Spaces:
Running
on
Zero
Running
on
Zero
Update demo
Browse files
app.py
CHANGED
|
@@ -14,6 +14,9 @@ Generates 3D head models from single images using multi-view diffusion and GS-LR
|
|
| 14 |
import json
|
| 15 |
from pathlib import Path
|
| 16 |
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
import gradio as gr
|
| 19 |
import numpy as np
|
|
@@ -29,337 +32,66 @@ import spaces
|
|
| 29 |
import subprocess
|
| 30 |
import sys
|
| 31 |
import os
|
| 32 |
-
import subprocess, sys, os
|
| 33 |
|
| 34 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
try:
|
| 36 |
import diff_gaussian_rasterization # noqa: F401
|
| 37 |
except ImportError:
|
| 38 |
print("Installing diff-gaussian-rasterization (compiling for detected CUDA arch)...")
|
| 39 |
env = os.environ.copy()
|
| 40 |
try:
|
| 41 |
-
import torch
|
| 42 |
-
if
|
| 43 |
-
maj, minr =
|
| 44 |
arch = f"{maj}.{minr}" # e.g., "9.0" on H100/H200, "8.0" on A100
|
| 45 |
env["TORCH_CUDA_ARCH_LIST"] = f"{arch}+PTX"
|
| 46 |
else:
|
| 47 |
# Build stage may not see a GPU on HF Spaces: compile a cross-arch set
|
| 48 |
env["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6;8.9;9.0+PTX"
|
| 49 |
-
except
|
| 50 |
-
env["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6;8.9;9.0+PTX"
|
| 51 |
-
|
| 52 |
-
# (Optional) side-step allocator+NVML quirks in restrictive containers
|
| 53 |
-
env.setdefault("PYTORCH_NO_CUDA_MEMORY_CACHING", "1")
|
| 54 |
-
|
| 55 |
-
subprocess.check_call(
|
| 56 |
-
[sys.executable, "-m", "pip", "install",
|
| 57 |
-
"git+https://github.com/graphdeco-inria/diff-gaussian-rasterization"],
|
| 58 |
-
env=env,
|
| 59 |
-
)
|
| 60 |
-
import diff_gaussian_rasterization # noqa: F401
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
from gslrm.model.gaussians_renderer import render_turntable, imageseq2video
|
| 64 |
-
from mvdiffusion.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline
|
| 65 |
-
from utils_folder.face_utils import preprocess_image, preprocess_image_without_cropping
|
| 66 |
-
|
| 67 |
-
# HuggingFace repository configuration
|
| 68 |
-
HF_REPO_ID = "wlyu/OpenFaceLift"
|
| 69 |
-
|
| 70 |
-
def download_weights_from_hf() -> Path:
|
| 71 |
-
"""Download model weights from HuggingFace if not already present.
|
| 72 |
-
|
| 73 |
-
Returns:
|
| 74 |
-
Path to the downloaded repository
|
| 75 |
-
"""
|
| 76 |
-
workspace_dir = Path(__file__).parent
|
| 77 |
-
|
| 78 |
-
# Check if weights already exist locally
|
| 79 |
-
mvdiffusion_path = workspace_dir / "checkpoints/mvdiffusion/pipeckpts"
|
| 80 |
-
gslrm_path = workspace_dir / "checkpoints/gslrm/ckpt_0000000000021125.pt"
|
| 81 |
-
|
| 82 |
-
if mvdiffusion_path.exists() and gslrm_path.exists():
|
| 83 |
-
print("Using local model weights")
|
| 84 |
-
return workspace_dir
|
| 85 |
-
|
| 86 |
-
print(f"Downloading model weights from HuggingFace: {HF_REPO_ID}")
|
| 87 |
-
print("This may take a few minutes on first run...")
|
| 88 |
-
|
| 89 |
-
# Download to local directory
|
| 90 |
-
snapshot_download(
|
| 91 |
-
repo_id=HF_REPO_ID,
|
| 92 |
-
local_dir=str(workspace_dir / "checkpoints"),
|
| 93 |
-
local_dir_use_symlinks=False,
|
| 94 |
-
)
|
| 95 |
-
|
| 96 |
-
print("Model weights downloaded successfully!")
|
| 97 |
-
return workspace_dir
|
| 98 |
-
|
| 99 |
-
class FaceLiftPipeline:
|
| 100 |
-
"""Pipeline for FaceLift 3D head generation from single images."""
|
| 101 |
-
|
| 102 |
-
def __init__(self):
|
| 103 |
-
# Download weights from HuggingFace if needed
|
| 104 |
-
workspace_dir = download_weights_from_hf()
|
| 105 |
-
|
| 106 |
-
# Setup paths
|
| 107 |
-
self.output_dir = workspace_dir / "outputs"
|
| 108 |
-
self.examples_dir = workspace_dir / "examples"
|
| 109 |
-
self.output_dir.mkdir(exist_ok=True)
|
| 110 |
-
|
| 111 |
-
# Parameters
|
| 112 |
-
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 113 |
-
self.image_size = 512
|
| 114 |
-
self.camera_indices = [2, 1, 0, 5, 4, 3]
|
| 115 |
-
|
| 116 |
-
# Load models (keep on CPU for ZeroGPU compatibility)
|
| 117 |
-
print("Loading models...")
|
| 118 |
-
try:
|
| 119 |
-
self.mvdiffusion_pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained(
|
| 120 |
-
str(workspace_dir / "checkpoints/mvdiffusion/pipeckpts"),
|
| 121 |
-
torch_dtype=torch.float16,
|
| 122 |
-
)
|
| 123 |
-
# Don't move to device or enable xformers here - will be done in GPU-decorated function
|
| 124 |
-
self._models_on_gpu = False
|
| 125 |
-
|
| 126 |
-
with open(workspace_dir / "configs/gslrm.yaml", "r") as f:
|
| 127 |
-
config = edict(yaml.safe_load(f))
|
| 128 |
-
|
| 129 |
-
module_name, class_name = config.model.class_name.rsplit(".", 1)
|
| 130 |
-
module = __import__(module_name, fromlist=[class_name])
|
| 131 |
-
ModelClass = getattr(module, class_name)
|
| 132 |
-
|
| 133 |
-
self.gs_lrm_model = ModelClass(config)
|
| 134 |
-
checkpoint = torch.load(
|
| 135 |
-
workspace_dir / "checkpoints/gslrm/ckpt_0000000000021125.pt",
|
| 136 |
-
map_location="cpu"
|
| 137 |
-
)
|
| 138 |
-
# Filter out loss_calculator weights (training-only, not needed for inference)
|
| 139 |
-
state_dict = {k: v for k, v in checkpoint["model"].items()
|
| 140 |
-
if not k.startswith("loss_calculator.")}
|
| 141 |
-
self.gs_lrm_model.load_state_dict(state_dict)
|
| 142 |
-
# Keep on CPU initially - will move to GPU in decorated function
|
| 143 |
-
|
| 144 |
-
self.color_prompt_embedding = torch.load(
|
| 145 |
-
workspace_dir / "mvdiffusion/fixed_prompt_embeds_6view/clr_embeds.pt",
|
| 146 |
-
map_location="cpu"
|
| 147 |
-
)
|
| 148 |
-
|
| 149 |
-
with open(workspace_dir / "utils_folder/opencv_cameras.json", 'r') as f:
|
| 150 |
-
self.cameras_data = json.load(f)["frames"]
|
| 151 |
-
|
| 152 |
-
print("Models loaded successfully!")
|
| 153 |
-
except Exception as e:
|
| 154 |
-
print(f"Error loading models: {e}")
|
| 155 |
-
import traceback
|
| 156 |
-
traceback.print_exc()
|
| 157 |
-
raise
|
| 158 |
-
|
| 159 |
-
def _move_models_to_gpu(self):
|
| 160 |
-
"""Move models to GPU and enable optimizations. Called within @spaces.GPU context."""
|
| 161 |
-
if not self._models_on_gpu and torch.cuda.is_available():
|
| 162 |
-
print("Moving models to GPU...")
|
| 163 |
-
self.device = torch.device("cuda:0")
|
| 164 |
-
self.mvdiffusion_pipeline.to(self.device)
|
| 165 |
-
self.mvdiffusion_pipeline.unet.enable_xformers_memory_efficient_attention()
|
| 166 |
-
self.gs_lrm_model.to(self.device)
|
| 167 |
-
self.gs_lrm_model.eval() # Set to eval mode
|
| 168 |
-
self.color_prompt_embedding = self.color_prompt_embedding.to(self.device)
|
| 169 |
-
self._models_on_gpu = True
|
| 170 |
-
torch.cuda.empty_cache() # Clear cache after moving models
|
| 171 |
-
print("Models on GPU, xformers enabled!")
|
| 172 |
-
|
| 173 |
-
@spaces.GPU(duration=120)
|
| 174 |
-
def generate_3d_head(self, image_path, auto_crop=True, guidance_scale=3.0,
|
| 175 |
-
random_seed=4, num_steps=50):
|
| 176 |
-
"""Generate 3D head from single image."""
|
| 177 |
-
try:
|
| 178 |
-
# Move models to GPU now that we're in the GPU context
|
| 179 |
-
self._move_models_to_gpu()
|
| 180 |
-
# Setup output directory
|
| 181 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 182 |
-
output_dir = self.output_dir / timestamp
|
| 183 |
-
output_dir.mkdir(exist_ok=True)
|
| 184 |
-
|
| 185 |
-
# Preprocess input
|
| 186 |
-
original_img = np.array(Image.open(image_path))
|
| 187 |
-
input_image = preprocess_image(original_img) if auto_crop else \
|
| 188 |
-
preprocess_image_without_cropping(original_img)
|
| 189 |
-
|
| 190 |
-
if input_image.size != (self.image_size, self.image_size):
|
| 191 |
-
input_image = input_image.resize((self.image_size, self.image_size))
|
| 192 |
-
|
| 193 |
-
input_path = output_dir / "input.png"
|
| 194 |
-
input_image.save(input_path)
|
| 195 |
-
|
| 196 |
-
# Generate multi-view images
|
| 197 |
-
generator = torch.Generator(device=self.mvdiffusion_pipeline.unet.device)
|
| 198 |
-
generator.manual_seed(random_seed)
|
| 199 |
-
|
| 200 |
-
result = self.mvdiffusion_pipeline(
|
| 201 |
-
input_image, None,
|
| 202 |
-
prompt_embeds=self.color_prompt_embedding,
|
| 203 |
-
height=self.image_size,
|
| 204 |
-
width=self.image_size,
|
| 205 |
-
guidance_scale=guidance_scale,
|
| 206 |
-
num_images_per_prompt=1,
|
| 207 |
-
num_inference_steps=num_steps,
|
| 208 |
-
generator=generator,
|
| 209 |
-
eta=1.0,
|
| 210 |
-
)
|
| 211 |
-
|
| 212 |
-
selected_views = result.images[:6]
|
| 213 |
-
|
| 214 |
-
# Save multi-view composite
|
| 215 |
-
multiview_image = Image.new("RGB", (self.image_size * 6, self.image_size))
|
| 216 |
-
for i, view in enumerate(selected_views):
|
| 217 |
-
multiview_image.paste(view, (self.image_size * i, 0))
|
| 218 |
-
|
| 219 |
-
multiview_path = output_dir / "multiview.png"
|
| 220 |
-
multiview_image.save(multiview_path)
|
| 221 |
-
|
| 222 |
-
# Move diffusion model to CPU to free GPU memory for GS-LRM
|
| 223 |
-
print("Moving diffusion model to CPU to free memory...")
|
| 224 |
-
self.mvdiffusion_pipeline.to("cpu")
|
| 225 |
-
|
| 226 |
-
# Delete intermediate variables to free memory
|
| 227 |
-
del result, generator
|
| 228 |
-
torch.cuda.empty_cache()
|
| 229 |
-
torch.cuda.synchronize()
|
| 230 |
-
|
| 231 |
-
# Prepare 3D reconstruction input
|
| 232 |
-
view_arrays = [np.array(view) for view in selected_views]
|
| 233 |
-
lrm_input = torch.from_numpy(np.stack(view_arrays, axis=0)).float()
|
| 234 |
-
lrm_input = lrm_input[None].to(self.device) / 255.0
|
| 235 |
-
lrm_input = rearrange(lrm_input, "b v h w c -> b v c h w")
|
| 236 |
-
|
| 237 |
-
# Prepare camera parameters
|
| 238 |
-
selected_cameras = [self.cameras_data[i] for i in self.camera_indices]
|
| 239 |
-
fxfycxcy_list = [[c["fx"], c["fy"], c["cx"], c["cy"]] for c in selected_cameras]
|
| 240 |
-
c2w_list = [np.linalg.inv(np.array(c["w2c"])) for c in selected_cameras]
|
| 241 |
-
|
| 242 |
-
fxfycxcy = torch.from_numpy(np.stack(fxfycxcy_list, axis=0).astype(np.float32))
|
| 243 |
-
c2w = torch.from_numpy(np.stack(c2w_list, axis=0).astype(np.float32))
|
| 244 |
-
fxfycxcy = fxfycxcy[None].to(self.device)
|
| 245 |
-
c2w = c2w[None].to(self.device)
|
| 246 |
-
|
| 247 |
-
batch_indices = torch.stack([
|
| 248 |
-
torch.zeros(lrm_input.size(1)).long(),
|
| 249 |
-
torch.arange(lrm_input.size(1)).long(),
|
| 250 |
-
], dim=-1)[None].to(self.device)
|
| 251 |
-
|
| 252 |
-
batch = edict({
|
| 253 |
-
"image": lrm_input,
|
| 254 |
-
"c2w": c2w,
|
| 255 |
-
"fxfycxcy": fxfycxcy,
|
| 256 |
-
"index": batch_indices,
|
| 257 |
-
})
|
| 258 |
-
|
| 259 |
-
# Ensure GS-LRM model is on GPU
|
| 260 |
-
if next(self.gs_lrm_model.parameters()).device.type == "cpu":
|
| 261 |
-
print("Moving GS-LRM model to GPU...")
|
| 262 |
-
self.gs_lrm_model.to(self.device)
|
| 263 |
-
torch.cuda.empty_cache()
|
| 264 |
-
|
| 265 |
-
# Final memory cleanup before reconstruction
|
| 266 |
-
torch.cuda.empty_cache()
|
| 267 |
-
|
| 268 |
-
# Run 3D reconstruction
|
| 269 |
-
with torch.no_grad(), torch.autocast(enabled=True, device_type="cuda", dtype=torch.float16):
|
| 270 |
-
result = self.gs_lrm_model.forward(batch, create_visual=False, split_data=True)
|
| 271 |
-
|
| 272 |
-
comp_image = result.render[0].unsqueeze(0).detach()
|
| 273 |
-
gaussians = result.gaussians[0]
|
| 274 |
-
|
| 275 |
-
# Clear CUDA cache after reconstruction
|
| 276 |
-
torch.cuda.empty_cache()
|
| 277 |
-
|
| 278 |
-
# Save filtered gaussians
|
| 279 |
-
filtered_gaussians = gaussians.apply_all_filters(
|
| 280 |
-
cam_origins=None,
|
| 281 |
-
opacity_thres=0.04,
|
| 282 |
-
scaling_thres=0.2,
|
| 283 |
-
floater_thres=0.75,
|
| 284 |
-
crop_bbx=[-0.91, 0.91, -0.91, 0.91, -1.0, 1.0],
|
| 285 |
-
nearfar_percent=(0.0001, 1.0),
|
| 286 |
-
)
|
| 287 |
-
|
| 288 |
-
ply_path = output_dir / "gaussians.ply"
|
| 289 |
-
filtered_gaussians.save_ply(str(ply_path))
|
| 290 |
-
|
| 291 |
-
# Save output image
|
| 292 |
-
comp_image = rearrange(comp_image, "x v c h w -> (x h) (v w) c")
|
| 293 |
-
comp_image = (comp_image.cpu().numpy() * 255.0).clip(0, 255).astype(np.uint8)
|
| 294 |
-
output_path = output_dir / "output.png"
|
| 295 |
-
Image.fromarray(comp_image).save(output_path)
|
| 296 |
-
|
| 297 |
-
# Generate turntable video
|
| 298 |
-
turntable_resolution = 512
|
| 299 |
-
num_turntable_views = 180
|
| 300 |
-
turntable_frames = render_turntable(gaussians, rendering_resolution=turntable_resolution,
|
| 301 |
-
num_views=num_turntable_views)
|
| 302 |
-
turntable_frames = rearrange(turntable_frames, "h (v w) c -> v h w c", v=num_turntable_views)
|
| 303 |
-
turntable_frames = np.ascontiguousarray(turntable_frames)
|
| 304 |
-
|
| 305 |
-
turntable_path = output_dir / "turntable.mp4"
|
| 306 |
-
imageseq2video(turntable_frames, str(turntable_path), fps=30)
|
| 307 |
-
|
| 308 |
-
# Final CUDA cache clear
|
| 309 |
-
torch.cuda.empty_cache()
|
| 310 |
-
|
| 311 |
-
return str(input_path), str(multiview_path), str(output_path), \
|
| 312 |
-
str(turntable_path), str(ply_path)
|
| 313 |
-
|
| 314 |
-
except Exception as e:
|
| 315 |
-
import traceback
|
| 316 |
-
error_details = traceback.format_exc()
|
| 317 |
-
print(f"Error details:\n{error_details}")
|
| 318 |
-
raise gr.Error(f"Generation failed: {str(e)}")
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
def main():
|
| 322 |
-
"""Run the FaceLift application."""
|
| 323 |
-
pipeline = FaceLiftPipeline()
|
| 324 |
-
|
| 325 |
-
# Load examples - provide all 5 input values (image, auto_crop, guidance_scale, random_seed, num_steps)
|
| 326 |
-
examples = []
|
| 327 |
-
if pipeline.examples_dir.exists():
|
| 328 |
-
examples = [[str(f), True, 3.0, 4, 50] for f in sorted(pipeline.examples_dir.iterdir())
|
| 329 |
-
if f.suffix.lower() in {'.png', '.jpg', '.jpeg'}]
|
| 330 |
-
|
| 331 |
-
# Create interface
|
| 332 |
-
demo = gr.Interface(
|
| 333 |
-
fn=pipeline.generate_3d_head,
|
| 334 |
-
title="FaceLift: Single Image 3D Face Reconstruction",
|
| 335 |
-
description="""
|
| 336 |
-
Transform a single portrait image into a complete 3D head model.
|
| 337 |
-
|
| 338 |
-
**Tips:**
|
| 339 |
-
- Use high-quality portrait images with clear facial features
|
| 340 |
-
- If face detection fails, try disabling auto-cropping and manually crop to square
|
| 341 |
-
""",
|
| 342 |
-
inputs=[
|
| 343 |
-
gr.Image(type="filepath", label="Input Portrait Image"),
|
| 344 |
-
gr.Checkbox(value=True, label="Auto Cropping"),
|
| 345 |
-
gr.Slider(1.0, 10.0, 3.0, step=0.1, label="Guidance Scale"),
|
| 346 |
-
gr.Number(value=4, label="Random Seed"),
|
| 347 |
-
gr.Slider(10, 100, 50, step=5, label="Generation Steps"),
|
| 348 |
-
],
|
| 349 |
-
outputs=[
|
| 350 |
-
gr.Image(label="Processed Input"),
|
| 351 |
-
gr.Image(label="Multi-view Generation"),
|
| 352 |
-
gr.Image(label="3D Reconstruction"),
|
| 353 |
-
gr.PlayableVideo(label="Turntable Animation"),
|
| 354 |
-
gr.File(label="3D Model (.ply)"),
|
| 355 |
-
],
|
| 356 |
-
examples=examples,
|
| 357 |
-
allow_flagging="never",
|
| 358 |
-
)
|
| 359 |
-
|
| 360 |
-
demo.queue(max_size=10)
|
| 361 |
-
demo.launch(share=True, server_name="0.0.0.0", server_port=7860, show_error=True)
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
if __name__ == "__main__":
|
| 365 |
-
main()
|
|
|
|
| 14 |
import json
|
| 15 |
from pathlib import Path
|
| 16 |
from datetime import datetime
|
| 17 |
+
import uuid
|
| 18 |
+
import time
|
| 19 |
+
import shutil
|
| 20 |
|
| 21 |
import gradio as gr
|
| 22 |
import numpy as np
|
|
|
|
| 32 |
import subprocess
|
| 33 |
import sys
|
| 34 |
import os
|
|
|
|
| 35 |
|
| 36 |
+
# -----------------------------
|
| 37 |
+
# Static paths (for viewer files)
|
| 38 |
+
# -----------------------------
|
| 39 |
+
OUTPUTS_DIR = Path.cwd() / "outputs"
|
| 40 |
+
SPLATS_ROOT = OUTPUTS_DIR / "splats"
|
| 41 |
+
SPLATS_ROOT.mkdir(parents=True, exist_ok=True)
|
| 42 |
+
|
| 43 |
+
# Serve ./outputs via Gradio's static router: /gradio_api/file=outputs/...
|
| 44 |
+
gr.set_static_paths(paths=[OUTPUTS_DIR])
|
| 45 |
+
|
| 46 |
+
# -----------------------------
|
| 47 |
+
# Per-session helpers
|
| 48 |
+
# -----------------------------
|
| 49 |
+
def new_session_id() -> str:
|
| 50 |
+
return uuid.uuid4().hex[:10]
|
| 51 |
+
|
| 52 |
+
def session_dir(session_id: str) -> Path:
|
| 53 |
+
p = SPLATS_ROOT / session_id
|
| 54 |
+
p.mkdir(parents=True, exist_ok=True)
|
| 55 |
+
return p
|
| 56 |
+
|
| 57 |
+
def cleanup_old_sessions(max_age_hours: int = 6):
|
| 58 |
+
cutoff = time.time() - max_age_hours * 3600
|
| 59 |
+
if not SPLATS_ROOT.exists():
|
| 60 |
+
return
|
| 61 |
+
for child in SPLATS_ROOT.iterdir():
|
| 62 |
+
try:
|
| 63 |
+
if child.is_dir() and child.stat().st_mtime < cutoff:
|
| 64 |
+
shutil.rmtree(child, ignore_errors=True)
|
| 65 |
+
except Exception:
|
| 66 |
+
pass
|
| 67 |
+
|
| 68 |
+
def copy_to_session_and_get_url(src_path: str, session_id: str) -> str:
|
| 69 |
+
"""
|
| 70 |
+
Copy a .splat or .ply into this user's session folder and return a cache-busted URL.
|
| 71 |
+
"""
|
| 72 |
+
src = Path(src_path)
|
| 73 |
+
ext = src.suffix.lower() if src.suffix else ".ply"
|
| 74 |
+
fn = f"{int(time.time())}_{uuid.uuid4().hex[:6]}{ext}"
|
| 75 |
+
dst = session_dir(session_id) / fn
|
| 76 |
+
shutil.copy2(src, dst)
|
| 77 |
+
# /gradio_api/file=outputs/...
|
| 78 |
+
return f"/gradio_api/file=outputs/splats/{session_id}/{fn}?v={uuid.uuid4().hex[:6]}"
|
| 79 |
+
|
| 80 |
+
# -----------------------------
|
| 81 |
+
# Ensure diff-gaussian-rasterization builds for current GPU
|
| 82 |
+
# -----------------------------
|
| 83 |
try:
|
| 84 |
import diff_gaussian_rasterization # noqa: F401
|
| 85 |
except ImportError:
|
| 86 |
print("Installing diff-gaussian-rasterization (compiling for detected CUDA arch)...")
|
| 87 |
env = os.environ.copy()
|
| 88 |
try:
|
| 89 |
+
import torch as _torch
|
| 90 |
+
if _torch.cuda.is_available():
|
| 91 |
+
maj, minr = _torch.cuda.get_device_capability()
|
| 92 |
arch = f"{maj}.{minr}" # e.g., "9.0" on H100/H200, "8.0" on A100
|
| 93 |
env["TORCH_CUDA_ARCH_LIST"] = f"{arch}+PTX"
|
| 94 |
else:
|
| 95 |
# Build stage may not see a GPU on HF Spaces: compile a cross-arch set
|
| 96 |
env["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6;8.9;9.0+PTX"
|
| 97 |
+
except Excep
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|