# Copyright (C) 2025, FaceLift Research Group # https://github.com/weijielyu/FaceLift # # This software is free for non-commercial, research and evaluation use # under the terms of the LICENSE.md file. # # For inquiries contact: wlyu3@ucmerced.edu """ FaceLift: Single Image 3D Face Reconstruction Generates 3D head models from single images using multi-view diffusion and GS-LRM. """ # Disable HF fast transfer if hf_transfer is not installed # This MUST be done before importing huggingface_hub import os if os.environ.get("HF_HUB_ENABLE_HF_TRANSFER") == "1": try: import hf_transfer except ImportError: print("⚠️ hf_transfer not available, disabling fast download") os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0" import json from pathlib import Path from datetime import datetime import uuid import time import shutil import gradio as gr import numpy as np import torch import yaml from easydict import EasyDict as edict from einops import rearrange from PIL import Image from huggingface_hub import snapshot_download import spaces # Install diff-gaussian-rasterization at runtime (requires GPU) import subprocess import sys # Outputs directory for generated files OUTPUTS_DIR = Path.cwd() / "outputs" OUTPUTS_DIR.mkdir(exist_ok=True) # ----------------------------- # Ensure diff-gaussian-rasterization builds for current GPU # ----------------------------- try: import diff_gaussian_rasterization # noqa: F401 except ImportError: print("Installing diff-gaussian-rasterization (compiling for detected CUDA arch)...") env = os.environ.copy() try: import torch as _torch if _torch.cuda.is_available(): maj, minr = _torch.cuda.get_device_capability() arch = f"{maj}.{minr}" # e.g., "9.0" on H100/H200, "8.0" on A100 env["TORCH_CUDA_ARCH_LIST"] = f"{arch}+PTX" else: # Build stage may not see a GPU on HF Spaces: compile a cross-arch set env["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6;8.9;9.0+PTX" except Exception: env["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6;8.9;9.0+PTX" # (Optional) side-step allocator+NVML quirks in restrictive containers env.setdefault("PYTORCH_NO_CUDA_MEMORY_CACHING", "1") subprocess.check_call( [sys.executable, "-m", "pip", "install", "git+https://github.com/graphdeco-inria/diff-gaussian-rasterization"], env=env, ) import diff_gaussian_rasterization # noqa: F401 from gslrm.model.gaussians_renderer import render_turntable, imageseq2video from mvdiffusion.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline from utils_folder.face_utils import preprocess_image, preprocess_image_without_cropping # HuggingFace repository configuration HF_REPO_ID = "wlyu/OpenFaceLift" def download_weights_from_hf() -> Path: """Download model weights from HuggingFace if not already present. Returns: Path to the downloaded repository """ workspace_dir = Path(__file__).parent # Check if weights already exist locally mvdiffusion_path = workspace_dir / "checkpoints/mvdiffusion/pipeckpts" gslrm_path = workspace_dir / "checkpoints/gslrm/ckpt_0000000000021125.pt" if mvdiffusion_path.exists() and gslrm_path.exists(): print("Using local model weights") return workspace_dir print(f"Downloading model weights from HuggingFace: {HF_REPO_ID}") print("This may take a few minutes on first run...") # Download to local directory snapshot_download( repo_id=HF_REPO_ID, local_dir=str(workspace_dir / "checkpoints"), local_dir_use_symlinks=False, ) print("Model weights downloaded successfully!") return workspace_dir class FaceLiftPipeline: """Pipeline for FaceLift 3D head generation from single images.""" def __init__(self): # Download weights from HuggingFace if needed workspace_dir = download_weights_from_hf() # Setup paths self.output_dir = workspace_dir / "outputs" self.examples_dir = workspace_dir / "examples" self.output_dir.mkdir(exist_ok=True) # Parameters self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.image_size = 512 self.camera_indices = [2, 1, 0, 5, 4, 3] # Load models (keep on CPU for ZeroGPU compatibility) print("Loading models...") try: self.mvdiffusion_pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained( str(workspace_dir / "checkpoints/mvdiffusion/pipeckpts"), torch_dtype=torch.float16, ) # Don't move to device or enable xformers here - will be done in GPU-decorated function self._models_on_gpu = False with open(workspace_dir / "configs/gslrm.yaml", "r") as f: config = edict(yaml.safe_load(f)) module_name, class_name = config.model.class_name.rsplit(".", 1) module = __import__(module_name, fromlist=[class_name]) ModelClass = getattr(module, class_name) self.gs_lrm_model = ModelClass(config) checkpoint = torch.load( workspace_dir / "checkpoints/gslrm/ckpt_0000000000021125.pt", map_location="cpu" ) # Filter out loss_calculator weights (training-only, not needed for inference) state_dict = {k: v for k, v in checkpoint["model"].items() if not k.startswith("loss_calculator.")} self.gs_lrm_model.load_state_dict(state_dict) # Keep on CPU initially - will move to GPU in decorated function self.color_prompt_embedding = torch.load( workspace_dir / "mvdiffusion/fixed_prompt_embeds_6view/clr_embeds.pt", map_location="cpu" ) with open(workspace_dir / "utils_folder/opencv_cameras.json", 'r') as f: self.cameras_data = json.load(f)["frames"] print("Models loaded successfully!") except Exception as e: print(f"Error loading models: {e}") import traceback traceback.print_exc() raise def _move_models_to_gpu(self): """Move models to GPU and enable optimizations. Called within @spaces.GPU context.""" if not self._models_on_gpu and torch.cuda.is_available(): print("Moving models to GPU...") self.device = torch.device("cuda:0") self.mvdiffusion_pipeline.to(self.device) self.mvdiffusion_pipeline.unet.enable_xformers_memory_efficient_attention() self.gs_lrm_model.to(self.device) self.gs_lrm_model.eval() # Set to eval mode self.color_prompt_embedding = self.color_prompt_embedding.to(self.device) self._models_on_gpu = True torch.cuda.empty_cache() # Clear cache after moving models print("Models on GPU, xformers enabled!") @spaces.GPU(duration=120) def generate_3d_head(self, image_path, auto_crop=True, guidance_scale=3.0, random_seed=4, num_steps=50): """Generate 3D head from single image.""" try: # Move models to GPU now that we're in the GPU context self._move_models_to_gpu() # Setup output directory timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") output_dir = self.output_dir / timestamp output_dir.mkdir(exist_ok=True) # Preprocess input original_img = np.array(Image.open(image_path)) input_image = preprocess_image(original_img) if auto_crop else \ preprocess_image_without_cropping(original_img) if input_image.size != (self.image_size, self.image_size): input_image = input_image.resize((self.image_size, self.image_size)) input_path = output_dir / "input.png" input_image.save(input_path) # Generate multi-view images generator = torch.Generator(device=self.mvdiffusion_pipeline.unet.device) generator.manual_seed(random_seed) result = self.mvdiffusion_pipeline( input_image, None, prompt_embeds=self.color_prompt_embedding, height=self.image_size, width=self.image_size, guidance_scale=guidance_scale, num_images_per_prompt=1, num_inference_steps=num_steps, generator=generator, eta=1.0, ) selected_views = result.images[:6] # Save multi-view composite multiview_image = Image.new("RGB", (self.image_size * 6, self.image_size)) for i, view in enumerate(selected_views): multiview_image.paste(view, (self.image_size * i, 0)) multiview_path = output_dir / "multiview.png" multiview_image.save(multiview_path) # Move diffusion model to CPU to free GPU memory for GS-LRM print("Moving diffusion model to CPU to free memory...") self.mvdiffusion_pipeline.to("cpu") # Delete intermediate variables to free memory del result, generator torch.cuda.empty_cache() torch.cuda.synchronize() # Prepare 3D reconstruction input view_arrays = [np.array(view) for view in selected_views] lrm_input = torch.from_numpy(np.stack(view_arrays, axis=0)).float() lrm_input = lrm_input[None].to(self.device) / 255.0 lrm_input = rearrange(lrm_input, "b v h w c -> b v c h w") # Prepare camera parameters selected_cameras = [self.cameras_data[i] for i in self.camera_indices] fxfycxcy_list = [[c["fx"], c["fy"], c["cx"], c["cy"]] for c in selected_cameras] c2w_list = [np.linalg.inv(np.array(c["w2c"])) for c in selected_cameras] fxfycxcy = torch.from_numpy(np.stack(fxfycxcy_list, axis=0).astype(np.float32)) c2w = torch.from_numpy(np.stack(c2w_list, axis=0).astype(np.float32)) fxfycxcy = fxfycxcy[None].to(self.device) c2w = c2w[None].to(self.device) batch_indices = torch.stack([ torch.zeros(lrm_input.size(1)).long(), torch.arange(lrm_input.size(1)).long(), ], dim=-1)[None].to(self.device) batch = edict({ "image": lrm_input, "c2w": c2w, "fxfycxcy": fxfycxcy, "index": batch_indices, }) # Ensure GS-LRM model is on GPU if next(self.gs_lrm_model.parameters()).device.type == "cpu": print("Moving GS-LRM model to GPU...") self.gs_lrm_model.to(self.device) torch.cuda.empty_cache() # Final memory cleanup before reconstruction torch.cuda.empty_cache() # Run 3D reconstruction with torch.no_grad(), torch.autocast(enabled=True, device_type="cuda", dtype=torch.float16): result = self.gs_lrm_model.forward(batch, create_visual=False, split_data=True) comp_image = result.render[0].unsqueeze(0).detach() gaussians = result.gaussians[0] # Clear CUDA cache after reconstruction torch.cuda.empty_cache() # Save filtered gaussians filtered_gaussians = gaussians.apply_all_filters( cam_origins=None, opacity_thres=0.04, scaling_thres=0.2, floater_thres=0.75, crop_bbx=[-0.91, 0.91, -0.91, 0.91, -1.0, 1.0], nearfar_percent=(0.0001, 1.0), ) ply_path = output_dir / "gaussians.ply" filtered_gaussians.save_ply(str(ply_path)) # Save output image comp_image = rearrange(comp_image, "x v c h w -> (x h) (v w) c") comp_image = (comp_image.cpu().numpy() * 255.0).clip(0, 255).astype(np.uint8) output_path = output_dir / "output.png" Image.fromarray(comp_image).save(output_path) # Generate turntable video turntable_resolution = 512 num_turntable_views = 180 turntable_frames = render_turntable(gaussians, rendering_resolution=turntable_resolution, num_views=num_turntable_views) turntable_frames = rearrange(turntable_frames, "h (v w) c -> v h w c", v=num_turntable_views) turntable_frames = np.ascontiguousarray(turntable_frames) turntable_path = output_dir / "turntable.mp4" imageseq2video(turntable_frames, str(turntable_path), fps=30) # Final CUDA cache clear torch.cuda.empty_cache() return str(input_path), str(multiview_path), str(output_path), \ str(turntable_path), str(ply_path) except Exception as e: import traceback error_details = traceback.format_exc() print(f"Error details:\n{error_details}") raise gr.Error(f"Generation failed: {str(e)}") def main(): """Run the FaceLift application.""" pipeline = FaceLiftPipeline() # Prepare examples (same as before) examples = [] if pipeline.examples_dir.exists(): examples = [[str(f), True, 3.0, 4, 50] for f in sorted(pipeline.examples_dir.iterdir()) if f.suffix.lower() in {'.png', '.jpg', '.jpeg'}] with gr.Blocks(title="FaceLift: Single Image 3D Face Reconstruction") as demo: # Wrapper to return outputs for display def _generate_and_filter_outputs(image_path, auto_crop, guidance_scale, random_seed, num_steps): input_path, multiview_path, output_path, turntable_path, ply_path = \ pipeline.generate_3d_head(image_path, auto_crop, guidance_scale, random_seed, num_steps) return output_path, turntable_path, ply_path gr.Markdown("## FaceLift: Single Image 3D Face Reconstruction.") gr.Markdown(""" ### 💡 Tips for Best Results - Works best with near-frontal portrait images - The provided checkpoints were not trained with accessories (glasses, hats, etc.). Portraits containing accessories may produce suboptimal results. - If face detection fails, try disabling auto-cropping and manually crop to square """) with gr.Row(): with gr.Column(scale=1): in_image = gr.Image(type="filepath", label="Input Portrait Image") auto_crop = gr.Checkbox(value=True, label="Auto Cropping") guidance = gr.Slider(1.0, 10.0, 3.0, step=0.1, label="Guidance Scale") seed = gr.Number(value=4, label="Random Seed") steps = gr.Slider(10, 100, 50, step=5, label="Generation Steps") run_btn = gr.Button("Generate 3D Head", variant="primary") # Examples (match input signature) if examples: gr.Examples( examples=examples, inputs=[in_image, auto_crop, guidance, seed, steps], examples_per_page=10, ) with gr.Column(scale=1): out_recon = gr.Image(label="3D Reconstruction Views") out_video = gr.PlayableVideo(label="Turntable Animation (360° View)", height=600) out_ply = gr.File(label="Download 3D Model (.ply)") # Run generation and display all outputs run_btn.click( fn=_generate_and_filter_outputs, inputs=[in_image, auto_crop, guidance, seed, steps], outputs=[out_recon, out_video, out_ply], ) demo.queue(max_size=10) demo.launch(share=True, server_name="0.0.0.0", server_port=7860, show_error=True) if __name__ == "__main__": main()