Spaces:
Runtime error
Runtime error
add fid score
Browse files- README.md +14 -2
- script/fid_eval.py +43 -0
README.md
CHANGED
|
@@ -1,8 +1,19 @@
|
|
| 1 |
# catvton-flux
|
| 2 |
|
| 3 |
-
An
|
| 4 |
Also inspired by [In-Context LoRA](https://arxiv.org/abs/2410.23775) for prompt engineering.
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
## Showcase
|
| 7 |
| Original | Garment | Result |
|
| 8 |
|----------|---------|---------|
|
|
@@ -41,9 +52,10 @@ python app.py
|
|
| 41 |
|
| 42 |
|
| 43 |
## TODO:
|
| 44 |
-
- [
|
| 45 |
- [x] Add gradio demo
|
| 46 |
- [ ] Release updated weights with better performance
|
|
|
|
| 47 |
|
| 48 |
## Citation
|
| 49 |
|
|
|
|
| 1 |
# catvton-flux
|
| 2 |
|
| 3 |
+
An state-of-the-art virtual try-on solution that combines the power of [CATVTON](https://arxiv.org/abs/2407.15886) (Contrastive Appearance and Topology Virtual Try-On) with Flux fill inpainting model for realistic and accurate clothing transfer.
|
| 4 |
Also inspired by [In-Context LoRA](https://arxiv.org/abs/2410.23775) for prompt engineering.
|
| 5 |
|
| 6 |
+
## Update
|
| 7 |
+
[](https://drive.google.com/file/d/1T2W5R1xH_uszGVD8p6UUAtWyx43rxGmI/view?usp=sharing)
|
| 8 |
+
[](https://github.com/shadow2496/VITON-HD)
|
| 9 |
+
|
| 10 |
+
---
|
| 11 |
+
**Latest Achievement** (2024/11/24):
|
| 12 |
+
- Released FID score and gradio demo
|
| 13 |
+
- CatVton-Flux-Alpha achieved **SOTA** performance with FID: `5.593255043029785` on VITON-HD dataset. Test configuration: scale 30, step 30. My VITON-HD test inferencing results available [here](https://drive.google.com/file/d/1T2W5R1xH_uszGVD8p6UUAtWyx43rxGmI/view?usp=sharing)
|
| 14 |
+
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
## Showcase
|
| 18 |
| Original | Garment | Result |
|
| 19 |
|----------|---------|---------|
|
|
|
|
| 52 |
|
| 53 |
|
| 54 |
## TODO:
|
| 55 |
+
- [x] Release the FID score
|
| 56 |
- [x] Add gradio demo
|
| 57 |
- [ ] Release updated weights with better performance
|
| 58 |
+
- [ ] Train a smaller model
|
| 59 |
|
| 60 |
## Citation
|
| 61 |
|
script/fid_eval.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
import os
|
| 3 |
+
import numpy as np
|
| 4 |
+
from torchvision.transforms import functional as F
|
| 5 |
+
import torch
|
| 6 |
+
from torchmetrics.image.fid import FrechetInceptionDistance
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# Paths setup
|
| 10 |
+
generated_dataset_path = "output/tryon_results"
|
| 11 |
+
original_dataset_path = "data/VITON-HD/test/image" # Replace with your actual original dataset path
|
| 12 |
+
|
| 13 |
+
# Get generated images
|
| 14 |
+
image_paths = sorted([os.path.join(generated_dataset_path, x) for x in os.listdir(generated_dataset_path)])
|
| 15 |
+
generated_images = [np.array(Image.open(path).convert("RGB")) for path in image_paths]
|
| 16 |
+
|
| 17 |
+
# Get corresponding original images
|
| 18 |
+
original_images = []
|
| 19 |
+
for gen_path in image_paths:
|
| 20 |
+
# Extract the XXXXXX part from "tryon_XXXXXX.jpg"
|
| 21 |
+
base_name = os.path.basename(gen_path) # get filename from path
|
| 22 |
+
original_id = base_name.replace("tryon_", "") # remove "tryon_" prefix
|
| 23 |
+
|
| 24 |
+
# Construct original image path
|
| 25 |
+
original_path = os.path.join(original_dataset_path, original_id)
|
| 26 |
+
original_images.append(np.array(Image.open(original_path).convert("RGB")))
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def preprocess_image(image):
|
| 31 |
+
image = torch.tensor(image).unsqueeze(0)
|
| 32 |
+
image = image.permute(0, 3, 1, 2) / 255.0
|
| 33 |
+
return F.center_crop(image, (768, 1024))
|
| 34 |
+
|
| 35 |
+
real_images = torch.cat([preprocess_image(image) for image in original_images])
|
| 36 |
+
fake_images = torch.cat([preprocess_image(image) for image in generated_images])
|
| 37 |
+
print(real_images.shape, fake_images.shape)
|
| 38 |
+
|
| 39 |
+
fid = FrechetInceptionDistance(normalize=True)
|
| 40 |
+
fid.update(real_images, real=True)
|
| 41 |
+
fid.update(fake_images, real=False)
|
| 42 |
+
|
| 43 |
+
print(f"FID: {float(fid.compute())}")
|