# Copyright (C) 2025, FaceLift Research Group # https://github.com/weijielyu/FaceLift # # This software is free for non-commercial, research and evaluation use # under the terms of the LICENSE.md file. # # For inquiries contact: wlyu3@ucmerced.edu """ FaceLift: Single Image 3D Face Reconstruction Generates 3D head models from single images using multi-view diffusion and GS-LRM. """ import json from pathlib import Path from datetime import datetime import uuid import time import shutil import gradio as gr import numpy as np import torch import yaml from easydict import EasyDict as edict from einops import rearrange from PIL import Image from huggingface_hub import snapshot_download import spaces # Install diff-gaussian-rasterization at runtime (requires GPU) import subprocess import sys import os # Outputs directory for generated files OUTPUTS_DIR = Path.cwd() / "outputs" OUTPUTS_DIR.mkdir(exist_ok=True) # Copy viewer.js to outputs so it can be served as a static file VIEWER_JS_SRC = Path(__file__).parent / "viewer.js" if VIEWER_JS_SRC.exists(): shutil.copy2(VIEWER_JS_SRC, OUTPUTS_DIR / "viewer.js") print(f"✓ Copied viewer.js to {OUTPUTS_DIR / 'viewer.js'}") # ----------------------------- # Ensure diff-gaussian-rasterization builds for current GPU # ----------------------------- try: import diff_gaussian_rasterization # noqa: F401 except ImportError: print("Installing diff-gaussian-rasterization (compiling for detected CUDA arch)...") env = os.environ.copy() try: import torch as _torch if _torch.cuda.is_available(): maj, minr = _torch.cuda.get_device_capability() arch = f"{maj}.{minr}" # e.g., "9.0" on H100/H200, "8.0" on A100 env["TORCH_CUDA_ARCH_LIST"] = f"{arch}+PTX" else: # Build stage may not see a GPU on HF Spaces: compile a cross-arch set env["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6;8.9;9.0+PTX" except Exception: env["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6;8.9;9.0+PTX" # (Optional) side-step allocator+NVML quirks in restrictive containers env.setdefault("PYTORCH_NO_CUDA_MEMORY_CACHING", "1") subprocess.check_call( [sys.executable, "-m", "pip", "install", "git+https://github.com/graphdeco-inria/diff-gaussian-rasterization"], env=env, ) import diff_gaussian_rasterization # noqa: F401 from gslrm.model.gaussians_renderer import render_turntable, imageseq2video from mvdiffusion.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline from utils_folder.face_utils import preprocess_image, preprocess_image_without_cropping # HuggingFace repository configuration HF_REPO_ID = "wlyu/OpenFaceLift" def download_weights_from_hf() -> Path: """Download model weights from HuggingFace if not already present. Returns: Path to the downloaded repository """ workspace_dir = Path(__file__).parent # Check if weights already exist locally mvdiffusion_path = workspace_dir / "checkpoints/mvdiffusion/pipeckpts" gslrm_path = workspace_dir / "checkpoints/gslrm/ckpt_0000000000021125.pt" if mvdiffusion_path.exists() and gslrm_path.exists(): print("Using local model weights") return workspace_dir print(f"Downloading model weights from HuggingFace: {HF_REPO_ID}") print("This may take a few minutes on first run...") # Disable fast transfer if hf_transfer is not installed if os.environ.get("HF_HUB_ENABLE_HF_TRANSFER") == "1": try: import hf_transfer except ImportError: print("hf_transfer not available, disabling fast download") os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0" # Download to local directory snapshot_download( repo_id=HF_REPO_ID, local_dir=str(workspace_dir / "checkpoints"), local_dir_use_symlinks=False, ) print("Model weights downloaded successfully!") return workspace_dir class FaceLiftPipeline: """Pipeline for FaceLift 3D head generation from single images.""" def __init__(self): # Download weights from HuggingFace if needed workspace_dir = download_weights_from_hf() # Setup paths self.output_dir = workspace_dir / "outputs" self.examples_dir = workspace_dir / "examples" self.output_dir.mkdir(exist_ok=True) # Parameters self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.image_size = 512 self.camera_indices = [2, 1, 0, 5, 4, 3] # Load models (keep on CPU for ZeroGPU compatibility) print("Loading models...") try: self.mvdiffusion_pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained( str(workspace_dir / "checkpoints/mvdiffusion/pipeckpts"), torch_dtype=torch.float16, ) # Don't move to device or enable xformers here - will be done in GPU-decorated function self._models_on_gpu = False with open(workspace_dir / "configs/gslrm.yaml", "r") as f: config = edict(yaml.safe_load(f)) module_name, class_name = config.model.class_name.rsplit(".", 1) module = __import__(module_name, fromlist=[class_name]) ModelClass = getattr(module, class_name) self.gs_lrm_model = ModelClass(config) checkpoint = torch.load( workspace_dir / "checkpoints/gslrm/ckpt_0000000000021125.pt", map_location="cpu" ) # Filter out loss_calculator weights (training-only, not needed for inference) state_dict = {k: v for k, v in checkpoint["model"].items() if not k.startswith("loss_calculator.")} self.gs_lrm_model.load_state_dict(state_dict) # Keep on CPU initially - will move to GPU in decorated function self.color_prompt_embedding = torch.load( workspace_dir / "mvdiffusion/fixed_prompt_embeds_6view/clr_embeds.pt", map_location="cpu" ) with open(workspace_dir / "utils_folder/opencv_cameras.json", 'r') as f: self.cameras_data = json.load(f)["frames"] print("Models loaded successfully!") except Exception as e: print(f"Error loading models: {e}") import traceback traceback.print_exc() raise def _move_models_to_gpu(self): """Move models to GPU and enable optimizations. Called within @spaces.GPU context.""" if not self._models_on_gpu and torch.cuda.is_available(): print("Moving models to GPU...") self.device = torch.device("cuda:0") self.mvdiffusion_pipeline.to(self.device) self.mvdiffusion_pipeline.unet.enable_xformers_memory_efficient_attention() self.gs_lrm_model.to(self.device) self.gs_lrm_model.eval() # Set to eval mode self.color_prompt_embedding = self.color_prompt_embedding.to(self.device) self._models_on_gpu = True torch.cuda.empty_cache() # Clear cache after moving models print("Models on GPU, xformers enabled!") @spaces.GPU(duration=120) def generate_3d_head(self, image_path, auto_crop=True, guidance_scale=3.0, random_seed=4, num_steps=50): """Generate 3D head from single image.""" try: # Move models to GPU now that we're in the GPU context self._move_models_to_gpu() # Setup output directory timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") output_dir = self.output_dir / timestamp output_dir.mkdir(exist_ok=True) # Preprocess input original_img = np.array(Image.open(image_path)) input_image = preprocess_image(original_img) if auto_crop else \ preprocess_image_without_cropping(original_img) if input_image.size != (self.image_size, self.image_size): input_image = input_image.resize((self.image_size, self.image_size)) input_path = output_dir / "input.png" input_image.save(input_path) # Generate multi-view images generator = torch.Generator(device=self.mvdiffusion_pipeline.unet.device) generator.manual_seed(random_seed) result = self.mvdiffusion_pipeline( input_image, None, prompt_embeds=self.color_prompt_embedding, height=self.image_size, width=self.image_size, guidance_scale=guidance_scale, num_images_per_prompt=1, num_inference_steps=num_steps, generator=generator, eta=1.0, ) selected_views = result.images[:6] # Save multi-view composite multiview_image = Image.new("RGB", (self.image_size * 6, self.image_size)) for i, view in enumerate(selected_views): multiview_image.paste(view, (self.image_size * i, 0)) multiview_path = output_dir / "multiview.png" multiview_image.save(multiview_path) # Move diffusion model to CPU to free GPU memory for GS-LRM print("Moving diffusion model to CPU to free memory...") self.mvdiffusion_pipeline.to("cpu") # Delete intermediate variables to free memory del result, generator torch.cuda.empty_cache() torch.cuda.synchronize() # Prepare 3D reconstruction input view_arrays = [np.array(view) for view in selected_views] lrm_input = torch.from_numpy(np.stack(view_arrays, axis=0)).float() lrm_input = lrm_input[None].to(self.device) / 255.0 lrm_input = rearrange(lrm_input, "b v h w c -> b v c h w") # Prepare camera parameters selected_cameras = [self.cameras_data[i] for i in self.camera_indices] fxfycxcy_list = [[c["fx"], c["fy"], c["cx"], c["cy"]] for c in selected_cameras] c2w_list = [np.linalg.inv(np.array(c["w2c"])) for c in selected_cameras] fxfycxcy = torch.from_numpy(np.stack(fxfycxcy_list, axis=0).astype(np.float32)) c2w = torch.from_numpy(np.stack(c2w_list, axis=0).astype(np.float32)) fxfycxcy = fxfycxcy[None].to(self.device) c2w = c2w[None].to(self.device) batch_indices = torch.stack([ torch.zeros(lrm_input.size(1)).long(), torch.arange(lrm_input.size(1)).long(), ], dim=-1)[None].to(self.device) batch = edict({ "image": lrm_input, "c2w": c2w, "fxfycxcy": fxfycxcy, "index": batch_indices, }) # Ensure GS-LRM model is on GPU if next(self.gs_lrm_model.parameters()).device.type == "cpu": print("Moving GS-LRM model to GPU...") self.gs_lrm_model.to(self.device) torch.cuda.empty_cache() # Final memory cleanup before reconstruction torch.cuda.empty_cache() # Run 3D reconstruction with torch.no_grad(), torch.autocast(enabled=True, device_type="cuda", dtype=torch.float16): result = self.gs_lrm_model.forward(batch, create_visual=False, split_data=True) comp_image = result.render[0].unsqueeze(0).detach() gaussians = result.gaussians[0] # Clear CUDA cache after reconstruction torch.cuda.empty_cache() # Save filtered gaussians filtered_gaussians = gaussians.apply_all_filters( cam_origins=None, opacity_thres=0.04, scaling_thres=0.2, floater_thres=0.75, crop_bbx=[-0.91, 0.91, -0.91, 0.91, -1.0, 1.0], nearfar_percent=(0.0001, 1.0), ) ply_path = output_dir / "gaussians.ply" filtered_gaussians.save_ply(str(ply_path)) # Save output image comp_image = rearrange(comp_image, "x v c h w -> (x h) (v w) c") comp_image = (comp_image.cpu().numpy() * 255.0).clip(0, 255).astype(np.uint8) output_path = output_dir / "output.png" Image.fromarray(comp_image).save(output_path) # Generate turntable video turntable_resolution = 512 num_turntable_views = 180 turntable_frames = render_turntable(gaussians, rendering_resolution=turntable_resolution, num_views=num_turntable_views) turntable_frames = rearrange(turntable_frames, "h (v w) c -> v h w c", v=num_turntable_views) turntable_frames = np.ascontiguousarray(turntable_frames) turntable_path = output_dir / "turntable.mp4" imageseq2video(turntable_frames, str(turntable_path), fps=30) # Final CUDA cache clear torch.cuda.empty_cache() return str(input_path), str(multiview_path), str(output_path), \ str(turntable_path), str(ply_path) except Exception as e: import traceback error_details = traceback.format_exc() print(f"Error details:\n{error_details}") raise gr.Error(f"Generation failed: {str(e)}") # Create viewer HTML file that can be served by Gradio def create_splat_viewer_html(ply_url: str, viewer_js_url: str, viewer_id: str) -> str: """Create a standalone HTML file with embedded viewer for the PLY file.""" # Read viewer.js content viewer_js_path = Path(__file__).parent / "viewer.js" viewer_js_content = viewer_js_path.read_text() if viewer_js_path.exists() else "console.error('viewer.js not found');" # Create HTML file in outputs directory output_dir = Path(ply_url.replace("/file=", "").rsplit("/", 1)[0]) viewer_html_path = output_dir / f"viewer_{viewer_id}.html" html_content = f""" 3D Gaussian Splat Viewer
Loading 3D Viewer...
Controls: Drag: Rotate | Scroll: Zoom | Right-drag: Pan
""" # Write HTML file viewer_html_path.write_text(html_content) # Return iframe that loads this HTML file viewer_html_url = f"/file={viewer_html_path}" return f"""

Open in new tab for better performance

""" def main(): """Run the FaceLift application.""" pipeline = FaceLiftPipeline() # Prepare examples (same as before) examples = [] if pipeline.examples_dir.exists(): examples = [[str(f), True, 3.0, 4, 50] for f in sorted(pipeline.examples_dir.iterdir()) if f.suffix.lower() in {'.png', '.jpg', '.jpeg'}] with gr.Blocks(title="FaceLift: Single Image 3D Face Reconstruction") as demo: # Wrapper to return outputs for display def _generate_and_filter_outputs(image_path, auto_crop, guidance_scale, random_seed, num_steps): input_path, multiview_path, output_path, turntable_path, ply_path = \ pipeline.generate_3d_head(image_path, auto_crop, guidance_scale, random_seed, num_steps) # Create Gradio-accessible URL for the PLY file ply_url = f"/file={ply_path}" # viewer.js is in the outputs directory viewer_js_url = f"/file={OUTPUTS_DIR}/viewer.js" # Generate unique viewer ID viewer_id = str(uuid.uuid4())[:8] viewer_html = create_splat_viewer_html(ply_url, viewer_js_url, viewer_id) # Debug info showing the paths debug_info = f"PLY Path: {ply_path}\nPLY URL: {ply_url}\nViewer JS URL: {viewer_js_url}\nFile exists: {Path(ply_path).exists()}\nViewer ID: {viewer_id}" return viewer_html, output_path, turntable_path, ply_path, debug_info gr.Markdown("## FaceLift: Single Image 3D Face Reconstruction.") gr.Markdown(""" ### 💡 Tips for Best Results - Works best with near-frontal portrait images - The provided checkpoints were not trained with accessories (glasses, hats, etc.). Portraits containing accessories may produce suboptimal results. - If face detection fails, try disabling auto-cropping and manually crop to square """) with gr.Row(): with gr.Column(scale=1): in_image = gr.Image(type="filepath", label="Input Portrait Image") auto_crop = gr.Checkbox(value=True, label="Auto Cropping") guidance = gr.Slider(1.0, 10.0, 3.0, step=0.1, label="Guidance Scale") seed = gr.Number(value=4, label="Random Seed") steps = gr.Slider(10, 100, 50, step=5, label="Generation Steps") run_btn = gr.Button("Generate 3D Head", variant="primary") # Examples (match input signature) if examples: gr.Examples( examples=examples, inputs=[in_image, auto_crop, guidance, seed, steps], examples_per_page=10, ) with gr.Column(scale=1): out_viewer = gr.HTML(label="🎮 Interactive 3D Viewer") out_debug = gr.Textbox(label="🔍 Debug Info", lines=3, visible=True) out_recon = gr.Image(label="3D Reconstruction Views") out_video = gr.PlayableVideo(label="Turntable Animation (360° View)", height=400) out_ply = gr.File(label="Download 3D Model (.ply)") gr.Markdown(""" **💡 Controls:** Drag to rotate | Scroll to zoom | Right-drag to pan *Interactive viewer powered by [antimatter15/splat](https://github.com/antimatter15/splat)* """) # Run generation and display all outputs run_btn.click( fn=_generate_and_filter_outputs, inputs=[in_image, auto_crop, guidance, seed, steps], outputs=[out_viewer, out_recon, out_video, out_ply, out_debug], ) demo.queue(max_size=10) demo.launch(share=True, server_name="0.0.0.0", server_port=7860, show_error=True) if __name__ == "__main__": main()