Spaces:
Runtime error
Runtime error
| from typing import Tuple | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.nn.init as init | |
| from diffusers.models.modeling_utils import ModelMixin | |
| import torch | |
| class Conv2d(nn.Conv2d): | |
| def forward(self, x): | |
| x = super().forward(x) | |
| return x | |
| class DepthGuider(ModelMixin): | |
| def __init__( | |
| self, | |
| conditioning_embedding_channels: int=4, | |
| conditioning_channels: int = 1, | |
| block_out_channels: Tuple[int] = (16, 32, 64, 128), | |
| ): | |
| super().__init__() | |
| self.conv_in = Conv2d( | |
| conditioning_channels, block_out_channels[0], kernel_size=3, padding=1 | |
| ) | |
| self.blocks = nn.ModuleList([]) | |
| for i in range(len(block_out_channels) - 1): | |
| channel_in = block_out_channels[i] | |
| channel_out = block_out_channels[i + 1] | |
| self.blocks.append( | |
| Conv2d(channel_in, channel_in, kernel_size=3, padding=1) | |
| ) | |
| self.blocks.append( | |
| Conv2d( | |
| channel_in, channel_out, kernel_size=3, padding=1, stride=2 | |
| ) | |
| ) | |
| self.conv_out = Conv2d( | |
| block_out_channels[-1], | |
| conditioning_embedding_channels, | |
| kernel_size=3, | |
| padding=1, | |
| ) | |
| def forward(self, conditioning): | |
| conditioning = F.interpolate(conditioning, size=(512,512), mode = 'bilinear', align_corners=True) | |
| embedding = self.conv_in(conditioning) | |
| embedding = F.silu(embedding) | |
| for block in self.blocks: | |
| embedding = block(embedding) | |
| embedding = F.silu(embedding) | |
| embedding = self.conv_out(embedding) | |
| return embedding |