=c, mask=mask, strength=strength, set_cond_area=set_cond_area)
|
| 751 |
+
# apply timesteps, if present
|
| 752 |
+
c = set_timesteps_for_conditioning(cond=c, timestep_range=timesteps_range)
|
| 753 |
+
# finally, apply mask to conditioning and store
|
| 754 |
+
final_conds.append(c)
|
| 755 |
+
return final_conds
|
| 756 |
+
|
| 757 |
+
def set_conds_props_and_combine(conds: list, new_conds: list, strength: float=1.0, set_cond_area: str="default",
|
| 758 |
+
mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
|
| 759 |
+
combined_conds = []
|
| 760 |
+
cache = {}
|
| 761 |
+
for c, masked_c in zip(conds, new_conds):
|
| 762 |
+
# first, apply lora_hook to new conditioning, if provided
|
| 763 |
+
masked_c = set_hooks_for_conditioning(masked_c, hooks, append_hooks=append_hooks, cache=cache)
|
| 764 |
+
# next, apply mask to new conditioning, if provided
|
| 765 |
+
masked_c = set_mask_for_conditioning(cond=masked_c, mask=mask, set_cond_area=set_cond_area, strength=strength)
|
| 766 |
+
# apply timesteps, if present
|
| 767 |
+
masked_c = set_timesteps_for_conditioning(cond=masked_c, timestep_range=timesteps_range)
|
| 768 |
+
# finally, combine with existing conditioning and store
|
| 769 |
+
combined_conds.append(combine_conditioning([c, masked_c]))
|
| 770 |
+
return combined_conds
|
| 771 |
+
|
| 772 |
+
def set_default_conds_and_combine(conds: list, new_conds: list,
|
| 773 |
+
hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
|
| 774 |
+
combined_conds = []
|
| 775 |
+
cache = {}
|
| 776 |
+
for c, new_c in zip(conds, new_conds):
|
| 777 |
+
# first, apply lora_hook to new conditioning, if provided
|
| 778 |
+
new_c = set_hooks_for_conditioning(new_c, hooks, append_hooks=append_hooks, cache=cache)
|
| 779 |
+
# next, add default_cond key to cond so that during sampling, it can be identified
|
| 780 |
+
new_c = conditioning_set_values(new_c, {'default': True})
|
| 781 |
+
# apply timesteps, if present
|
| 782 |
+
new_c = set_timesteps_for_conditioning(cond=new_c, timestep_range=timesteps_range)
|
| 783 |
+
# finally, combine with existing conditioning and store
|
| 784 |
+
combined_conds.append(combine_conditioning([c, new_c]))
|
| 785 |
+
return combined_conds
|
comfy/k_diffusion/deis.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#Taken from: https://github.com/zju-pi/diff-sampler/blob/main/gits-main/solver_utils.py
|
| 2 |
+
#under Apache 2 license
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
# A pytorch reimplementation of DEIS (https://github.com/qsh-zh/deis).
|
| 7 |
+
#############################
|
| 8 |
+
### Utils for DEIS solver ###
|
| 9 |
+
#############################
|
| 10 |
+
#----------------------------------------------------------------------------
|
| 11 |
+
# Transfer from the input time (sigma) used in EDM to that (t) used in DEIS.
|
| 12 |
+
|
| 13 |
+
def edm2t(edm_steps, epsilon_s=1e-3, sigma_min=0.002, sigma_max=80):
|
| 14 |
+
vp_sigma_inv = lambda beta_d, beta_min: lambda sigma: ((beta_min ** 2 + 2 * beta_d * (sigma ** 2 + 1).log()).sqrt() - beta_min) / beta_d
|
| 15 |
+
vp_beta_d = 2 * (np.log(torch.tensor(sigma_min).cpu() ** 2 + 1) / epsilon_s - np.log(torch.tensor(sigma_max).cpu() ** 2 + 1)) / (epsilon_s - 1)
|
| 16 |
+
vp_beta_min = np.log(torch.tensor(sigma_max).cpu() ** 2 + 1) - 0.5 * vp_beta_d
|
| 17 |
+
t_steps = vp_sigma_inv(vp_beta_d.clone().detach().cpu(), vp_beta_min.clone().detach().cpu())(edm_steps.clone().detach().cpu())
|
| 18 |
+
return t_steps, vp_beta_min, vp_beta_d + vp_beta_min
|
| 19 |
+
|
| 20 |
+
#----------------------------------------------------------------------------
|
| 21 |
+
|
| 22 |
+
def cal_poly(prev_t, j, taus):
|
| 23 |
+
poly = 1
|
| 24 |
+
for k in range(prev_t.shape[0]):
|
| 25 |
+
if k == j:
|
| 26 |
+
continue
|
| 27 |
+
poly *= (taus - prev_t[k]) / (prev_t[j] - prev_t[k])
|
| 28 |
+
return poly
|
| 29 |
+
|
| 30 |
+
#----------------------------------------------------------------------------
|
| 31 |
+
# Transfer from t to alpha_t.
|
| 32 |
+
|
| 33 |
+
def t2alpha_fn(beta_0, beta_1, t):
|
| 34 |
+
return torch.exp(-0.5 * t ** 2 * (beta_1 - beta_0) - t * beta_0)
|
| 35 |
+
|
| 36 |
+
#----------------------------------------------------------------------------
|
| 37 |
+
|
| 38 |
+
def cal_intergrand(beta_0, beta_1, taus):
|
| 39 |
+
with torch.inference_mode(mode=False):
|
| 40 |
+
taus = taus.clone()
|
| 41 |
+
beta_0 = beta_0.clone()
|
| 42 |
+
beta_1 = beta_1.clone()
|
| 43 |
+
with torch.enable_grad():
|
| 44 |
+
taus.requires_grad_(True)
|
| 45 |
+
alpha = t2alpha_fn(beta_0, beta_1, taus)
|
| 46 |
+
log_alpha = alpha.log()
|
| 47 |
+
log_alpha.sum().backward()
|
| 48 |
+
d_log_alpha_dtau = taus.grad
|
| 49 |
+
integrand = -0.5 * d_log_alpha_dtau / torch.sqrt(alpha * (1 - alpha))
|
| 50 |
+
return integrand
|
| 51 |
+
|
| 52 |
+
#----------------------------------------------------------------------------
|
| 53 |
+
|
| 54 |
+
def get_deis_coeff_list(t_steps, max_order, N=10000, deis_mode='tab'):
|
| 55 |
+
"""
|
| 56 |
+
Get the coefficient list for DEIS sampling.
|
| 57 |
+
|
| 58 |
+
Args:
|
| 59 |
+
t_steps: A pytorch tensor. The time steps for sampling.
|
| 60 |
+
max_order: A `int`. Maximum order of the solver. 1 <= max_order <= 4
|
| 61 |
+
N: A `int`. Use how many points to perform the numerical integration when deis_mode=='tab'.
|
| 62 |
+
deis_mode: A `str`. Select between 'tab' and 'rhoab'. Type of DEIS.
|
| 63 |
+
Returns:
|
| 64 |
+
A pytorch tensor. A batch of generated samples or sampling trajectories if return_inters=True.
|
| 65 |
+
"""
|
| 66 |
+
if deis_mode == 'tab':
|
| 67 |
+
t_steps, beta_0, beta_1 = edm2t(t_steps)
|
| 68 |
+
C = []
|
| 69 |
+
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])):
|
| 70 |
+
order = min(i+1, max_order)
|
| 71 |
+
if order == 1:
|
| 72 |
+
C.append([])
|
| 73 |
+
else:
|
| 74 |
+
taus = torch.linspace(t_cur, t_next, N) # split the interval for integral appximation
|
| 75 |
+
dtau = (t_next - t_cur) / N
|
| 76 |
+
prev_t = t_steps[[i - k for k in range(order)]]
|
| 77 |
+
coeff_temp = []
|
| 78 |
+
integrand = cal_intergrand(beta_0, beta_1, taus)
|
| 79 |
+
for j in range(order):
|
| 80 |
+
poly = cal_poly(prev_t, j, taus)
|
| 81 |
+
coeff_temp.append(torch.sum(integrand * poly) * dtau)
|
| 82 |
+
C.append(coeff_temp)
|
| 83 |
+
|
| 84 |
+
elif deis_mode == 'rhoab':
|
| 85 |
+
# Analytical solution, second order
|
| 86 |
+
def get_def_intergral_2(a, b, start, end, c):
|
| 87 |
+
coeff = (end**3 - start**3) / 3 - (end**2 - start**2) * (a + b) / 2 + (end - start) * a * b
|
| 88 |
+
return coeff / ((c - a) * (c - b))
|
| 89 |
+
|
| 90 |
+
# Analytical solution, third order
|
| 91 |
+
def get_def_intergral_3(a, b, c, start, end, d):
|
| 92 |
+
coeff = (end**4 - start**4) / 4 - (end**3 - start**3) * (a + b + c) / 3 \
|
| 93 |
+
+ (end**2 - start**2) * (a*b + a*c + b*c) / 2 - (end - start) * a * b * c
|
| 94 |
+
return coeff / ((d - a) * (d - b) * (d - c))
|
| 95 |
+
|
| 96 |
+
C = []
|
| 97 |
+
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])):
|
| 98 |
+
order = min(i, max_order)
|
| 99 |
+
if order == 0:
|
| 100 |
+
C.append([])
|
| 101 |
+
else:
|
| 102 |
+
prev_t = t_steps[[i - k for k in range(order+1)]]
|
| 103 |
+
if order == 1:
|
| 104 |
+
coeff_cur = ((t_next - prev_t[1])**2 - (t_cur - prev_t[1])**2) / (2 * (t_cur - prev_t[1]))
|
| 105 |
+
coeff_prev1 = (t_next - t_cur)**2 / (2 * (prev_t[1] - t_cur))
|
| 106 |
+
coeff_temp = [coeff_cur, coeff_prev1]
|
| 107 |
+
elif order == 2:
|
| 108 |
+
coeff_cur = get_def_intergral_2(prev_t[1], prev_t[2], t_cur, t_next, t_cur)
|
| 109 |
+
coeff_prev1 = get_def_intergral_2(t_cur, prev_t[2], t_cur, t_next, prev_t[1])
|
| 110 |
+
coeff_prev2 = get_def_intergral_2(t_cur, prev_t[1], t_cur, t_next, prev_t[2])
|
| 111 |
+
coeff_temp = [coeff_cur, coeff_prev1, coeff_prev2]
|
| 112 |
+
elif order == 3:
|
| 113 |
+
coeff_cur = get_def_intergral_3(prev_t[1], prev_t[2], prev_t[3], t_cur, t_next, t_cur)
|
| 114 |
+
coeff_prev1 = get_def_intergral_3(t_cur, prev_t[2], prev_t[3], t_cur, t_next, prev_t[1])
|
| 115 |
+
coeff_prev2 = get_def_intergral_3(t_cur, prev_t[1], prev_t[3], t_cur, t_next, prev_t[2])
|
| 116 |
+
coeff_prev3 = get_def_intergral_3(t_cur, prev_t[1], prev_t[2], t_cur, t_next, prev_t[3])
|
| 117 |
+
coeff_temp = [coeff_cur, coeff_prev1, coeff_prev2, coeff_prev3]
|
| 118 |
+
C.append(coeff_temp)
|
| 119 |
+
return C
|
| 120 |
+
|
comfy/k_diffusion/sampling.py
ADDED
|
@@ -0,0 +1,1338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
|
| 3 |
+
from scipy import integrate
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn
|
| 6 |
+
import torchsde
|
| 7 |
+
from tqdm.auto import trange, tqdm
|
| 8 |
+
|
| 9 |
+
from . import utils
|
| 10 |
+
from . import deis
|
| 11 |
+
import comfy.model_patcher
|
| 12 |
+
import comfy.model_sampling
|
| 13 |
+
|
| 14 |
+
def append_zero(x):
|
| 15 |
+
return torch.cat([x, x.new_zeros([1])])
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
|
| 19 |
+
"""Constructs the noise schedule of Karras et al. (2022)."""
|
| 20 |
+
ramp = torch.linspace(0, 1, n, device=device)
|
| 21 |
+
min_inv_rho = sigma_min ** (1 / rho)
|
| 22 |
+
max_inv_rho = sigma_max ** (1 / rho)
|
| 23 |
+
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
| 24 |
+
return append_zero(sigmas).to(device)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'):
|
| 28 |
+
"""Constructs an exponential noise schedule."""
|
| 29 |
+
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp()
|
| 30 |
+
return append_zero(sigmas)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def get_sigmas_polyexponential(n, sigma_min, sigma_max, rho=1., device='cpu'):
|
| 34 |
+
"""Constructs an polynomial in log sigma noise schedule."""
|
| 35 |
+
ramp = torch.linspace(1, 0, n, device=device) ** rho
|
| 36 |
+
sigmas = torch.exp(ramp * (math.log(sigma_max) - math.log(sigma_min)) + math.log(sigma_min))
|
| 37 |
+
return append_zero(sigmas)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'):
|
| 41 |
+
"""Constructs a continuous VP noise schedule."""
|
| 42 |
+
t = torch.linspace(1, eps_s, n, device=device)
|
| 43 |
+
sigmas = torch.sqrt(torch.exp(beta_d * t ** 2 / 2 + beta_min * t) - 1)
|
| 44 |
+
return append_zero(sigmas)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def get_sigmas_laplace(n, sigma_min, sigma_max, mu=0., beta=0.5, device='cpu'):
|
| 48 |
+
"""Constructs the noise schedule proposed by Tiankai et al. (2024). """
|
| 49 |
+
epsilon = 1e-5 # avoid log(0)
|
| 50 |
+
x = torch.linspace(0, 1, n, device=device)
|
| 51 |
+
clamp = lambda x: torch.clamp(x, min=sigma_min, max=sigma_max)
|
| 52 |
+
lmb = mu - beta * torch.sign(0.5-x) * torch.log(1 - 2 * torch.abs(0.5-x) + epsilon)
|
| 53 |
+
sigmas = clamp(torch.exp(lmb))
|
| 54 |
+
return sigmas
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def to_d(x, sigma, denoised):
|
| 59 |
+
"""Converts a denoiser output to a Karras ODE derivative."""
|
| 60 |
+
return (x - denoised) / utils.append_dims(sigma, x.ndim)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def get_ancestral_step(sigma_from, sigma_to, eta=1.):
|
| 64 |
+
"""Calculates the noise level (sigma_down) to step down to and the amount
|
| 65 |
+
of noise to add (sigma_up) when doing an ancestral sampling step."""
|
| 66 |
+
if not eta:
|
| 67 |
+
return sigma_to, 0.
|
| 68 |
+
sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5)
|
| 69 |
+
sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5
|
| 70 |
+
return sigma_down, sigma_up
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def default_noise_sampler(x, seed=None):
|
| 74 |
+
if seed is not None:
|
| 75 |
+
generator = torch.Generator(device=x.device)
|
| 76 |
+
generator.manual_seed(seed)
|
| 77 |
+
else:
|
| 78 |
+
generator = None
|
| 79 |
+
|
| 80 |
+
return lambda sigma, sigma_next: torch.randn(x.size(), dtype=x.dtype, layout=x.layout, device=x.device, generator=generator)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class BatchedBrownianTree:
|
| 84 |
+
"""A wrapper around torchsde.BrownianTree that enables batches of entropy."""
|
| 85 |
+
|
| 86 |
+
def __init__(self, x, t0, t1, seed=None, **kwargs):
|
| 87 |
+
self.cpu_tree = True
|
| 88 |
+
if "cpu" in kwargs:
|
| 89 |
+
self.cpu_tree = kwargs.pop("cpu")
|
| 90 |
+
t0, t1, self.sign = self.sort(t0, t1)
|
| 91 |
+
w0 = kwargs.get('w0', torch.zeros_like(x))
|
| 92 |
+
if seed is None:
|
| 93 |
+
seed = torch.randint(0, 2 ** 63 - 1, []).item()
|
| 94 |
+
self.batched = True
|
| 95 |
+
try:
|
| 96 |
+
assert len(seed) == x.shape[0]
|
| 97 |
+
w0 = w0[0]
|
| 98 |
+
except TypeError:
|
| 99 |
+
seed = [seed]
|
| 100 |
+
self.batched = False
|
| 101 |
+
if self.cpu_tree:
|
| 102 |
+
self.trees = [torchsde.BrownianTree(t0.cpu(), w0.cpu(), t1.cpu(), entropy=s, **kwargs) for s in seed]
|
| 103 |
+
else:
|
| 104 |
+
self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
|
| 105 |
+
|
| 106 |
+
@staticmethod
|
| 107 |
+
def sort(a, b):
|
| 108 |
+
return (a, b, 1) if a < b else (b, a, -1)
|
| 109 |
+
|
| 110 |
+
def __call__(self, t0, t1):
|
| 111 |
+
t0, t1, sign = self.sort(t0, t1)
|
| 112 |
+
if self.cpu_tree:
|
| 113 |
+
w = torch.stack([tree(t0.cpu().float(), t1.cpu().float()).to(t0.dtype).to(t0.device) for tree in self.trees]) * (self.sign * sign)
|
| 114 |
+
else:
|
| 115 |
+
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
|
| 116 |
+
|
| 117 |
+
return w if self.batched else w[0]
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
class BrownianTreeNoiseSampler:
|
| 121 |
+
"""A noise sampler backed by a torchsde.BrownianTree.
|
| 122 |
+
|
| 123 |
+
Args:
|
| 124 |
+
x (Tensor): The tensor whose shape, device and dtype to use to generate
|
| 125 |
+
random samples.
|
| 126 |
+
sigma_min (float): The low end of the valid interval.
|
| 127 |
+
sigma_max (float): The high end of the valid interval.
|
| 128 |
+
seed (int or List[int]): The random seed. If a list of seeds is
|
| 129 |
+
supplied instead of a single integer, then the noise sampler will
|
| 130 |
+
use one BrownianTree per batch item, each with its own seed.
|
| 131 |
+
transform (callable): A function that maps sigma to the sampler's
|
| 132 |
+
internal timestep.
|
| 133 |
+
"""
|
| 134 |
+
|
| 135 |
+
def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False):
|
| 136 |
+
self.transform = transform
|
| 137 |
+
t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
|
| 138 |
+
self.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu)
|
| 139 |
+
|
| 140 |
+
def __call__(self, sigma, sigma_next):
|
| 141 |
+
t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
|
| 142 |
+
return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
@torch.no_grad()
|
| 146 |
+
def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 147 |
+
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
|
| 148 |
+
extra_args = {} if extra_args is None else extra_args
|
| 149 |
+
s_in = x.new_ones([x.shape[0]])
|
| 150 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 151 |
+
if s_churn > 0:
|
| 152 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 153 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 154 |
+
else:
|
| 155 |
+
gamma = 0
|
| 156 |
+
sigma_hat = sigmas[i]
|
| 157 |
+
|
| 158 |
+
if gamma > 0:
|
| 159 |
+
eps = torch.randn_like(x) * s_noise
|
| 160 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 161 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 162 |
+
d = to_d(x, sigma_hat, denoised)
|
| 163 |
+
if callback is not None:
|
| 164 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 165 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 166 |
+
# Euler method
|
| 167 |
+
x = x + d * dt
|
| 168 |
+
return x
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
@torch.no_grad()
|
| 172 |
+
def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
| 173 |
+
if isinstance(model.inner_model.inner_model.model_sampling, comfy.model_sampling.CONST):
|
| 174 |
+
return sample_euler_ancestral_RF(model, x, sigmas, extra_args, callback, disable, eta, s_noise, noise_sampler)
|
| 175 |
+
"""Ancestral sampling with Euler method steps."""
|
| 176 |
+
extra_args = {} if extra_args is None else extra_args
|
| 177 |
+
seed = extra_args.get("seed", None)
|
| 178 |
+
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
| 179 |
+
s_in = x.new_ones([x.shape[0]])
|
| 180 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 181 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 182 |
+
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
| 183 |
+
if callback is not None:
|
| 184 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 185 |
+
|
| 186 |
+
if sigma_down == 0:
|
| 187 |
+
x = denoised
|
| 188 |
+
else:
|
| 189 |
+
d = to_d(x, sigmas[i], denoised)
|
| 190 |
+
# Euler method
|
| 191 |
+
dt = sigma_down - sigmas[i]
|
| 192 |
+
x = x + d * dt + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
| 193 |
+
return x
|
| 194 |
+
|
| 195 |
+
@torch.no_grad()
|
| 196 |
+
def sample_euler_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1.0, s_noise=1., noise_sampler=None):
|
| 197 |
+
"""Ancestral sampling with Euler method steps."""
|
| 198 |
+
extra_args = {} if extra_args is None else extra_args
|
| 199 |
+
seed = extra_args.get("seed", None)
|
| 200 |
+
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
| 201 |
+
s_in = x.new_ones([x.shape[0]])
|
| 202 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 203 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 204 |
+
# sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
| 205 |
+
if callback is not None:
|
| 206 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 207 |
+
|
| 208 |
+
if sigmas[i + 1] == 0:
|
| 209 |
+
x = denoised
|
| 210 |
+
else:
|
| 211 |
+
downstep_ratio = 1 + (sigmas[i + 1] / sigmas[i] - 1) * eta
|
| 212 |
+
sigma_down = sigmas[i + 1] * downstep_ratio
|
| 213 |
+
alpha_ip1 = 1 - sigmas[i + 1]
|
| 214 |
+
alpha_down = 1 - sigma_down
|
| 215 |
+
renoise_coeff = (sigmas[i + 1]**2 - sigma_down**2 * alpha_ip1**2 / alpha_down**2)**0.5
|
| 216 |
+
# Euler method
|
| 217 |
+
sigma_down_i_ratio = sigma_down / sigmas[i]
|
| 218 |
+
x = sigma_down_i_ratio * x + (1 - sigma_down_i_ratio) * denoised
|
| 219 |
+
if eta > 0:
|
| 220 |
+
x = (alpha_ip1 / alpha_down) * x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * renoise_coeff
|
| 221 |
+
return x
|
| 222 |
+
|
| 223 |
+
@torch.no_grad()
|
| 224 |
+
def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 225 |
+
"""Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
|
| 226 |
+
extra_args = {} if extra_args is None else extra_args
|
| 227 |
+
s_in = x.new_ones([x.shape[0]])
|
| 228 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 229 |
+
if s_churn > 0:
|
| 230 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 231 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 232 |
+
else:
|
| 233 |
+
gamma = 0
|
| 234 |
+
sigma_hat = sigmas[i]
|
| 235 |
+
|
| 236 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 237 |
+
if gamma > 0:
|
| 238 |
+
eps = torch.randn_like(x) * s_noise
|
| 239 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 240 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 241 |
+
d = to_d(x, sigma_hat, denoised)
|
| 242 |
+
if callback is not None:
|
| 243 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 244 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 245 |
+
if sigmas[i + 1] == 0:
|
| 246 |
+
# Euler method
|
| 247 |
+
x = x + d * dt
|
| 248 |
+
else:
|
| 249 |
+
# Heun's method
|
| 250 |
+
x_2 = x + d * dt
|
| 251 |
+
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
|
| 252 |
+
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
|
| 253 |
+
d_prime = (d + d_2) / 2
|
| 254 |
+
x = x + d_prime * dt
|
| 255 |
+
return x
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
@torch.no_grad()
|
| 259 |
+
def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 260 |
+
"""A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)."""
|
| 261 |
+
extra_args = {} if extra_args is None else extra_args
|
| 262 |
+
s_in = x.new_ones([x.shape[0]])
|
| 263 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 264 |
+
if s_churn > 0:
|
| 265 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 266 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 267 |
+
else:
|
| 268 |
+
gamma = 0
|
| 269 |
+
sigma_hat = sigmas[i]
|
| 270 |
+
|
| 271 |
+
if gamma > 0:
|
| 272 |
+
eps = torch.randn_like(x) * s_noise
|
| 273 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 274 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 275 |
+
d = to_d(x, sigma_hat, denoised)
|
| 276 |
+
if callback is not None:
|
| 277 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 278 |
+
if sigmas[i + 1] == 0:
|
| 279 |
+
# Euler method
|
| 280 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 281 |
+
x = x + d * dt
|
| 282 |
+
else:
|
| 283 |
+
# DPM-Solver-2
|
| 284 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 285 |
+
dt_1 = sigma_mid - sigma_hat
|
| 286 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 287 |
+
x_2 = x + d * dt_1
|
| 288 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
| 289 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 290 |
+
x = x + d_2 * dt_2
|
| 291 |
+
return x
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
@torch.no_grad()
|
| 295 |
+
def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
| 296 |
+
if isinstance(model.inner_model.inner_model.model_sampling, comfy.model_sampling.CONST):
|
| 297 |
+
return sample_dpm_2_ancestral_RF(model, x, sigmas, extra_args, callback, disable, eta, s_noise, noise_sampler)
|
| 298 |
+
|
| 299 |
+
"""Ancestral sampling with DPM-Solver second-order steps."""
|
| 300 |
+
extra_args = {} if extra_args is None else extra_args
|
| 301 |
+
seed = extra_args.get("seed", None)
|
| 302 |
+
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
| 303 |
+
s_in = x.new_ones([x.shape[0]])
|
| 304 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 305 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 306 |
+
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
| 307 |
+
if callback is not None:
|
| 308 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 309 |
+
d = to_d(x, sigmas[i], denoised)
|
| 310 |
+
if sigma_down == 0:
|
| 311 |
+
# Euler method
|
| 312 |
+
dt = sigma_down - sigmas[i]
|
| 313 |
+
x = x + d * dt
|
| 314 |
+
else:
|
| 315 |
+
# DPM-Solver-2
|
| 316 |
+
sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
|
| 317 |
+
dt_1 = sigma_mid - sigmas[i]
|
| 318 |
+
dt_2 = sigma_down - sigmas[i]
|
| 319 |
+
x_2 = x + d * dt_1
|
| 320 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
| 321 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 322 |
+
x = x + d_2 * dt_2
|
| 323 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
| 324 |
+
return x
|
| 325 |
+
|
| 326 |
+
@torch.no_grad()
|
| 327 |
+
def sample_dpm_2_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
| 328 |
+
"""Ancestral sampling with DPM-Solver second-order steps."""
|
| 329 |
+
extra_args = {} if extra_args is None else extra_args
|
| 330 |
+
seed = extra_args.get("seed", None)
|
| 331 |
+
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
| 332 |
+
s_in = x.new_ones([x.shape[0]])
|
| 333 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 334 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 335 |
+
downstep_ratio = 1 + (sigmas[i+1]/sigmas[i] - 1) * eta
|
| 336 |
+
sigma_down = sigmas[i+1] * downstep_ratio
|
| 337 |
+
alpha_ip1 = 1 - sigmas[i+1]
|
| 338 |
+
alpha_down = 1 - sigma_down
|
| 339 |
+
renoise_coeff = (sigmas[i+1]**2 - sigma_down**2*alpha_ip1**2/alpha_down**2)**0.5
|
| 340 |
+
|
| 341 |
+
if callback is not None:
|
| 342 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 343 |
+
d = to_d(x, sigmas[i], denoised)
|
| 344 |
+
if sigma_down == 0:
|
| 345 |
+
# Euler method
|
| 346 |
+
dt = sigma_down - sigmas[i]
|
| 347 |
+
x = x + d * dt
|
| 348 |
+
else:
|
| 349 |
+
# DPM-Solver-2
|
| 350 |
+
sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
|
| 351 |
+
dt_1 = sigma_mid - sigmas[i]
|
| 352 |
+
dt_2 = sigma_down - sigmas[i]
|
| 353 |
+
x_2 = x + d * dt_1
|
| 354 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
| 355 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 356 |
+
x = x + d_2 * dt_2
|
| 357 |
+
x = (alpha_ip1/alpha_down) * x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * renoise_coeff
|
| 358 |
+
return x
|
| 359 |
+
|
| 360 |
+
def linear_multistep_coeff(order, t, i, j):
|
| 361 |
+
if order - 1 > i:
|
| 362 |
+
raise ValueError(f'Order {order} too high for step {i}')
|
| 363 |
+
def fn(tau):
|
| 364 |
+
prod = 1.
|
| 365 |
+
for k in range(order):
|
| 366 |
+
if j == k:
|
| 367 |
+
continue
|
| 368 |
+
prod *= (tau - t[i - k]) / (t[i - j] - t[i - k])
|
| 369 |
+
return prod
|
| 370 |
+
return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0]
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
@torch.no_grad()
|
| 374 |
+
def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, order=4):
|
| 375 |
+
extra_args = {} if extra_args is None else extra_args
|
| 376 |
+
s_in = x.new_ones([x.shape[0]])
|
| 377 |
+
sigmas_cpu = sigmas.detach().cpu().numpy()
|
| 378 |
+
ds = []
|
| 379 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 380 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 381 |
+
d = to_d(x, sigmas[i], denoised)
|
| 382 |
+
ds.append(d)
|
| 383 |
+
if len(ds) > order:
|
| 384 |
+
ds.pop(0)
|
| 385 |
+
if callback is not None:
|
| 386 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 387 |
+
cur_order = min(i + 1, order)
|
| 388 |
+
coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
|
| 389 |
+
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
|
| 390 |
+
return x
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
class PIDStepSizeController:
|
| 394 |
+
"""A PID controller for ODE adaptive step size control."""
|
| 395 |
+
def __init__(self, h, pcoeff, icoeff, dcoeff, order=1, accept_safety=0.81, eps=1e-8):
|
| 396 |
+
self.h = h
|
| 397 |
+
self.b1 = (pcoeff + icoeff + dcoeff) / order
|
| 398 |
+
self.b2 = -(pcoeff + 2 * dcoeff) / order
|
| 399 |
+
self.b3 = dcoeff / order
|
| 400 |
+
self.accept_safety = accept_safety
|
| 401 |
+
self.eps = eps
|
| 402 |
+
self.errs = []
|
| 403 |
+
|
| 404 |
+
def limiter(self, x):
|
| 405 |
+
return 1 + math.atan(x - 1)
|
| 406 |
+
|
| 407 |
+
def propose_step(self, error):
|
| 408 |
+
inv_error = 1 / (float(error) + self.eps)
|
| 409 |
+
if not self.errs:
|
| 410 |
+
self.errs = [inv_error, inv_error, inv_error]
|
| 411 |
+
self.errs[0] = inv_error
|
| 412 |
+
factor = self.errs[0] ** self.b1 * self.errs[1] ** self.b2 * self.errs[2] ** self.b3
|
| 413 |
+
factor = self.limiter(factor)
|
| 414 |
+
accept = factor >= self.accept_safety
|
| 415 |
+
if accept:
|
| 416 |
+
self.errs[2] = self.errs[1]
|
| 417 |
+
self.errs[1] = self.errs[0]
|
| 418 |
+
self.h *= factor
|
| 419 |
+
return accept
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
class DPMSolver(nn.Module):
|
| 423 |
+
"""DPM-Solver. See https://arxiv.org/abs/2206.00927."""
|
| 424 |
+
|
| 425 |
+
def __init__(self, model, extra_args=None, eps_callback=None, info_callback=None):
|
| 426 |
+
super().__init__()
|
| 427 |
+
self.model = model
|
| 428 |
+
self.extra_args = {} if extra_args is None else extra_args
|
| 429 |
+
self.eps_callback = eps_callback
|
| 430 |
+
self.info_callback = info_callback
|
| 431 |
+
|
| 432 |
+
def t(self, sigma):
|
| 433 |
+
return -sigma.log()
|
| 434 |
+
|
| 435 |
+
def sigma(self, t):
|
| 436 |
+
return t.neg().exp()
|
| 437 |
+
|
| 438 |
+
def eps(self, eps_cache, key, x, t, *args, **kwargs):
|
| 439 |
+
if key in eps_cache:
|
| 440 |
+
return eps_cache[key], eps_cache
|
| 441 |
+
sigma = self.sigma(t) * x.new_ones([x.shape[0]])
|
| 442 |
+
eps = (x - self.model(x, sigma, *args, **self.extra_args, **kwargs)) / self.sigma(t)
|
| 443 |
+
if self.eps_callback is not None:
|
| 444 |
+
self.eps_callback()
|
| 445 |
+
return eps, {key: eps, **eps_cache}
|
| 446 |
+
|
| 447 |
+
def dpm_solver_1_step(self, x, t, t_next, eps_cache=None):
|
| 448 |
+
eps_cache = {} if eps_cache is None else eps_cache
|
| 449 |
+
h = t_next - t
|
| 450 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
|
| 451 |
+
x_1 = x - self.sigma(t_next) * h.expm1() * eps
|
| 452 |
+
return x_1, eps_cache
|
| 453 |
+
|
| 454 |
+
def dpm_solver_2_step(self, x, t, t_next, r1=1 / 2, eps_cache=None):
|
| 455 |
+
eps_cache = {} if eps_cache is None else eps_cache
|
| 456 |
+
h = t_next - t
|
| 457 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
|
| 458 |
+
s1 = t + r1 * h
|
| 459 |
+
u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
|
| 460 |
+
eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
|
| 461 |
+
x_2 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / (2 * r1) * h.expm1() * (eps_r1 - eps)
|
| 462 |
+
return x_2, eps_cache
|
| 463 |
+
|
| 464 |
+
def dpm_solver_3_step(self, x, t, t_next, r1=1 / 3, r2=2 / 3, eps_cache=None):
|
| 465 |
+
eps_cache = {} if eps_cache is None else eps_cache
|
| 466 |
+
h = t_next - t
|
| 467 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
|
| 468 |
+
s1 = t + r1 * h
|
| 469 |
+
s2 = t + r2 * h
|
| 470 |
+
u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
|
| 471 |
+
eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
|
| 472 |
+
u2 = x - self.sigma(s2) * (r2 * h).expm1() * eps - self.sigma(s2) * (r2 / r1) * ((r2 * h).expm1() / (r2 * h) - 1) * (eps_r1 - eps)
|
| 473 |
+
eps_r2, eps_cache = self.eps(eps_cache, 'eps_r2', u2, s2)
|
| 474 |
+
x_3 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / r2 * (h.expm1() / h - 1) * (eps_r2 - eps)
|
| 475 |
+
return x_3, eps_cache
|
| 476 |
+
|
| 477 |
+
def dpm_solver_fast(self, x, t_start, t_end, nfe, eta=0., s_noise=1., noise_sampler=None):
|
| 478 |
+
noise_sampler = default_noise_sampler(x, seed=self.extra_args.get("seed", None)) if noise_sampler is None else noise_sampler
|
| 479 |
+
if not t_end > t_start and eta:
|
| 480 |
+
raise ValueError('eta must be 0 for reverse sampling')
|
| 481 |
+
|
| 482 |
+
m = math.floor(nfe / 3) + 1
|
| 483 |
+
ts = torch.linspace(t_start, t_end, m + 1, device=x.device)
|
| 484 |
+
|
| 485 |
+
if nfe % 3 == 0:
|
| 486 |
+
orders = [3] * (m - 2) + [2, 1]
|
| 487 |
+
else:
|
| 488 |
+
orders = [3] * (m - 1) + [nfe % 3]
|
| 489 |
+
|
| 490 |
+
for i in range(len(orders)):
|
| 491 |
+
eps_cache = {}
|
| 492 |
+
t, t_next = ts[i], ts[i + 1]
|
| 493 |
+
if eta:
|
| 494 |
+
sd, su = get_ancestral_step(self.sigma(t), self.sigma(t_next), eta)
|
| 495 |
+
t_next_ = torch.minimum(t_end, self.t(sd))
|
| 496 |
+
su = (self.sigma(t_next) ** 2 - self.sigma(t_next_) ** 2) ** 0.5
|
| 497 |
+
else:
|
| 498 |
+
t_next_, su = t_next, 0.
|
| 499 |
+
|
| 500 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
|
| 501 |
+
denoised = x - self.sigma(t) * eps
|
| 502 |
+
if self.info_callback is not None:
|
| 503 |
+
self.info_callback({'x': x, 'i': i, 't': ts[i], 't_up': t, 'denoised': denoised})
|
| 504 |
+
|
| 505 |
+
if orders[i] == 1:
|
| 506 |
+
x, eps_cache = self.dpm_solver_1_step(x, t, t_next_, eps_cache=eps_cache)
|
| 507 |
+
elif orders[i] == 2:
|
| 508 |
+
x, eps_cache = self.dpm_solver_2_step(x, t, t_next_, eps_cache=eps_cache)
|
| 509 |
+
else:
|
| 510 |
+
x, eps_cache = self.dpm_solver_3_step(x, t, t_next_, eps_cache=eps_cache)
|
| 511 |
+
|
| 512 |
+
x = x + su * s_noise * noise_sampler(self.sigma(t), self.sigma(t_next))
|
| 513 |
+
|
| 514 |
+
return x
|
| 515 |
+
|
| 516 |
+
def dpm_solver_adaptive(self, x, t_start, t_end, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None):
|
| 517 |
+
noise_sampler = default_noise_sampler(x, seed=self.extra_args.get("seed", None)) if noise_sampler is None else noise_sampler
|
| 518 |
+
if order not in {2, 3}:
|
| 519 |
+
raise ValueError('order should be 2 or 3')
|
| 520 |
+
forward = t_end > t_start
|
| 521 |
+
if not forward and eta:
|
| 522 |
+
raise ValueError('eta must be 0 for reverse sampling')
|
| 523 |
+
h_init = abs(h_init) * (1 if forward else -1)
|
| 524 |
+
atol = torch.tensor(atol)
|
| 525 |
+
rtol = torch.tensor(rtol)
|
| 526 |
+
s = t_start
|
| 527 |
+
x_prev = x
|
| 528 |
+
accept = True
|
| 529 |
+
pid = PIDStepSizeController(h_init, pcoeff, icoeff, dcoeff, 1.5 if eta else order, accept_safety)
|
| 530 |
+
info = {'steps': 0, 'nfe': 0, 'n_accept': 0, 'n_reject': 0}
|
| 531 |
+
|
| 532 |
+
while s < t_end - 1e-5 if forward else s > t_end + 1e-5:
|
| 533 |
+
eps_cache = {}
|
| 534 |
+
t = torch.minimum(t_end, s + pid.h) if forward else torch.maximum(t_end, s + pid.h)
|
| 535 |
+
if eta:
|
| 536 |
+
sd, su = get_ancestral_step(self.sigma(s), self.sigma(t), eta)
|
| 537 |
+
t_ = torch.minimum(t_end, self.t(sd))
|
| 538 |
+
su = (self.sigma(t) ** 2 - self.sigma(t_) ** 2) ** 0.5
|
| 539 |
+
else:
|
| 540 |
+
t_, su = t, 0.
|
| 541 |
+
|
| 542 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, s)
|
| 543 |
+
denoised = x - self.sigma(s) * eps
|
| 544 |
+
|
| 545 |
+
if order == 2:
|
| 546 |
+
x_low, eps_cache = self.dpm_solver_1_step(x, s, t_, eps_cache=eps_cache)
|
| 547 |
+
x_high, eps_cache = self.dpm_solver_2_step(x, s, t_, eps_cache=eps_cache)
|
| 548 |
+
else:
|
| 549 |
+
x_low, eps_cache = self.dpm_solver_2_step(x, s, t_, r1=1 / 3, eps_cache=eps_cache)
|
| 550 |
+
x_high, eps_cache = self.dpm_solver_3_step(x, s, t_, eps_cache=eps_cache)
|
| 551 |
+
delta = torch.maximum(atol, rtol * torch.maximum(x_low.abs(), x_prev.abs()))
|
| 552 |
+
error = torch.linalg.norm((x_low - x_high) / delta) / x.numel() ** 0.5
|
| 553 |
+
accept = pid.propose_step(error)
|
| 554 |
+
if accept:
|
| 555 |
+
x_prev = x_low
|
| 556 |
+
x = x_high + su * s_noise * noise_sampler(self.sigma(s), self.sigma(t))
|
| 557 |
+
s = t
|
| 558 |
+
info['n_accept'] += 1
|
| 559 |
+
else:
|
| 560 |
+
info['n_reject'] += 1
|
| 561 |
+
info['nfe'] += order
|
| 562 |
+
info['steps'] += 1
|
| 563 |
+
|
| 564 |
+
if self.info_callback is not None:
|
| 565 |
+
self.info_callback({'x': x, 'i': info['steps'] - 1, 't': s, 't_up': s, 'denoised': denoised, 'error': error, 'h': pid.h, **info})
|
| 566 |
+
|
| 567 |
+
return x, info
|
| 568 |
+
|
| 569 |
+
|
| 570 |
+
@torch.no_grad()
|
| 571 |
+
def sample_dpm_fast(model, x, sigma_min, sigma_max, n, extra_args=None, callback=None, disable=None, eta=0., s_noise=1., noise_sampler=None):
|
| 572 |
+
"""DPM-Solver-Fast (fixed step size). See https://arxiv.org/abs/2206.00927."""
|
| 573 |
+
if sigma_min <= 0 or sigma_max <= 0:
|
| 574 |
+
raise ValueError('sigma_min and sigma_max must not be 0')
|
| 575 |
+
with tqdm(total=n, disable=disable) as pbar:
|
| 576 |
+
dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
|
| 577 |
+
if callback is not None:
|
| 578 |
+
dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
|
| 579 |
+
return dpm_solver.dpm_solver_fast(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), n, eta, s_noise, noise_sampler)
|
| 580 |
+
|
| 581 |
+
|
| 582 |
+
@torch.no_grad()
|
| 583 |
+
def sample_dpm_adaptive(model, x, sigma_min, sigma_max, extra_args=None, callback=None, disable=None, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None, return_info=False):
|
| 584 |
+
"""DPM-Solver-12 and 23 (adaptive step size). See https://arxiv.org/abs/2206.00927."""
|
| 585 |
+
if sigma_min <= 0 or sigma_max <= 0:
|
| 586 |
+
raise ValueError('sigma_min and sigma_max must not be 0')
|
| 587 |
+
with tqdm(disable=disable) as pbar:
|
| 588 |
+
dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
|
| 589 |
+
if callback is not None:
|
| 590 |
+
dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
|
| 591 |
+
x, info = dpm_solver.dpm_solver_adaptive(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise, noise_sampler)
|
| 592 |
+
if return_info:
|
| 593 |
+
return x, info
|
| 594 |
+
return x
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
@torch.no_grad()
|
| 598 |
+
def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
| 599 |
+
if isinstance(model.inner_model.inner_model.model_sampling, comfy.model_sampling.CONST):
|
| 600 |
+
return sample_dpmpp_2s_ancestral_RF(model, x, sigmas, extra_args, callback, disable, eta, s_noise, noise_sampler)
|
| 601 |
+
|
| 602 |
+
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
|
| 603 |
+
extra_args = {} if extra_args is None else extra_args
|
| 604 |
+
seed = extra_args.get("seed", None)
|
| 605 |
+
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
| 606 |
+
s_in = x.new_ones([x.shape[0]])
|
| 607 |
+
sigma_fn = lambda t: t.neg().exp()
|
| 608 |
+
t_fn = lambda sigma: sigma.log().neg()
|
| 609 |
+
|
| 610 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 611 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 612 |
+
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
| 613 |
+
if callback is not None:
|
| 614 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 615 |
+
if sigma_down == 0:
|
| 616 |
+
# Euler method
|
| 617 |
+
d = to_d(x, sigmas[i], denoised)
|
| 618 |
+
dt = sigma_down - sigmas[i]
|
| 619 |
+
x = x + d * dt
|
| 620 |
+
else:
|
| 621 |
+
# DPM-Solver++(2S)
|
| 622 |
+
t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
|
| 623 |
+
r = 1 / 2
|
| 624 |
+
h = t_next - t
|
| 625 |
+
s = t + r * h
|
| 626 |
+
x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised
|
| 627 |
+
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
|
| 628 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2
|
| 629 |
+
# Noise addition
|
| 630 |
+
if sigmas[i + 1] > 0:
|
| 631 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
| 632 |
+
return x
|
| 633 |
+
|
| 634 |
+
|
| 635 |
+
@torch.no_grad()
|
| 636 |
+
def sample_dpmpp_2s_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
| 637 |
+
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
|
| 638 |
+
extra_args = {} if extra_args is None else extra_args
|
| 639 |
+
seed = extra_args.get("seed", None)
|
| 640 |
+
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
| 641 |
+
s_in = x.new_ones([x.shape[0]])
|
| 642 |
+
sigma_fn = lambda lbda: (lbda.exp() + 1) ** -1
|
| 643 |
+
lambda_fn = lambda sigma: ((1-sigma)/sigma).log()
|
| 644 |
+
|
| 645 |
+
# logged_x = x.unsqueeze(0)
|
| 646 |
+
|
| 647 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 648 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 649 |
+
downstep_ratio = 1 + (sigmas[i+1]/sigmas[i] - 1) * eta
|
| 650 |
+
sigma_down = sigmas[i+1] * downstep_ratio
|
| 651 |
+
alpha_ip1 = 1 - sigmas[i+1]
|
| 652 |
+
alpha_down = 1 - sigma_down
|
| 653 |
+
renoise_coeff = (sigmas[i+1]**2 - sigma_down**2*alpha_ip1**2/alpha_down**2)**0.5
|
| 654 |
+
# sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
| 655 |
+
if callback is not None:
|
| 656 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 657 |
+
if sigmas[i + 1] == 0:
|
| 658 |
+
# Euler method
|
| 659 |
+
d = to_d(x, sigmas[i], denoised)
|
| 660 |
+
dt = sigma_down - sigmas[i]
|
| 661 |
+
x = x + d * dt
|
| 662 |
+
else:
|
| 663 |
+
# DPM-Solver++(2S)
|
| 664 |
+
if sigmas[i] == 1.0:
|
| 665 |
+
sigma_s = 0.9999
|
| 666 |
+
else:
|
| 667 |
+
t_i, t_down = lambda_fn(sigmas[i]), lambda_fn(sigma_down)
|
| 668 |
+
r = 1 / 2
|
| 669 |
+
h = t_down - t_i
|
| 670 |
+
s = t_i + r * h
|
| 671 |
+
sigma_s = sigma_fn(s)
|
| 672 |
+
# sigma_s = sigmas[i+1]
|
| 673 |
+
sigma_s_i_ratio = sigma_s / sigmas[i]
|
| 674 |
+
u = sigma_s_i_ratio * x + (1 - sigma_s_i_ratio) * denoised
|
| 675 |
+
D_i = model(u, sigma_s * s_in, **extra_args)
|
| 676 |
+
sigma_down_i_ratio = sigma_down / sigmas[i]
|
| 677 |
+
x = sigma_down_i_ratio * x + (1 - sigma_down_i_ratio) * D_i
|
| 678 |
+
# print("sigma_i", sigmas[i], "sigma_ip1", sigmas[i+1],"sigma_down", sigma_down, "sigma_down_i_ratio", sigma_down_i_ratio, "sigma_s_i_ratio", sigma_s_i_ratio, "renoise_coeff", renoise_coeff)
|
| 679 |
+
# Noise addition
|
| 680 |
+
if sigmas[i + 1] > 0 and eta > 0:
|
| 681 |
+
x = (alpha_ip1/alpha_down) * x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * renoise_coeff
|
| 682 |
+
# logged_x = torch.cat((logged_x, x.unsqueeze(0)), dim=0)
|
| 683 |
+
return x
|
| 684 |
+
|
| 685 |
+
@torch.no_grad()
|
| 686 |
+
def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
|
| 687 |
+
"""DPM-Solver++ (stochastic)."""
|
| 688 |
+
if len(sigmas) <= 1:
|
| 689 |
+
return x
|
| 690 |
+
|
| 691 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 692 |
+
seed = extra_args.get("seed", None)
|
| 693 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
| 694 |
+
extra_args = {} if extra_args is None else extra_args
|
| 695 |
+
s_in = x.new_ones([x.shape[0]])
|
| 696 |
+
sigma_fn = lambda t: t.neg().exp()
|
| 697 |
+
t_fn = lambda sigma: sigma.log().neg()
|
| 698 |
+
|
| 699 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 700 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 701 |
+
if callback is not None:
|
| 702 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 703 |
+
if sigmas[i + 1] == 0:
|
| 704 |
+
# Euler method
|
| 705 |
+
d = to_d(x, sigmas[i], denoised)
|
| 706 |
+
dt = sigmas[i + 1] - sigmas[i]
|
| 707 |
+
x = x + d * dt
|
| 708 |
+
else:
|
| 709 |
+
# DPM-Solver++
|
| 710 |
+
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
|
| 711 |
+
h = t_next - t
|
| 712 |
+
s = t + h * r
|
| 713 |
+
fac = 1 / (2 * r)
|
| 714 |
+
|
| 715 |
+
# Step 1
|
| 716 |
+
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
|
| 717 |
+
s_ = t_fn(sd)
|
| 718 |
+
x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
|
| 719 |
+
x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
|
| 720 |
+
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
|
| 721 |
+
|
| 722 |
+
# Step 2
|
| 723 |
+
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
|
| 724 |
+
t_next_ = t_fn(sd)
|
| 725 |
+
denoised_d = (1 - fac) * denoised + fac * denoised_2
|
| 726 |
+
x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d
|
| 727 |
+
x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
|
| 728 |
+
return x
|
| 729 |
+
|
| 730 |
+
|
| 731 |
+
@torch.no_grad()
|
| 732 |
+
def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
| 733 |
+
"""DPM-Solver++(2M)."""
|
| 734 |
+
extra_args = {} if extra_args is None else extra_args
|
| 735 |
+
s_in = x.new_ones([x.shape[0]])
|
| 736 |
+
sigma_fn = lambda t: t.neg().exp()
|
| 737 |
+
t_fn = lambda sigma: sigma.log().neg()
|
| 738 |
+
old_denoised = None
|
| 739 |
+
|
| 740 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 741 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 742 |
+
if callback is not None:
|
| 743 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 744 |
+
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
|
| 745 |
+
h = t_next - t
|
| 746 |
+
if old_denoised is None or sigmas[i + 1] == 0:
|
| 747 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
|
| 748 |
+
else:
|
| 749 |
+
h_last = t - t_fn(sigmas[i - 1])
|
| 750 |
+
r = h_last / h
|
| 751 |
+
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
|
| 752 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
|
| 753 |
+
old_denoised = denoised
|
| 754 |
+
return x
|
| 755 |
+
|
| 756 |
+
@torch.no_grad()
|
| 757 |
+
def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
|
| 758 |
+
"""DPM-Solver++(2M) SDE."""
|
| 759 |
+
if len(sigmas) <= 1:
|
| 760 |
+
return x
|
| 761 |
+
|
| 762 |
+
if solver_type not in {'heun', 'midpoint'}:
|
| 763 |
+
raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
|
| 764 |
+
|
| 765 |
+
seed = extra_args.get("seed", None)
|
| 766 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 767 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
| 768 |
+
extra_args = {} if extra_args is None else extra_args
|
| 769 |
+
s_in = x.new_ones([x.shape[0]])
|
| 770 |
+
|
| 771 |
+
old_denoised = None
|
| 772 |
+
h_last = None
|
| 773 |
+
h = None
|
| 774 |
+
|
| 775 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 776 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 777 |
+
if callback is not None:
|
| 778 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 779 |
+
if sigmas[i + 1] == 0:
|
| 780 |
+
# Denoising step
|
| 781 |
+
x = denoised
|
| 782 |
+
else:
|
| 783 |
+
# DPM-Solver++(2M) SDE
|
| 784 |
+
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
|
| 785 |
+
h = s - t
|
| 786 |
+
eta_h = eta * h
|
| 787 |
+
|
| 788 |
+
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
|
| 789 |
+
|
| 790 |
+
if old_denoised is not None:
|
| 791 |
+
r = h_last / h
|
| 792 |
+
if solver_type == 'heun':
|
| 793 |
+
x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
|
| 794 |
+
elif solver_type == 'midpoint':
|
| 795 |
+
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
|
| 796 |
+
|
| 797 |
+
if eta:
|
| 798 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
|
| 799 |
+
|
| 800 |
+
old_denoised = denoised
|
| 801 |
+
h_last = h
|
| 802 |
+
return x
|
| 803 |
+
|
| 804 |
+
@torch.no_grad()
|
| 805 |
+
def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
| 806 |
+
"""DPM-Solver++(3M) SDE."""
|
| 807 |
+
|
| 808 |
+
if len(sigmas) <= 1:
|
| 809 |
+
return x
|
| 810 |
+
|
| 811 |
+
seed = extra_args.get("seed", None)
|
| 812 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 813 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
| 814 |
+
extra_args = {} if extra_args is None else extra_args
|
| 815 |
+
s_in = x.new_ones([x.shape[0]])
|
| 816 |
+
|
| 817 |
+
denoised_1, denoised_2 = None, None
|
| 818 |
+
h, h_1, h_2 = None, None, None
|
| 819 |
+
|
| 820 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 821 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 822 |
+
if callback is not None:
|
| 823 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 824 |
+
if sigmas[i + 1] == 0:
|
| 825 |
+
# Denoising step
|
| 826 |
+
x = denoised
|
| 827 |
+
else:
|
| 828 |
+
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
|
| 829 |
+
h = s - t
|
| 830 |
+
h_eta = h * (eta + 1)
|
| 831 |
+
|
| 832 |
+
x = torch.exp(-h_eta) * x + (-h_eta).expm1().neg() * denoised
|
| 833 |
+
|
| 834 |
+
if h_2 is not None:
|
| 835 |
+
r0 = h_1 / h
|
| 836 |
+
r1 = h_2 / h
|
| 837 |
+
d1_0 = (denoised - denoised_1) / r0
|
| 838 |
+
d1_1 = (denoised_1 - denoised_2) / r1
|
| 839 |
+
d1 = d1_0 + (d1_0 - d1_1) * r0 / (r0 + r1)
|
| 840 |
+
d2 = (d1_0 - d1_1) / (r0 + r1)
|
| 841 |
+
phi_2 = h_eta.neg().expm1() / h_eta + 1
|
| 842 |
+
phi_3 = phi_2 / h_eta - 0.5
|
| 843 |
+
x = x + phi_2 * d1 - phi_3 * d2
|
| 844 |
+
elif h_1 is not None:
|
| 845 |
+
r = h_1 / h
|
| 846 |
+
d = (denoised - denoised_1) / r
|
| 847 |
+
phi_2 = h_eta.neg().expm1() / h_eta + 1
|
| 848 |
+
x = x + phi_2 * d
|
| 849 |
+
|
| 850 |
+
if eta:
|
| 851 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
|
| 852 |
+
|
| 853 |
+
denoised_1, denoised_2 = denoised, denoised_1
|
| 854 |
+
h_1, h_2 = h, h_1
|
| 855 |
+
return x
|
| 856 |
+
|
| 857 |
+
@torch.no_grad()
|
| 858 |
+
def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
| 859 |
+
if len(sigmas) <= 1:
|
| 860 |
+
return x
|
| 861 |
+
|
| 862 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 863 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
| 864 |
+
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
|
| 865 |
+
|
| 866 |
+
@torch.no_grad()
|
| 867 |
+
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
|
| 868 |
+
if len(sigmas) <= 1:
|
| 869 |
+
return x
|
| 870 |
+
|
| 871 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 872 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
| 873 |
+
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
|
| 874 |
+
|
| 875 |
+
@torch.no_grad()
|
| 876 |
+
def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
|
| 877 |
+
if len(sigmas) <= 1:
|
| 878 |
+
return x
|
| 879 |
+
|
| 880 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 881 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
| 882 |
+
return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r)
|
| 883 |
+
|
| 884 |
+
|
| 885 |
+
def DDPMSampler_step(x, sigma, sigma_prev, noise, noise_sampler):
|
| 886 |
+
alpha_cumprod = 1 / ((sigma * sigma) + 1)
|
| 887 |
+
alpha_cumprod_prev = 1 / ((sigma_prev * sigma_prev) + 1)
|
| 888 |
+
alpha = (alpha_cumprod / alpha_cumprod_prev)
|
| 889 |
+
|
| 890 |
+
mu = (1.0 / alpha).sqrt() * (x - (1 - alpha) * noise / (1 - alpha_cumprod).sqrt())
|
| 891 |
+
if sigma_prev > 0:
|
| 892 |
+
mu += ((1 - alpha) * (1. - alpha_cumprod_prev) / (1. - alpha_cumprod)).sqrt() * noise_sampler(sigma, sigma_prev)
|
| 893 |
+
return mu
|
| 894 |
+
|
| 895 |
+
def generic_step_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, step_function=None):
|
| 896 |
+
extra_args = {} if extra_args is None else extra_args
|
| 897 |
+
seed = extra_args.get("seed", None)
|
| 898 |
+
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
| 899 |
+
s_in = x.new_ones([x.shape[0]])
|
| 900 |
+
|
| 901 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 902 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 903 |
+
if callback is not None:
|
| 904 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 905 |
+
x = step_function(x / torch.sqrt(1.0 + sigmas[i] ** 2.0), sigmas[i], sigmas[i + 1], (x - denoised) / sigmas[i], noise_sampler)
|
| 906 |
+
if sigmas[i + 1] != 0:
|
| 907 |
+
x *= torch.sqrt(1.0 + sigmas[i + 1] ** 2.0)
|
| 908 |
+
return x
|
| 909 |
+
|
| 910 |
+
|
| 911 |
+
@torch.no_grad()
|
| 912 |
+
def sample_ddpm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
|
| 913 |
+
return generic_step_sampler(model, x, sigmas, extra_args, callback, disable, noise_sampler, DDPMSampler_step)
|
| 914 |
+
|
| 915 |
+
@torch.no_grad()
|
| 916 |
+
def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
|
| 917 |
+
extra_args = {} if extra_args is None else extra_args
|
| 918 |
+
seed = extra_args.get("seed", None)
|
| 919 |
+
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
| 920 |
+
s_in = x.new_ones([x.shape[0]])
|
| 921 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 922 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 923 |
+
if callback is not None:
|
| 924 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 925 |
+
|
| 926 |
+
x = denoised
|
| 927 |
+
if sigmas[i + 1] > 0:
|
| 928 |
+
x = model.inner_model.inner_model.model_sampling.noise_scaling(sigmas[i + 1], noise_sampler(sigmas[i], sigmas[i + 1]), x)
|
| 929 |
+
return x
|
| 930 |
+
|
| 931 |
+
|
| 932 |
+
|
| 933 |
+
@torch.no_grad()
|
| 934 |
+
def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 935 |
+
# From MIT licensed: https://github.com/Carzit/sd-webui-samplers-scheduler/
|
| 936 |
+
extra_args = {} if extra_args is None else extra_args
|
| 937 |
+
s_in = x.new_ones([x.shape[0]])
|
| 938 |
+
s_end = sigmas[-1]
|
| 939 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 940 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 941 |
+
eps = torch.randn_like(x) * s_noise
|
| 942 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 943 |
+
if gamma > 0:
|
| 944 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 945 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 946 |
+
d = to_d(x, sigma_hat, denoised)
|
| 947 |
+
if callback is not None:
|
| 948 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 949 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 950 |
+
if sigmas[i + 1] == s_end:
|
| 951 |
+
# Euler method
|
| 952 |
+
x = x + d * dt
|
| 953 |
+
elif sigmas[i + 2] == s_end:
|
| 954 |
+
|
| 955 |
+
# Heun's method
|
| 956 |
+
x_2 = x + d * dt
|
| 957 |
+
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
|
| 958 |
+
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
|
| 959 |
+
|
| 960 |
+
w = 2 * sigmas[0]
|
| 961 |
+
w2 = sigmas[i+1]/w
|
| 962 |
+
w1 = 1 - w2
|
| 963 |
+
|
| 964 |
+
d_prime = d * w1 + d_2 * w2
|
| 965 |
+
|
| 966 |
+
|
| 967 |
+
x = x + d_prime * dt
|
| 968 |
+
|
| 969 |
+
else:
|
| 970 |
+
# Heun++
|
| 971 |
+
x_2 = x + d * dt
|
| 972 |
+
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
|
| 973 |
+
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
|
| 974 |
+
dt_2 = sigmas[i + 2] - sigmas[i + 1]
|
| 975 |
+
|
| 976 |
+
x_3 = x_2 + d_2 * dt_2
|
| 977 |
+
denoised_3 = model(x_3, sigmas[i + 2] * s_in, **extra_args)
|
| 978 |
+
d_3 = to_d(x_3, sigmas[i + 2], denoised_3)
|
| 979 |
+
|
| 980 |
+
w = 3 * sigmas[0]
|
| 981 |
+
w2 = sigmas[i + 1] / w
|
| 982 |
+
w3 = sigmas[i + 2] / w
|
| 983 |
+
w1 = 1 - w2 - w3
|
| 984 |
+
|
| 985 |
+
d_prime = w1 * d + w2 * d_2 + w3 * d_3
|
| 986 |
+
x = x + d_prime * dt
|
| 987 |
+
return x
|
| 988 |
+
|
| 989 |
+
|
| 990 |
+
#From https://github.com/zju-pi/diff-sampler/blob/main/diff-solvers-main/solvers.py
|
| 991 |
+
#under Apache 2 license
|
| 992 |
+
def sample_ipndm(model, x, sigmas, extra_args=None, callback=None, disable=None, max_order=4):
|
| 993 |
+
extra_args = {} if extra_args is None else extra_args
|
| 994 |
+
s_in = x.new_ones([x.shape[0]])
|
| 995 |
+
|
| 996 |
+
x_next = x
|
| 997 |
+
|
| 998 |
+
buffer_model = []
|
| 999 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1000 |
+
t_cur = sigmas[i]
|
| 1001 |
+
t_next = sigmas[i + 1]
|
| 1002 |
+
|
| 1003 |
+
x_cur = x_next
|
| 1004 |
+
|
| 1005 |
+
denoised = model(x_cur, t_cur * s_in, **extra_args)
|
| 1006 |
+
if callback is not None:
|
| 1007 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 1008 |
+
|
| 1009 |
+
d_cur = (x_cur - denoised) / t_cur
|
| 1010 |
+
|
| 1011 |
+
order = min(max_order, i+1)
|
| 1012 |
+
if order == 1: # First Euler step.
|
| 1013 |
+
x_next = x_cur + (t_next - t_cur) * d_cur
|
| 1014 |
+
elif order == 2: # Use one history point.
|
| 1015 |
+
x_next = x_cur + (t_next - t_cur) * (3 * d_cur - buffer_model[-1]) / 2
|
| 1016 |
+
elif order == 3: # Use two history points.
|
| 1017 |
+
x_next = x_cur + (t_next - t_cur) * (23 * d_cur - 16 * buffer_model[-1] + 5 * buffer_model[-2]) / 12
|
| 1018 |
+
elif order == 4: # Use three history points.
|
| 1019 |
+
x_next = x_cur + (t_next - t_cur) * (55 * d_cur - 59 * buffer_model[-1] + 37 * buffer_model[-2] - 9 * buffer_model[-3]) / 24
|
| 1020 |
+
|
| 1021 |
+
if len(buffer_model) == max_order - 1:
|
| 1022 |
+
for k in range(max_order - 2):
|
| 1023 |
+
buffer_model[k] = buffer_model[k+1]
|
| 1024 |
+
buffer_model[-1] = d_cur
|
| 1025 |
+
else:
|
| 1026 |
+
buffer_model.append(d_cur)
|
| 1027 |
+
|
| 1028 |
+
return x_next
|
| 1029 |
+
|
| 1030 |
+
#From https://github.com/zju-pi/diff-sampler/blob/main/diff-solvers-main/solvers.py
|
| 1031 |
+
#under Apache 2 license
|
| 1032 |
+
def sample_ipndm_v(model, x, sigmas, extra_args=None, callback=None, disable=None, max_order=4):
|
| 1033 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1034 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1035 |
+
|
| 1036 |
+
x_next = x
|
| 1037 |
+
t_steps = sigmas
|
| 1038 |
+
|
| 1039 |
+
buffer_model = []
|
| 1040 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1041 |
+
t_cur = sigmas[i]
|
| 1042 |
+
t_next = sigmas[i + 1]
|
| 1043 |
+
|
| 1044 |
+
x_cur = x_next
|
| 1045 |
+
|
| 1046 |
+
denoised = model(x_cur, t_cur * s_in, **extra_args)
|
| 1047 |
+
if callback is not None:
|
| 1048 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 1049 |
+
|
| 1050 |
+
d_cur = (x_cur - denoised) / t_cur
|
| 1051 |
+
|
| 1052 |
+
order = min(max_order, i+1)
|
| 1053 |
+
if order == 1: # First Euler step.
|
| 1054 |
+
x_next = x_cur + (t_next - t_cur) * d_cur
|
| 1055 |
+
elif order == 2: # Use one history point.
|
| 1056 |
+
h_n = (t_next - t_cur)
|
| 1057 |
+
h_n_1 = (t_cur - t_steps[i-1])
|
| 1058 |
+
coeff1 = (2 + (h_n / h_n_1)) / 2
|
| 1059 |
+
coeff2 = -(h_n / h_n_1) / 2
|
| 1060 |
+
x_next = x_cur + (t_next - t_cur) * (coeff1 * d_cur + coeff2 * buffer_model[-1])
|
| 1061 |
+
elif order == 3: # Use two history points.
|
| 1062 |
+
h_n = (t_next - t_cur)
|
| 1063 |
+
h_n_1 = (t_cur - t_steps[i-1])
|
| 1064 |
+
h_n_2 = (t_steps[i-1] - t_steps[i-2])
|
| 1065 |
+
temp = (1 - h_n / (3 * (h_n + h_n_1)) * (h_n * (h_n + h_n_1)) / (h_n_1 * (h_n_1 + h_n_2))) / 2
|
| 1066 |
+
coeff1 = (2 + (h_n / h_n_1)) / 2 + temp
|
| 1067 |
+
coeff2 = -(h_n / h_n_1) / 2 - (1 + h_n_1 / h_n_2) * temp
|
| 1068 |
+
coeff3 = temp * h_n_1 / h_n_2
|
| 1069 |
+
x_next = x_cur + (t_next - t_cur) * (coeff1 * d_cur + coeff2 * buffer_model[-1] + coeff3 * buffer_model[-2])
|
| 1070 |
+
elif order == 4: # Use three history points.
|
| 1071 |
+
h_n = (t_next - t_cur)
|
| 1072 |
+
h_n_1 = (t_cur - t_steps[i-1])
|
| 1073 |
+
h_n_2 = (t_steps[i-1] - t_steps[i-2])
|
| 1074 |
+
h_n_3 = (t_steps[i-2] - t_steps[i-3])
|
| 1075 |
+
temp1 = (1 - h_n / (3 * (h_n + h_n_1)) * (h_n * (h_n + h_n_1)) / (h_n_1 * (h_n_1 + h_n_2))) / 2
|
| 1076 |
+
temp2 = ((1 - h_n / (3 * (h_n + h_n_1))) / 2 + (1 - h_n / (2 * (h_n + h_n_1))) * h_n / (6 * (h_n + h_n_1 + h_n_2))) \
|
| 1077 |
+
* (h_n * (h_n + h_n_1) * (h_n + h_n_1 + h_n_2)) / (h_n_1 * (h_n_1 + h_n_2) * (h_n_1 + h_n_2 + h_n_3))
|
| 1078 |
+
coeff1 = (2 + (h_n / h_n_1)) / 2 + temp1 + temp2
|
| 1079 |
+
coeff2 = -(h_n / h_n_1) / 2 - (1 + h_n_1 / h_n_2) * temp1 - (1 + (h_n_1 / h_n_2) + (h_n_1 * (h_n_1 + h_n_2) / (h_n_2 * (h_n_2 + h_n_3)))) * temp2
|
| 1080 |
+
coeff3 = temp1 * h_n_1 / h_n_2 + ((h_n_1 / h_n_2) + (h_n_1 * (h_n_1 + h_n_2) / (h_n_2 * (h_n_2 + h_n_3))) * (1 + h_n_2 / h_n_3)) * temp2
|
| 1081 |
+
coeff4 = -temp2 * (h_n_1 * (h_n_1 + h_n_2) / (h_n_2 * (h_n_2 + h_n_3))) * h_n_1 / h_n_2
|
| 1082 |
+
x_next = x_cur + (t_next - t_cur) * (coeff1 * d_cur + coeff2 * buffer_model[-1] + coeff3 * buffer_model[-2] + coeff4 * buffer_model[-3])
|
| 1083 |
+
|
| 1084 |
+
if len(buffer_model) == max_order - 1:
|
| 1085 |
+
for k in range(max_order - 2):
|
| 1086 |
+
buffer_model[k] = buffer_model[k+1]
|
| 1087 |
+
buffer_model[-1] = d_cur.detach()
|
| 1088 |
+
else:
|
| 1089 |
+
buffer_model.append(d_cur.detach())
|
| 1090 |
+
|
| 1091 |
+
return x_next
|
| 1092 |
+
|
| 1093 |
+
#From https://github.com/zju-pi/diff-sampler/blob/main/diff-solvers-main/solvers.py
|
| 1094 |
+
#under Apache 2 license
|
| 1095 |
+
@torch.no_grad()
|
| 1096 |
+
def sample_deis(model, x, sigmas, extra_args=None, callback=None, disable=None, max_order=3, deis_mode='tab'):
|
| 1097 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1098 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1099 |
+
|
| 1100 |
+
x_next = x
|
| 1101 |
+
t_steps = sigmas
|
| 1102 |
+
|
| 1103 |
+
coeff_list = deis.get_deis_coeff_list(t_steps, max_order, deis_mode=deis_mode)
|
| 1104 |
+
|
| 1105 |
+
buffer_model = []
|
| 1106 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1107 |
+
t_cur = sigmas[i]
|
| 1108 |
+
t_next = sigmas[i + 1]
|
| 1109 |
+
|
| 1110 |
+
x_cur = x_next
|
| 1111 |
+
|
| 1112 |
+
denoised = model(x_cur, t_cur * s_in, **extra_args)
|
| 1113 |
+
if callback is not None:
|
| 1114 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 1115 |
+
|
| 1116 |
+
d_cur = (x_cur - denoised) / t_cur
|
| 1117 |
+
|
| 1118 |
+
order = min(max_order, i+1)
|
| 1119 |
+
if t_next <= 0:
|
| 1120 |
+
order = 1
|
| 1121 |
+
|
| 1122 |
+
if order == 1: # First Euler step.
|
| 1123 |
+
x_next = x_cur + (t_next - t_cur) * d_cur
|
| 1124 |
+
elif order == 2: # Use one history point.
|
| 1125 |
+
coeff_cur, coeff_prev1 = coeff_list[i]
|
| 1126 |
+
x_next = x_cur + coeff_cur * d_cur + coeff_prev1 * buffer_model[-1]
|
| 1127 |
+
elif order == 3: # Use two history points.
|
| 1128 |
+
coeff_cur, coeff_prev1, coeff_prev2 = coeff_list[i]
|
| 1129 |
+
x_next = x_cur + coeff_cur * d_cur + coeff_prev1 * buffer_model[-1] + coeff_prev2 * buffer_model[-2]
|
| 1130 |
+
elif order == 4: # Use three history points.
|
| 1131 |
+
coeff_cur, coeff_prev1, coeff_prev2, coeff_prev3 = coeff_list[i]
|
| 1132 |
+
x_next = x_cur + coeff_cur * d_cur + coeff_prev1 * buffer_model[-1] + coeff_prev2 * buffer_model[-2] + coeff_prev3 * buffer_model[-3]
|
| 1133 |
+
|
| 1134 |
+
if len(buffer_model) == max_order - 1:
|
| 1135 |
+
for k in range(max_order - 2):
|
| 1136 |
+
buffer_model[k] = buffer_model[k+1]
|
| 1137 |
+
buffer_model[-1] = d_cur.detach()
|
| 1138 |
+
else:
|
| 1139 |
+
buffer_model.append(d_cur.detach())
|
| 1140 |
+
|
| 1141 |
+
return x_next
|
| 1142 |
+
|
| 1143 |
+
@torch.no_grad()
|
| 1144 |
+
def sample_euler_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
| 1145 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1146 |
+
|
| 1147 |
+
temp = [0]
|
| 1148 |
+
def post_cfg_function(args):
|
| 1149 |
+
temp[0] = args["uncond_denoised"]
|
| 1150 |
+
return args["denoised"]
|
| 1151 |
+
|
| 1152 |
+
model_options = extra_args.get("model_options", {}).copy()
|
| 1153 |
+
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
| 1154 |
+
|
| 1155 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1156 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1157 |
+
sigma_hat = sigmas[i]
|
| 1158 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1159 |
+
d = to_d(x, sigma_hat, temp[0])
|
| 1160 |
+
if callback is not None:
|
| 1161 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1162 |
+
# Euler method
|
| 1163 |
+
x = denoised + d * sigmas[i + 1]
|
| 1164 |
+
return x
|
| 1165 |
+
|
| 1166 |
+
@torch.no_grad()
|
| 1167 |
+
def sample_euler_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
| 1168 |
+
"""Ancestral sampling with Euler method steps."""
|
| 1169 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1170 |
+
seed = extra_args.get("seed", None)
|
| 1171 |
+
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
| 1172 |
+
|
| 1173 |
+
temp = [0]
|
| 1174 |
+
def post_cfg_function(args):
|
| 1175 |
+
temp[0] = args["uncond_denoised"]
|
| 1176 |
+
return args["denoised"]
|
| 1177 |
+
|
| 1178 |
+
model_options = extra_args.get("model_options", {}).copy()
|
| 1179 |
+
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
| 1180 |
+
|
| 1181 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1182 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1183 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 1184 |
+
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
| 1185 |
+
if callback is not None:
|
| 1186 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 1187 |
+
d = to_d(x, sigmas[i], temp[0])
|
| 1188 |
+
# Euler method
|
| 1189 |
+
x = denoised + d * sigma_down
|
| 1190 |
+
if sigmas[i + 1] > 0:
|
| 1191 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
| 1192 |
+
return x
|
| 1193 |
+
@torch.no_grad()
|
| 1194 |
+
def sample_dpmpp_2s_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
| 1195 |
+
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
|
| 1196 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1197 |
+
seed = extra_args.get("seed", None)
|
| 1198 |
+
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
| 1199 |
+
|
| 1200 |
+
temp = [0]
|
| 1201 |
+
def post_cfg_function(args):
|
| 1202 |
+
temp[0] = args["uncond_denoised"]
|
| 1203 |
+
return args["denoised"]
|
| 1204 |
+
|
| 1205 |
+
model_options = extra_args.get("model_options", {}).copy()
|
| 1206 |
+
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
| 1207 |
+
|
| 1208 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1209 |
+
sigma_fn = lambda t: t.neg().exp()
|
| 1210 |
+
t_fn = lambda sigma: sigma.log().neg()
|
| 1211 |
+
|
| 1212 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1213 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 1214 |
+
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
| 1215 |
+
if callback is not None:
|
| 1216 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 1217 |
+
if sigma_down == 0:
|
| 1218 |
+
# Euler method
|
| 1219 |
+
d = to_d(x, sigmas[i], temp[0])
|
| 1220 |
+
x = denoised + d * sigma_down
|
| 1221 |
+
else:
|
| 1222 |
+
# DPM-Solver++(2S)
|
| 1223 |
+
t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
|
| 1224 |
+
# r = torch.sinh(1 + (2 - eta) * (t_next - t) / (t - t_fn(sigma_up))) works only on non-cfgpp, weird
|
| 1225 |
+
r = 1 / 2
|
| 1226 |
+
h = t_next - t
|
| 1227 |
+
s = t + r * h
|
| 1228 |
+
x_2 = (sigma_fn(s) / sigma_fn(t)) * (x + (denoised - temp[0])) - (-h * r).expm1() * denoised
|
| 1229 |
+
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
|
| 1230 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * (x + (denoised - temp[0])) - (-h).expm1() * denoised_2
|
| 1231 |
+
# Noise addition
|
| 1232 |
+
if sigmas[i + 1] > 0:
|
| 1233 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
| 1234 |
+
return x
|
| 1235 |
+
|
| 1236 |
+
@torch.no_grad()
|
| 1237 |
+
def sample_dpmpp_2m_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
| 1238 |
+
"""DPM-Solver++(2M)."""
|
| 1239 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1240 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1241 |
+
t_fn = lambda sigma: sigma.log().neg()
|
| 1242 |
+
|
| 1243 |
+
old_uncond_denoised = None
|
| 1244 |
+
uncond_denoised = None
|
| 1245 |
+
def post_cfg_function(args):
|
| 1246 |
+
nonlocal uncond_denoised
|
| 1247 |
+
uncond_denoised = args["uncond_denoised"]
|
| 1248 |
+
return args["denoised"]
|
| 1249 |
+
|
| 1250 |
+
model_options = extra_args.get("model_options", {}).copy()
|
| 1251 |
+
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
| 1252 |
+
|
| 1253 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1254 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 1255 |
+
if callback is not None:
|
| 1256 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 1257 |
+
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
|
| 1258 |
+
h = t_next - t
|
| 1259 |
+
if old_uncond_denoised is None or sigmas[i + 1] == 0:
|
| 1260 |
+
denoised_mix = -torch.exp(-h) * uncond_denoised
|
| 1261 |
+
else:
|
| 1262 |
+
h_last = t - t_fn(sigmas[i - 1])
|
| 1263 |
+
r = h_last / h
|
| 1264 |
+
denoised_mix = -torch.exp(-h) * uncond_denoised - torch.expm1(-h) * (1 / (2 * r)) * (denoised - old_uncond_denoised)
|
| 1265 |
+
x = denoised + denoised_mix + torch.exp(-h) * x
|
| 1266 |
+
old_uncond_denoised = uncond_denoised
|
| 1267 |
+
return x
|
| 1268 |
+
|
| 1269 |
+
@torch.no_grad()
|
| 1270 |
+
def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None, cfg_pp=False):
|
| 1271 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1272 |
+
seed = extra_args.get("seed", None)
|
| 1273 |
+
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
| 1274 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1275 |
+
sigma_fn = lambda t: t.neg().exp()
|
| 1276 |
+
t_fn = lambda sigma: sigma.log().neg()
|
| 1277 |
+
phi1_fn = lambda t: torch.expm1(t) / t
|
| 1278 |
+
phi2_fn = lambda t: (phi1_fn(t) - 1.0) / t
|
| 1279 |
+
|
| 1280 |
+
old_denoised = None
|
| 1281 |
+
uncond_denoised = None
|
| 1282 |
+
def post_cfg_function(args):
|
| 1283 |
+
nonlocal uncond_denoised
|
| 1284 |
+
uncond_denoised = args["uncond_denoised"]
|
| 1285 |
+
return args["denoised"]
|
| 1286 |
+
|
| 1287 |
+
if cfg_pp:
|
| 1288 |
+
model_options = extra_args.get("model_options", {}).copy()
|
| 1289 |
+
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
| 1290 |
+
|
| 1291 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1292 |
+
if s_churn > 0:
|
| 1293 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.0
|
| 1294 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1295 |
+
else:
|
| 1296 |
+
gamma = 0
|
| 1297 |
+
sigma_hat = sigmas[i]
|
| 1298 |
+
|
| 1299 |
+
if gamma > 0:
|
| 1300 |
+
eps = torch.randn_like(x) * s_noise
|
| 1301 |
+
x = x + eps * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5
|
| 1302 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1303 |
+
if callback is not None:
|
| 1304 |
+
callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigma_hat, "denoised": denoised})
|
| 1305 |
+
if sigmas[i + 1] == 0 or old_denoised is None:
|
| 1306 |
+
# Euler method
|
| 1307 |
+
if cfg_pp:
|
| 1308 |
+
d = to_d(x, sigma_hat, uncond_denoised)
|
| 1309 |
+
x = denoised + d * sigmas[i + 1]
|
| 1310 |
+
else:
|
| 1311 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1312 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1313 |
+
x = x + d * dt
|
| 1314 |
+
else:
|
| 1315 |
+
# Second order multistep method in https://arxiv.org/pdf/2308.02157
|
| 1316 |
+
t, t_next, t_prev = t_fn(sigmas[i]), t_fn(sigmas[i + 1]), t_fn(sigmas[i - 1])
|
| 1317 |
+
h = t_next - t
|
| 1318 |
+
c2 = (t_prev - t) / h
|
| 1319 |
+
|
| 1320 |
+
phi1_val, phi2_val = phi1_fn(-h), phi2_fn(-h)
|
| 1321 |
+
b1 = torch.nan_to_num(phi1_val - 1.0 / c2 * phi2_val, nan=0.0)
|
| 1322 |
+
b2 = torch.nan_to_num(1.0 / c2 * phi2_val, nan=0.0)
|
| 1323 |
+
|
| 1324 |
+
if cfg_pp:
|
| 1325 |
+
x = x + (denoised - uncond_denoised)
|
| 1326 |
+
|
| 1327 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * x + h * (b1 * denoised + b2 * old_denoised)
|
| 1328 |
+
|
| 1329 |
+
old_denoised = denoised
|
| 1330 |
+
return x
|
| 1331 |
+
|
| 1332 |
+
@torch.no_grad()
|
| 1333 |
+
def sample_res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1334 |
+
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_churn=s_churn, s_tmin=s_tmin, s_tmax=s_tmax, s_noise=s_noise, noise_sampler=noise_sampler, cfg_pp=False)
|
| 1335 |
+
|
| 1336 |
+
@torch.no_grad()
|
| 1337 |
+
def sample_res_multistep_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1338 |
+
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_churn=s_churn, s_tmin=s_tmin, s_tmax=s_tmax, s_noise=s_noise, noise_sampler=noise_sampler, cfg_pp=True)
|