Spaces:
Runtime error
Runtime error
Upload 5 files
Browse files- app.py +65 -58
- cfg_base.yaml +46 -0
- cfg_small.yaml +46 -0
- cfg_tiny.yaml +46 -0
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -1,76 +1,69 @@
|
|
| 1 |
import os
|
| 2 |
import sys
|
| 3 |
-
import
|
| 4 |
-
import numpy as np
|
| 5 |
-
|
| 6 |
-
import cv2
|
| 7 |
import torch
|
|
|
|
| 8 |
import gradio as gr
|
|
|
|
| 9 |
from PIL import Image
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
# class ImageProcessor:
|
| 18 |
-
# def __init__(self, cfg_path):
|
| 19 |
-
# self.cfg_path = cfg_path
|
| 20 |
-
# self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 21 |
-
# self.model, self.vis_processor = self.load_model_and_processor()
|
| 22 |
-
|
| 23 |
-
# def load_model_and_processor(self):
|
| 24 |
-
# args = argparse.Namespace(cfg_path=self.cfg_path, options=None)
|
| 25 |
-
# cfg = Config(args)
|
| 26 |
-
# task = tasks.setup_task(cfg)
|
| 27 |
-
# model = task.build_model(cfg).to(self.device)
|
| 28 |
-
# vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
|
| 29 |
|
| 30 |
-
# return model, vis_processor
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
# open_cv_image = np.array(raw_image)
|
| 40 |
-
# # Convert RGB to BGR
|
| 41 |
-
# if len(open_cv_image.shape) == 3:
|
| 42 |
-
# # Convert RGB to BGR
|
| 43 |
-
# open_cv_image = open_cv_image[:, :, ::-1].copy()
|
| 44 |
-
# # Display the image using cv2
|
| 45 |
-
|
| 46 |
-
# image = self.vis_processor(raw_image).unsqueeze(0).to(self.device)
|
| 47 |
-
# output = self.model.generate({"image": image})
|
| 48 |
-
# pred = output["pred_str"][0]
|
| 49 |
-
# print(f'Prediction:\n{pred}')
|
| 50 |
-
|
| 51 |
-
# cv2.imshow('Original Image', open_cv_image)
|
| 52 |
-
# cv2.waitKey(0)
|
| 53 |
-
# cv2.destroyAllWindows()
|
| 54 |
-
|
| 55 |
-
# return pred
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
| 61 |
|
| 62 |
def gradio_reset():
|
| 63 |
return gr.update(value=None), gr.update(value=None)
|
| 64 |
|
| 65 |
|
| 66 |
if __name__ == "__main__":
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
#
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
with open("header.html", "r") as file:
|
| 76 |
header = file.read()
|
|
@@ -79,15 +72,29 @@ if __name__ == "__main__":
|
|
| 79 |
|
| 80 |
with gr.Row():
|
| 81 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
input_img = gr.Image(label=" ", interactive=True)
|
| 83 |
with gr.Row():
|
| 84 |
clear = gr.Button("Clear")
|
| 85 |
predict = gr.Button(value="Recognize", interactive=True, variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
with gr.Column():
|
| 87 |
gr.Button(value="Predict Latex:", interactive=False)
|
| 88 |
pred_latex = gr.Textbox(label='Latex', interactive=False)
|
| 89 |
|
| 90 |
clear.click(gradio_reset, inputs=None, outputs=[input_img, pred_latex])
|
| 91 |
-
predict.click(recognize_image, inputs=[input_img], outputs=[pred_latex])
|
| 92 |
|
| 93 |
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|
|
|
|
| 1 |
import os
|
| 2 |
import sys
|
| 3 |
+
import shutil
|
|
|
|
|
|
|
|
|
|
| 4 |
import torch
|
| 5 |
+
import argparse
|
| 6 |
import gradio as gr
|
| 7 |
+
import numpy as np
|
| 8 |
from PIL import Image
|
| 9 |
+
from huggingface_hub import snapshot_download
|
| 10 |
|
| 11 |
+
sys.path.insert(0, os.path.join(os.getcwd(), ".."))
|
| 12 |
+
from unimernet.common.config import Config
|
| 13 |
+
import unimernet.tasks as tasks
|
| 14 |
+
from unimernet.processors import load_processor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
|
|
|
| 16 |
|
| 17 |
+
def load_model_and_processor(cfg_path):
|
| 18 |
+
args = argparse.Namespace(cfg_path=cfg_path, options=None)
|
| 19 |
+
cfg = Config(args)
|
| 20 |
+
task = tasks.setup_task(cfg)
|
| 21 |
+
model = task.build_model(cfg)
|
| 22 |
+
vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
|
| 23 |
+
return model, vis_processor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
def recognize_image(input_img, model_type):
|
| 26 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 27 |
+
if model_type == "base":
|
| 28 |
+
model = model_base.to(device)
|
| 29 |
+
elif model_type == "small":
|
| 30 |
+
model = model_small.to(device)
|
| 31 |
+
else:
|
| 32 |
+
model = model_tiny.to(device)
|
| 33 |
+
|
| 34 |
+
if len(input_img.shape) == 3:
|
| 35 |
+
input_img = input_img[:, :, ::-1].copy()
|
| 36 |
|
| 37 |
+
img = Image.fromarray(input_img)
|
| 38 |
+
image = vis_processor(img).unsqueeze(0).to(device)
|
| 39 |
+
output = model.generate({"image": image})
|
| 40 |
+
latex_code = output["pred_str"][0]
|
| 41 |
+
return latex_code
|
| 42 |
|
| 43 |
def gradio_reset():
|
| 44 |
return gr.update(value=None), gr.update(value=None)
|
| 45 |
|
| 46 |
|
| 47 |
if __name__ == "__main__":
|
| 48 |
+
root_path = os.path.abspath(os.getcwd())
|
| 49 |
+
|
| 50 |
+
# == download weights ==
|
| 51 |
+
tiny_model_dir = snapshot_download('wanderkid/unimernet_tiny')
|
| 52 |
+
small_model_dir = snapshot_download('wanderkid/unimernet_small')
|
| 53 |
+
base_model_dir = snapshot_download('wanderkid/unimernet_base')
|
| 54 |
+
|
| 55 |
+
os.makedirs(os.path.join(root_path, "models"), exist_ok=True)
|
| 56 |
+
shutil.move(tiny_model_dir, os.path.join(root_path, "models", "unimernet_tiny"))
|
| 57 |
+
shutil.move(small_model_dir, os.path.join(root_path, "models", "unimernet_small"))
|
| 58 |
+
shutil.move(base_model_dir, os.path.join(root_path, "models", "unimernet_base"))
|
| 59 |
+
# == download weights ==
|
| 60 |
+
|
| 61 |
+
# == load model ==
|
| 62 |
+
model_tiny, vis_processor = load_model_and_processor(os.path.join(root_path, "cfg_tiny.yaml"))
|
| 63 |
+
model_small, vis_processor = load_model_and_processor(os.path.join(root_path, "cfg_small.yaml"))
|
| 64 |
+
model_base, vis_processor = load_model_and_processor(os.path.join(root_path, "cfg_base.yaml"))
|
| 65 |
+
print("== load all models ==")
|
| 66 |
+
# == load model ==
|
| 67 |
|
| 68 |
with open("header.html", "r") as file:
|
| 69 |
header = file.read()
|
|
|
|
| 72 |
|
| 73 |
with gr.Row():
|
| 74 |
with gr.Column():
|
| 75 |
+
model_type = gr.Radio(
|
| 76 |
+
choices=["tiny", "small", "base"],
|
| 77 |
+
value="tiny",
|
| 78 |
+
label="Model Type",
|
| 79 |
+
interactive=True,
|
| 80 |
+
)
|
| 81 |
input_img = gr.Image(label=" ", interactive=True)
|
| 82 |
with gr.Row():
|
| 83 |
clear = gr.Button("Clear")
|
| 84 |
predict = gr.Button(value="Recognize", interactive=True, variant="primary")
|
| 85 |
+
|
| 86 |
+
with gr.Accordion("Examples:"):
|
| 87 |
+
example_root = os.path.join(os.path.dirname(__file__), "examples")
|
| 88 |
+
gr.Examples(
|
| 89 |
+
examples=[os.path.join(example_root, _) for _ in os.listdir(example_root) if
|
| 90 |
+
_.endswith("png")],
|
| 91 |
+
inputs=input_img,
|
| 92 |
+
)
|
| 93 |
with gr.Column():
|
| 94 |
gr.Button(value="Predict Latex:", interactive=False)
|
| 95 |
pred_latex = gr.Textbox(label='Latex', interactive=False)
|
| 96 |
|
| 97 |
clear.click(gradio_reset, inputs=None, outputs=[input_img, pred_latex])
|
| 98 |
+
predict.click(recognize_image, inputs=[input_img, model_type], outputs=[pred_latex])
|
| 99 |
|
| 100 |
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|
cfg_base.yaml
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
arch: unimernet
|
| 3 |
+
model_type: unimernet
|
| 4 |
+
model_config:
|
| 5 |
+
model_name: ./models/unimernet_base
|
| 6 |
+
max_seq_len: 1536
|
| 7 |
+
|
| 8 |
+
load_pretrained: True
|
| 9 |
+
pretrained: './models/unimernet_base/unimernet_base.pth'
|
| 10 |
+
tokenizer_config:
|
| 11 |
+
path: ./models/unimernet_base
|
| 12 |
+
|
| 13 |
+
datasets:
|
| 14 |
+
formula_rec_eval:
|
| 15 |
+
vis_processor:
|
| 16 |
+
eval:
|
| 17 |
+
name: "formula_image_eval"
|
| 18 |
+
image_size:
|
| 19 |
+
- 192
|
| 20 |
+
- 672
|
| 21 |
+
|
| 22 |
+
run:
|
| 23 |
+
runner: runner_iter
|
| 24 |
+
task: unimernet_train
|
| 25 |
+
|
| 26 |
+
batch_size_train: 64
|
| 27 |
+
batch_size_eval: 64
|
| 28 |
+
num_workers: 1
|
| 29 |
+
|
| 30 |
+
iters_per_inner_epoch: 2000
|
| 31 |
+
max_iters: 60000
|
| 32 |
+
|
| 33 |
+
seed: 42
|
| 34 |
+
output_dir: "../output/demo"
|
| 35 |
+
|
| 36 |
+
evaluate: True
|
| 37 |
+
test_splits: [ "eval" ]
|
| 38 |
+
|
| 39 |
+
device: "cuda"
|
| 40 |
+
world_size: 1
|
| 41 |
+
dist_url: "env://"
|
| 42 |
+
distributed: True
|
| 43 |
+
distributed_type: ddp # or fsdp when train llm
|
| 44 |
+
|
| 45 |
+
generate_cfg:
|
| 46 |
+
temperature: 0.0
|
cfg_small.yaml
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
arch: unimernet
|
| 3 |
+
model_type: unimernet
|
| 4 |
+
model_config:
|
| 5 |
+
model_name: ./models/unimernet_small
|
| 6 |
+
max_seq_len: 1536
|
| 7 |
+
|
| 8 |
+
load_pretrained: True
|
| 9 |
+
pretrained: './models/unimernet_small/unimernet_small.pth'
|
| 10 |
+
tokenizer_config:
|
| 11 |
+
path: ./models/unimernet_small
|
| 12 |
+
|
| 13 |
+
datasets:
|
| 14 |
+
formula_rec_eval:
|
| 15 |
+
vis_processor:
|
| 16 |
+
eval:
|
| 17 |
+
name: "formula_image_eval"
|
| 18 |
+
image_size:
|
| 19 |
+
- 192
|
| 20 |
+
- 672
|
| 21 |
+
|
| 22 |
+
run:
|
| 23 |
+
runner: runner_iter
|
| 24 |
+
task: unimernet_train
|
| 25 |
+
|
| 26 |
+
batch_size_train: 64
|
| 27 |
+
batch_size_eval: 64
|
| 28 |
+
num_workers: 1
|
| 29 |
+
|
| 30 |
+
iters_per_inner_epoch: 2000
|
| 31 |
+
max_iters: 60000
|
| 32 |
+
|
| 33 |
+
seed: 42
|
| 34 |
+
output_dir: "../output/demo"
|
| 35 |
+
|
| 36 |
+
evaluate: True
|
| 37 |
+
test_splits: [ "eval" ]
|
| 38 |
+
|
| 39 |
+
device: "cuda"
|
| 40 |
+
world_size: 1
|
| 41 |
+
dist_url: "env://"
|
| 42 |
+
distributed: True
|
| 43 |
+
distributed_type: ddp # or fsdp when train llm
|
| 44 |
+
|
| 45 |
+
generate_cfg:
|
| 46 |
+
temperature: 0.0
|
cfg_tiny.yaml
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
arch: unimernet
|
| 3 |
+
model_type: unimernet
|
| 4 |
+
model_config:
|
| 5 |
+
model_name: ./models/unimernet_tiny
|
| 6 |
+
max_seq_len: 1536
|
| 7 |
+
|
| 8 |
+
load_pretrained: True
|
| 9 |
+
pretrained: './models/unimernet_tiny/unimernet_tiny.pth'
|
| 10 |
+
tokenizer_config:
|
| 11 |
+
path: ./models/unimernet_tiny
|
| 12 |
+
|
| 13 |
+
datasets:
|
| 14 |
+
formula_rec_eval:
|
| 15 |
+
vis_processor:
|
| 16 |
+
eval:
|
| 17 |
+
name: "formula_image_eval"
|
| 18 |
+
image_size:
|
| 19 |
+
- 192
|
| 20 |
+
- 672
|
| 21 |
+
|
| 22 |
+
run:
|
| 23 |
+
runner: runner_iter
|
| 24 |
+
task: unimernet_train
|
| 25 |
+
|
| 26 |
+
batch_size_train: 64
|
| 27 |
+
batch_size_eval: 64
|
| 28 |
+
num_workers: 1
|
| 29 |
+
|
| 30 |
+
iters_per_inner_epoch: 2000
|
| 31 |
+
max_iters: 60000
|
| 32 |
+
|
| 33 |
+
seed: 42
|
| 34 |
+
output_dir: "../output/demo"
|
| 35 |
+
|
| 36 |
+
evaluate: True
|
| 37 |
+
test_splits: [ "eval" ]
|
| 38 |
+
|
| 39 |
+
device: "cuda"
|
| 40 |
+
world_size: 1
|
| 41 |
+
dist_url: "env://"
|
| 42 |
+
distributed: True
|
| 43 |
+
distributed_type: ddp # or fsdp when train llm
|
| 44 |
+
|
| 45 |
+
generate_cfg:
|
| 46 |
+
temperature: 0.0
|
requirements.txt
CHANGED
|
@@ -1,2 +1,3 @@
|
|
| 1 |
unimernet==0.1.6
|
| 2 |
-
gradio
|
|
|
|
|
|
| 1 |
unimernet==0.1.6
|
| 2 |
+
gradio
|
| 3 |
+
transformers==4.44.2
|