#!/usr/bin/env python3 """ Train Qwen model on HuggingFace infrastructure using GSM8K dataset This script is designed to run on HuggingFace Spaces or HF Training API """ import json import os import torch from datasets import Dataset, load_dataset from transformers import ( AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling ) from peft import LoraConfig, get_peft_model, TaskType import numpy as np from typing import Dict, List import wandb # Initialize wandb for experiment tracking (optional) USE_WANDB = os.getenv("USE_WANDB", "false").lower() == "true" if USE_WANDB: wandb.init(project="promptwizard-qwen-finetuning") class PromptWizardDataset: """Dataset handler for PromptWizard-style training data""" def __init__(self, data_path: str, tokenizer, max_length: int = 512): self.tokenizer = tokenizer self.max_length = max_length self.data = self.load_data(data_path) def load_data(self, path: str) -> List[Dict]: """Load JSONL data from file""" data = [] with open(path, 'r') as f: for line in f: data.append(json.loads(line)) return data def format_prompt(self, item: Dict) -> str: """Format data item into a prompt for training""" # Use PromptWizard-style formatting prompt = f"""<|system|> You are a mathematics expert. Your task is to solve grade school math problems step by step. <|user|> {item['question']} <|assistant|> Let me solve this step by step. {item['full_solution']}""" return prompt def tokenize_function(self, examples): """Tokenize examples for training""" prompts = [self.format_prompt(item) for item in examples] model_inputs = self.tokenizer( prompts, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt" ) # Set labels same as input_ids for causal LM model_inputs["labels"] = model_inputs["input_ids"].clone() return model_inputs def prepare_model_for_training(model_name: str = "Qwen/Qwen2.5-7B"): """Prepare model and tokenizer for training with LoRA""" print(f"Loading model: {model_name}") # Load tokenizer tokenizer = AutoTokenizer.from_pretrained( model_name, trust_remote_code=True, padding_side="left" ) # Add padding token if not present if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token # Load model with quantization for efficiency model = AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True, torch_dtype=torch.float16, device_map="auto", load_in_8bit=True # Use 8-bit quantization to reduce memory ) # Configure LoRA for efficient fine-tuning lora_config = LoraConfig( task_type=TaskType.CAUSAL_LM, r=16, # LoRA rank lora_alpha=32, lora_dropout=0.1, target_modules=["q_proj", "v_proj", "k_proj", "o_proj"], # Target attention layers bias="none" ) # Apply LoRA model = get_peft_model(model, lora_config) model.print_trainable_parameters() return model, tokenizer def create_datasets(tokenizer): """Create train and eval datasets from prepared data""" train_path = "/home/matt/prompt-wizard/nextjs-app/data/gsm8k/train.jsonl" test_path = "/home/matt/prompt-wizard/nextjs-app/data/gsm8k/test.jsonl" # For HF Spaces, we might need to download from HF Hub instead if not os.path.exists(train_path): print("Local data not found, downloading from HF Hub...") dataset = load_dataset("openai/gsm8k", "main") # Process and save locally train_data = [] for item in dataset['train'][:100]: # Use subset for demo answer_parts = item['answer'].split('####') final_answer = answer_parts[-1].strip() if len(answer_parts) >= 2 else item['answer'].strip() train_data.append({ "question": item['question'], "answer": final_answer, "full_solution": item['answer'] }) test_data = [] for item in dataset['test'][:50]: # Use subset for demo answer_parts = item['answer'].split('####') final_answer = answer_parts[-1].strip() if len(answer_parts) >= 2 else item['answer'].strip() test_data.append({ "question": item['question'], "answer": final_answer, "full_solution": item['answer'] }) else: # Load from local files train_handler = PromptWizardDataset(train_path, tokenizer) test_handler = PromptWizardDataset(test_path, tokenizer) train_data = train_handler.data test_data = test_handler.data # Format prompts def format_for_training(item): prompt = f"""<|system|> You are a mathematics expert. Your task is to solve grade school math problems step by step. <|user|> {item['question']} <|assistant|> Let me solve this step by step. {item['full_solution']}""" return {"text": prompt} train_texts = [format_for_training(item) for item in train_data] test_texts = [format_for_training(item) for item in test_data] # Create HF datasets train_dataset = Dataset.from_list(train_texts) eval_dataset = Dataset.from_list(test_texts) # Tokenize datasets def tokenize_function(examples): return tokenizer( examples["text"], padding="max_length", truncation=True, max_length=512 ) train_dataset = train_dataset.map(tokenize_function, batched=True) eval_dataset = eval_dataset.map(tokenize_function, batched=True) return train_dataset, eval_dataset def compute_metrics(eval_pred): """Compute training metrics""" predictions, labels = eval_pred # Calculate perplexity loss = np.mean(predictions) perplexity = np.exp(loss) return { "perplexity": perplexity } def main(): """Main training function""" print("="*60) print("PromptWizard Qwen Fine-tuning on HuggingFace") print("="*60) # Configuration MODEL_NAME = os.getenv("MODEL_NAME", "Qwen/Qwen2.5-7B") OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./qwen-promptwizard-finetuned") NUM_EPOCHS = int(os.getenv("NUM_EPOCHS", "3")) BATCH_SIZE = int(os.getenv("BATCH_SIZE", "4")) LEARNING_RATE = float(os.getenv("LEARNING_RATE", "2e-5")) # Prepare model and tokenizer model, tokenizer = prepare_model_for_training(MODEL_NAME) # Create datasets print("\nPreparing datasets...") train_dataset, eval_dataset = create_datasets(tokenizer) print(f"Train dataset size: {len(train_dataset)}") print(f"Eval dataset size: {len(eval_dataset)}") # Training arguments optimized for HF infrastructure training_args = TrainingArguments( output_dir=OUTPUT_DIR, num_train_epochs=NUM_EPOCHS, per_device_train_batch_size=BATCH_SIZE, per_device_eval_batch_size=BATCH_SIZE, gradient_accumulation_steps=4, # Simulate larger batch size warmup_steps=100, weight_decay=0.01, logging_dir="./logs", logging_steps=10, evaluation_strategy="steps", eval_steps=50, save_strategy="steps", save_steps=100, save_total_limit=2, load_best_model_at_end=True, metric_for_best_model="eval_loss", greater_is_better=False, fp16=True, # Use mixed precision for faster training push_to_hub=True, # Push to HF Hub when done hub_model_id="promptwizard-qwen-gsm8k", hub_strategy="end", report_to=["wandb"] if USE_WANDB else [], gradient_checkpointing=True, # Save memory optim="adamw_torch", learning_rate=LEARNING_RATE, lr_scheduler_type="cosine", ) # Data collator data_collator = DataCollatorForLanguageModeling( tokenizer=tokenizer, mlm=False, # Causal LM, not masked LM pad_to_multiple_of=8 ) # Initialize trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, data_collator=data_collator, tokenizer=tokenizer, compute_metrics=compute_metrics, ) # Start training print("\nStarting training...") print(f"Using {torch.cuda.device_count()} GPUs") trainer.train() # Save the final model print("\nSaving model...") trainer.save_model(OUTPUT_DIR) tokenizer.save_pretrained(OUTPUT_DIR) # Push to HF Hub if training_args.push_to_hub: print("\nPushing to HuggingFace Hub...") trainer.push_to_hub() print("\n" + "="*60) print("Training complete!") print(f"Model saved to: {OUTPUT_DIR}") print("="*60) # Evaluate final performance print("\nFinal evaluation:") eval_results = trainer.evaluate() for key, value in eval_results.items(): print(f"{key}: {value:.4f}") return trainer, model, tokenizer if __name__ == "__main__": trainer, model, tokenizer = main()