Spaces:
Running
on
Zero
Running
on
Zero
demo
Browse files- app.py +5 -3
- app_old.py +398 -0
app.py
CHANGED
|
@@ -351,7 +351,7 @@ def main():
|
|
| 351 |
input_path, multiview_path, output_path, turntable_path, ply_path = \
|
| 352 |
pipeline.generate_3d_head(image_path, auto_crop, guidance_scale, random_seed, num_steps)
|
| 353 |
|
| 354 |
-
return output_path, turntable_path, ply_path
|
| 355 |
|
| 356 |
gr.Markdown("## FaceLift: Single Image 3D Face Reconstruction.")
|
| 357 |
|
|
@@ -382,13 +382,15 @@ def main():
|
|
| 382 |
with gr.Column(scale=1):
|
| 383 |
out_recon = gr.Image(label="3D Reconstruction Views")
|
| 384 |
out_video = gr.PlayableVideo(label="Turntable Animation (360° View)", height=600)
|
| 385 |
-
|
|
|
|
|
|
|
| 386 |
|
| 387 |
# Run generation and display all outputs
|
| 388 |
run_btn.click(
|
| 389 |
fn=_generate_and_filter_outputs,
|
| 390 |
inputs=[in_image, auto_crop, guidance, seed, steps],
|
| 391 |
-
outputs=[out_recon, out_video, out_ply],
|
| 392 |
)
|
| 393 |
|
| 394 |
demo.queue(max_size=10)
|
|
|
|
| 351 |
input_path, multiview_path, output_path, turntable_path, ply_path = \
|
| 352 |
pipeline.generate_3d_head(image_path, auto_crop, guidance_scale, random_seed, num_steps)
|
| 353 |
|
| 354 |
+
return output_path, turntable_path, str(ply_path), ply_path
|
| 355 |
|
| 356 |
gr.Markdown("## FaceLift: Single Image 3D Face Reconstruction.")
|
| 357 |
|
|
|
|
| 382 |
with gr.Column(scale=1):
|
| 383 |
out_recon = gr.Image(label="3D Reconstruction Views")
|
| 384 |
out_video = gr.PlayableVideo(label="Turntable Animation (360° View)", height=600)
|
| 385 |
+
# Interactive 3D viewer for the generated Gaussian PLY (uses three.js under the hood)
|
| 386 |
+
out_viewer = gr.Model3D(label="Interactive 3D Viewer (.ply)", height=600)
|
| 387 |
+
out_ply = gr.File(label="Download 3D Model (.ply)")")
|
| 388 |
|
| 389 |
# Run generation and display all outputs
|
| 390 |
run_btn.click(
|
| 391 |
fn=_generate_and_filter_outputs,
|
| 392 |
inputs=[in_image, auto_crop, guidance, seed, steps],
|
| 393 |
+
outputs=[out_recon, out_video, out_viewer, out_ply],
|
| 394 |
)
|
| 395 |
|
| 396 |
demo.queue(max_size=10)
|
app_old.py
ADDED
|
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (C) 2025, FaceLift Research Group
|
| 2 |
+
# https://github.com/weijielyu/FaceLift
|
| 3 |
+
#
|
| 4 |
+
# This software is free for non-commercial, research and evaluation use
|
| 5 |
+
# under the terms of the LICENSE.md file.
|
| 6 |
+
#
|
| 7 |
+
# For inquiries contact: [email protected]
|
| 8 |
+
|
| 9 |
+
"""
|
| 10 |
+
FaceLift: Single Image 3D Face Reconstruction
|
| 11 |
+
Generates 3D head models from single images using multi-view diffusion and GS-LRM.
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
# Disable HF fast transfer if hf_transfer is not installed
|
| 15 |
+
# This MUST be done before importing huggingface_hub
|
| 16 |
+
import os
|
| 17 |
+
if os.environ.get("HF_HUB_ENABLE_HF_TRANSFER") == "1":
|
| 18 |
+
try:
|
| 19 |
+
import hf_transfer
|
| 20 |
+
except ImportError:
|
| 21 |
+
print("⚠️ hf_transfer not available, disabling fast download")
|
| 22 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0"
|
| 23 |
+
|
| 24 |
+
import json
|
| 25 |
+
from pathlib import Path
|
| 26 |
+
from datetime import datetime
|
| 27 |
+
import uuid
|
| 28 |
+
import time
|
| 29 |
+
import shutil
|
| 30 |
+
|
| 31 |
+
import gradio as gr
|
| 32 |
+
import numpy as np
|
| 33 |
+
import torch
|
| 34 |
+
import yaml
|
| 35 |
+
from easydict import EasyDict as edict
|
| 36 |
+
from einops import rearrange
|
| 37 |
+
from PIL import Image
|
| 38 |
+
from huggingface_hub import snapshot_download
|
| 39 |
+
import spaces
|
| 40 |
+
|
| 41 |
+
# Install diff-gaussian-rasterization at runtime (requires GPU)
|
| 42 |
+
import subprocess
|
| 43 |
+
import sys
|
| 44 |
+
|
| 45 |
+
# Outputs directory for generated files
|
| 46 |
+
OUTPUTS_DIR = Path.cwd() / "outputs"
|
| 47 |
+
OUTPUTS_DIR.mkdir(exist_ok=True)
|
| 48 |
+
|
| 49 |
+
# -----------------------------
|
| 50 |
+
# Ensure diff-gaussian-rasterization builds for current GPU
|
| 51 |
+
# -----------------------------
|
| 52 |
+
try:
|
| 53 |
+
import diff_gaussian_rasterization # noqa: F401
|
| 54 |
+
except ImportError:
|
| 55 |
+
print("Installing diff-gaussian-rasterization (compiling for detected CUDA arch)...")
|
| 56 |
+
env = os.environ.copy()
|
| 57 |
+
try:
|
| 58 |
+
import torch as _torch
|
| 59 |
+
if _torch.cuda.is_available():
|
| 60 |
+
maj, minr = _torch.cuda.get_device_capability()
|
| 61 |
+
arch = f"{maj}.{minr}" # e.g., "9.0" on H100/H200, "8.0" on A100
|
| 62 |
+
env["TORCH_CUDA_ARCH_LIST"] = f"{arch}+PTX"
|
| 63 |
+
else:
|
| 64 |
+
# Build stage may not see a GPU on HF Spaces: compile a cross-arch set
|
| 65 |
+
env["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6;8.9;9.0+PTX"
|
| 66 |
+
except Exception:
|
| 67 |
+
env["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6;8.9;9.0+PTX"
|
| 68 |
+
|
| 69 |
+
# (Optional) side-step allocator+NVML quirks in restrictive containers
|
| 70 |
+
env.setdefault("PYTORCH_NO_CUDA_MEMORY_CACHING", "1")
|
| 71 |
+
|
| 72 |
+
subprocess.check_call(
|
| 73 |
+
[sys.executable, "-m", "pip", "install",
|
| 74 |
+
"git+https://github.com/graphdeco-inria/diff-gaussian-rasterization"],
|
| 75 |
+
env=env,
|
| 76 |
+
)
|
| 77 |
+
import diff_gaussian_rasterization # noqa: F401
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
from gslrm.model.gaussians_renderer import render_turntable, imageseq2video
|
| 81 |
+
from mvdiffusion.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline
|
| 82 |
+
from utils_folder.face_utils import preprocess_image, preprocess_image_without_cropping
|
| 83 |
+
|
| 84 |
+
# HuggingFace repository configuration
|
| 85 |
+
HF_REPO_ID = "wlyu/OpenFaceLift"
|
| 86 |
+
|
| 87 |
+
def download_weights_from_hf() -> Path:
|
| 88 |
+
"""Download model weights from HuggingFace if not already present.
|
| 89 |
+
|
| 90 |
+
Returns:
|
| 91 |
+
Path to the downloaded repository
|
| 92 |
+
"""
|
| 93 |
+
workspace_dir = Path(__file__).parent
|
| 94 |
+
|
| 95 |
+
# Check if weights already exist locally
|
| 96 |
+
mvdiffusion_path = workspace_dir / "checkpoints/mvdiffusion/pipeckpts"
|
| 97 |
+
gslrm_path = workspace_dir / "checkpoints/gslrm/ckpt_0000000000021125.pt"
|
| 98 |
+
|
| 99 |
+
if mvdiffusion_path.exists() and gslrm_path.exists():
|
| 100 |
+
print("Using local model weights")
|
| 101 |
+
return workspace_dir
|
| 102 |
+
|
| 103 |
+
print(f"Downloading model weights from HuggingFace: {HF_REPO_ID}")
|
| 104 |
+
print("This may take a few minutes on first run...")
|
| 105 |
+
|
| 106 |
+
# Download to local directory
|
| 107 |
+
snapshot_download(
|
| 108 |
+
repo_id=HF_REPO_ID,
|
| 109 |
+
local_dir=str(workspace_dir / "checkpoints"),
|
| 110 |
+
local_dir_use_symlinks=False,
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
print("Model weights downloaded successfully!")
|
| 114 |
+
return workspace_dir
|
| 115 |
+
|
| 116 |
+
class FaceLiftPipeline:
|
| 117 |
+
"""Pipeline for FaceLift 3D head generation from single images."""
|
| 118 |
+
|
| 119 |
+
def __init__(self):
|
| 120 |
+
# Download weights from HuggingFace if needed
|
| 121 |
+
workspace_dir = download_weights_from_hf()
|
| 122 |
+
|
| 123 |
+
# Setup paths
|
| 124 |
+
self.output_dir = workspace_dir / "outputs"
|
| 125 |
+
self.examples_dir = workspace_dir / "examples"
|
| 126 |
+
self.output_dir.mkdir(exist_ok=True)
|
| 127 |
+
|
| 128 |
+
# Parameters
|
| 129 |
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 130 |
+
self.image_size = 512
|
| 131 |
+
self.camera_indices = [2, 1, 0, 5, 4, 3]
|
| 132 |
+
|
| 133 |
+
# Load models (keep on CPU for ZeroGPU compatibility)
|
| 134 |
+
print("Loading models...")
|
| 135 |
+
try:
|
| 136 |
+
self.mvdiffusion_pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained(
|
| 137 |
+
str(workspace_dir / "checkpoints/mvdiffusion/pipeckpts"),
|
| 138 |
+
torch_dtype=torch.float16,
|
| 139 |
+
)
|
| 140 |
+
# Don't move to device or enable xformers here - will be done in GPU-decorated function
|
| 141 |
+
self._models_on_gpu = False
|
| 142 |
+
|
| 143 |
+
with open(workspace_dir / "configs/gslrm.yaml", "r") as f:
|
| 144 |
+
config = edict(yaml.safe_load(f))
|
| 145 |
+
|
| 146 |
+
module_name, class_name = config.model.class_name.rsplit(".", 1)
|
| 147 |
+
module = __import__(module_name, fromlist=[class_name])
|
| 148 |
+
ModelClass = getattr(module, class_name)
|
| 149 |
+
|
| 150 |
+
self.gs_lrm_model = ModelClass(config)
|
| 151 |
+
checkpoint = torch.load(
|
| 152 |
+
workspace_dir / "checkpoints/gslrm/ckpt_0000000000021125.pt",
|
| 153 |
+
map_location="cpu"
|
| 154 |
+
)
|
| 155 |
+
# Filter out loss_calculator weights (training-only, not needed for inference)
|
| 156 |
+
state_dict = {k: v for k, v in checkpoint["model"].items()
|
| 157 |
+
if not k.startswith("loss_calculator.")}
|
| 158 |
+
self.gs_lrm_model.load_state_dict(state_dict)
|
| 159 |
+
# Keep on CPU initially - will move to GPU in decorated function
|
| 160 |
+
|
| 161 |
+
self.color_prompt_embedding = torch.load(
|
| 162 |
+
workspace_dir / "mvdiffusion/fixed_prompt_embeds_6view/clr_embeds.pt",
|
| 163 |
+
map_location="cpu"
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
with open(workspace_dir / "utils_folder/opencv_cameras.json", 'r') as f:
|
| 167 |
+
self.cameras_data = json.load(f)["frames"]
|
| 168 |
+
|
| 169 |
+
print("Models loaded successfully!")
|
| 170 |
+
except Exception as e:
|
| 171 |
+
print(f"Error loading models: {e}")
|
| 172 |
+
import traceback
|
| 173 |
+
traceback.print_exc()
|
| 174 |
+
raise
|
| 175 |
+
|
| 176 |
+
def _move_models_to_gpu(self):
|
| 177 |
+
"""Move models to GPU and enable optimizations. Called within @spaces.GPU context."""
|
| 178 |
+
if not self._models_on_gpu and torch.cuda.is_available():
|
| 179 |
+
print("Moving models to GPU...")
|
| 180 |
+
self.device = torch.device("cuda:0")
|
| 181 |
+
self.mvdiffusion_pipeline.to(self.device)
|
| 182 |
+
self.mvdiffusion_pipeline.unet.enable_xformers_memory_efficient_attention()
|
| 183 |
+
self.gs_lrm_model.to(self.device)
|
| 184 |
+
self.gs_lrm_model.eval() # Set to eval mode
|
| 185 |
+
self.color_prompt_embedding = self.color_prompt_embedding.to(self.device)
|
| 186 |
+
self._models_on_gpu = True
|
| 187 |
+
torch.cuda.empty_cache() # Clear cache after moving models
|
| 188 |
+
print("Models on GPU, xformers enabled!")
|
| 189 |
+
|
| 190 |
+
@spaces.GPU(duration=120)
|
| 191 |
+
def generate_3d_head(self, image_path, auto_crop=True, guidance_scale=3.0,
|
| 192 |
+
random_seed=4, num_steps=50):
|
| 193 |
+
"""Generate 3D head from single image."""
|
| 194 |
+
try:
|
| 195 |
+
# Move models to GPU now that we're in the GPU context
|
| 196 |
+
self._move_models_to_gpu()
|
| 197 |
+
# Setup output directory
|
| 198 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 199 |
+
output_dir = self.output_dir / timestamp
|
| 200 |
+
output_dir.mkdir(exist_ok=True)
|
| 201 |
+
|
| 202 |
+
# Preprocess input
|
| 203 |
+
original_img = np.array(Image.open(image_path))
|
| 204 |
+
input_image = preprocess_image(original_img) if auto_crop else \
|
| 205 |
+
preprocess_image_without_cropping(original_img)
|
| 206 |
+
|
| 207 |
+
if input_image.size != (self.image_size, self.image_size):
|
| 208 |
+
input_image = input_image.resize((self.image_size, self.image_size))
|
| 209 |
+
|
| 210 |
+
input_path = output_dir / "input.png"
|
| 211 |
+
input_image.save(input_path)
|
| 212 |
+
|
| 213 |
+
# Generate multi-view images
|
| 214 |
+
generator = torch.Generator(device=self.mvdiffusion_pipeline.unet.device)
|
| 215 |
+
generator.manual_seed(random_seed)
|
| 216 |
+
|
| 217 |
+
result = self.mvdiffusion_pipeline(
|
| 218 |
+
input_image, None,
|
| 219 |
+
prompt_embeds=self.color_prompt_embedding,
|
| 220 |
+
height=self.image_size,
|
| 221 |
+
width=self.image_size,
|
| 222 |
+
guidance_scale=guidance_scale,
|
| 223 |
+
num_images_per_prompt=1,
|
| 224 |
+
num_inference_steps=num_steps,
|
| 225 |
+
generator=generator,
|
| 226 |
+
eta=1.0,
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
selected_views = result.images[:6]
|
| 230 |
+
|
| 231 |
+
# Save multi-view composite
|
| 232 |
+
multiview_image = Image.new("RGB", (self.image_size * 6, self.image_size))
|
| 233 |
+
for i, view in enumerate(selected_views):
|
| 234 |
+
multiview_image.paste(view, (self.image_size * i, 0))
|
| 235 |
+
|
| 236 |
+
multiview_path = output_dir / "multiview.png"
|
| 237 |
+
multiview_image.save(multiview_path)
|
| 238 |
+
|
| 239 |
+
# Move diffusion model to CPU to free GPU memory for GS-LRM
|
| 240 |
+
print("Moving diffusion model to CPU to free memory...")
|
| 241 |
+
self.mvdiffusion_pipeline.to("cpu")
|
| 242 |
+
|
| 243 |
+
# Delete intermediate variables to free memory
|
| 244 |
+
del result, generator
|
| 245 |
+
torch.cuda.empty_cache()
|
| 246 |
+
torch.cuda.synchronize()
|
| 247 |
+
|
| 248 |
+
# Prepare 3D reconstruction input
|
| 249 |
+
view_arrays = [np.array(view) for view in selected_views]
|
| 250 |
+
lrm_input = torch.from_numpy(np.stack(view_arrays, axis=0)).float()
|
| 251 |
+
lrm_input = lrm_input[None].to(self.device) / 255.0
|
| 252 |
+
lrm_input = rearrange(lrm_input, "b v h w c -> b v c h w")
|
| 253 |
+
|
| 254 |
+
# Prepare camera parameters
|
| 255 |
+
selected_cameras = [self.cameras_data[i] for i in self.camera_indices]
|
| 256 |
+
fxfycxcy_list = [[c["fx"], c["fy"], c["cx"], c["cy"]] for c in selected_cameras]
|
| 257 |
+
c2w_list = [np.linalg.inv(np.array(c["w2c"])) for c in selected_cameras]
|
| 258 |
+
|
| 259 |
+
fxfycxcy = torch.from_numpy(np.stack(fxfycxcy_list, axis=0).astype(np.float32))
|
| 260 |
+
c2w = torch.from_numpy(np.stack(c2w_list, axis=0).astype(np.float32))
|
| 261 |
+
fxfycxcy = fxfycxcy[None].to(self.device)
|
| 262 |
+
c2w = c2w[None].to(self.device)
|
| 263 |
+
|
| 264 |
+
batch_indices = torch.stack([
|
| 265 |
+
torch.zeros(lrm_input.size(1)).long(),
|
| 266 |
+
torch.arange(lrm_input.size(1)).long(),
|
| 267 |
+
], dim=-1)[None].to(self.device)
|
| 268 |
+
|
| 269 |
+
batch = edict({
|
| 270 |
+
"image": lrm_input,
|
| 271 |
+
"c2w": c2w,
|
| 272 |
+
"fxfycxcy": fxfycxcy,
|
| 273 |
+
"index": batch_indices,
|
| 274 |
+
})
|
| 275 |
+
|
| 276 |
+
# Ensure GS-LRM model is on GPU
|
| 277 |
+
if next(self.gs_lrm_model.parameters()).device.type == "cpu":
|
| 278 |
+
print("Moving GS-LRM model to GPU...")
|
| 279 |
+
self.gs_lrm_model.to(self.device)
|
| 280 |
+
torch.cuda.empty_cache()
|
| 281 |
+
|
| 282 |
+
# Final memory cleanup before reconstruction
|
| 283 |
+
torch.cuda.empty_cache()
|
| 284 |
+
|
| 285 |
+
# Run 3D reconstruction
|
| 286 |
+
with torch.no_grad(), torch.autocast(enabled=True, device_type="cuda", dtype=torch.float16):
|
| 287 |
+
result = self.gs_lrm_model.forward(batch, create_visual=False, split_data=True)
|
| 288 |
+
|
| 289 |
+
comp_image = result.render[0].unsqueeze(0).detach()
|
| 290 |
+
gaussians = result.gaussians[0]
|
| 291 |
+
|
| 292 |
+
# Clear CUDA cache after reconstruction
|
| 293 |
+
torch.cuda.empty_cache()
|
| 294 |
+
|
| 295 |
+
# Save filtered gaussians
|
| 296 |
+
filtered_gaussians = gaussians.apply_all_filters(
|
| 297 |
+
cam_origins=None,
|
| 298 |
+
opacity_thres=0.04,
|
| 299 |
+
scaling_thres=0.2,
|
| 300 |
+
floater_thres=0.75,
|
| 301 |
+
crop_bbx=[-0.91, 0.91, -0.91, 0.91, -1.0, 1.0],
|
| 302 |
+
nearfar_percent=(0.0001, 1.0),
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
ply_path = output_dir / "gaussians.ply"
|
| 306 |
+
filtered_gaussians.save_ply(str(ply_path))
|
| 307 |
+
|
| 308 |
+
# Save output image
|
| 309 |
+
comp_image = rearrange(comp_image, "x v c h w -> (x h) (v w) c")
|
| 310 |
+
comp_image = (comp_image.cpu().numpy() * 255.0).clip(0, 255).astype(np.uint8)
|
| 311 |
+
output_path = output_dir / "output.png"
|
| 312 |
+
Image.fromarray(comp_image).save(output_path)
|
| 313 |
+
|
| 314 |
+
# Generate turntable video
|
| 315 |
+
turntable_resolution = 512
|
| 316 |
+
num_turntable_views = 180
|
| 317 |
+
turntable_frames = render_turntable(gaussians, rendering_resolution=turntable_resolution,
|
| 318 |
+
num_views=num_turntable_views)
|
| 319 |
+
turntable_frames = rearrange(turntable_frames, "h (v w) c -> v h w c", v=num_turntable_views)
|
| 320 |
+
turntable_frames = np.ascontiguousarray(turntable_frames)
|
| 321 |
+
|
| 322 |
+
turntable_path = output_dir / "turntable.mp4"
|
| 323 |
+
imageseq2video(turntable_frames, str(turntable_path), fps=30)
|
| 324 |
+
|
| 325 |
+
# Final CUDA cache clear
|
| 326 |
+
torch.cuda.empty_cache()
|
| 327 |
+
|
| 328 |
+
return str(input_path), str(multiview_path), str(output_path), \
|
| 329 |
+
str(turntable_path), str(ply_path)
|
| 330 |
+
|
| 331 |
+
except Exception as e:
|
| 332 |
+
import traceback
|
| 333 |
+
error_details = traceback.format_exc()
|
| 334 |
+
print(f"Error details:\n{error_details}")
|
| 335 |
+
raise gr.Error(f"Generation failed: {str(e)}")
|
| 336 |
+
|
| 337 |
+
def main():
|
| 338 |
+
"""Run the FaceLift application."""
|
| 339 |
+
pipeline = FaceLiftPipeline()
|
| 340 |
+
|
| 341 |
+
# Prepare examples (same as before)
|
| 342 |
+
examples = []
|
| 343 |
+
if pipeline.examples_dir.exists():
|
| 344 |
+
examples = [[str(f), True, 3.0, 4, 50] for f in sorted(pipeline.examples_dir.iterdir())
|
| 345 |
+
if f.suffix.lower() in {'.png', '.jpg', '.jpeg'}]
|
| 346 |
+
|
| 347 |
+
with gr.Blocks(title="FaceLift: Single Image 3D Face Reconstruction") as demo:
|
| 348 |
+
|
| 349 |
+
# Wrapper to return outputs for display
|
| 350 |
+
def _generate_and_filter_outputs(image_path, auto_crop, guidance_scale, random_seed, num_steps):
|
| 351 |
+
input_path, multiview_path, output_path, turntable_path, ply_path = \
|
| 352 |
+
pipeline.generate_3d_head(image_path, auto_crop, guidance_scale, random_seed, num_steps)
|
| 353 |
+
|
| 354 |
+
return output_path, turntable_path, ply_path
|
| 355 |
+
|
| 356 |
+
gr.Markdown("## FaceLift: Single Image 3D Face Reconstruction.")
|
| 357 |
+
|
| 358 |
+
gr.Markdown("""
|
| 359 |
+
### 💡 Tips for Best Results
|
| 360 |
+
- Works best with near-frontal portrait images
|
| 361 |
+
- The provided checkpoints were not trained with accessories (glasses, hats, etc.). Portraits containing accessories may produce suboptimal results.
|
| 362 |
+
- If face detection fails, try disabling auto-cropping and manually crop to square
|
| 363 |
+
""")
|
| 364 |
+
|
| 365 |
+
with gr.Row():
|
| 366 |
+
with gr.Column(scale=1):
|
| 367 |
+
in_image = gr.Image(type="filepath", label="Input Portrait Image")
|
| 368 |
+
auto_crop = gr.Checkbox(value=True, label="Auto Cropping")
|
| 369 |
+
guidance = gr.Slider(1.0, 10.0, 3.0, step=0.1, label="Guidance Scale")
|
| 370 |
+
seed = gr.Number(value=4, label="Random Seed")
|
| 371 |
+
steps = gr.Slider(10, 100, 50, step=5, label="Generation Steps")
|
| 372 |
+
run_btn = gr.Button("Generate 3D Head", variant="primary")
|
| 373 |
+
|
| 374 |
+
# Examples (match input signature)
|
| 375 |
+
if examples:
|
| 376 |
+
gr.Examples(
|
| 377 |
+
examples=examples,
|
| 378 |
+
inputs=[in_image, auto_crop, guidance, seed, steps],
|
| 379 |
+
examples_per_page=10,
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
with gr.Column(scale=1):
|
| 383 |
+
out_recon = gr.Image(label="3D Reconstruction Views")
|
| 384 |
+
out_video = gr.PlayableVideo(label="Turntable Animation (360° View)", height=600)
|
| 385 |
+
out_ply = gr.File(label="Download 3D Model (.ply)")
|
| 386 |
+
|
| 387 |
+
# Run generation and display all outputs
|
| 388 |
+
run_btn.click(
|
| 389 |
+
fn=_generate_and_filter_outputs,
|
| 390 |
+
inputs=[in_image, auto_crop, guidance, seed, steps],
|
| 391 |
+
outputs=[out_recon, out_video, out_ply],
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
demo.queue(max_size=10)
|
| 395 |
+
demo.launch(share=True, server_name="0.0.0.0", server_port=7860, show_error=True)
|
| 396 |
+
|
| 397 |
+
if __name__ == "__main__":
|
| 398 |
+
main()
|