Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Alina Lozovskaya
commited on
Commit
·
2617bee
1
Parent(s):
e1a6c20
Apply Ruff to yourbench_space/
Browse files
yourbench_space/leaderboard_space/app.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
-
from utils import run_pipeline, update_examples
|
| 4 |
-
from env import TASK
|
| 5 |
|
| 6 |
with gr.Blocks(
|
| 7 |
title="YourBench Leaderboard",
|
|
@@ -11,12 +12,7 @@ with gr.Blocks(
|
|
| 11 |
# DISPLAY TABLE AND ANALYSIS
|
| 12 |
title = gr.Markdown(f"YourBench auto-Leaderboard for {TASK}")
|
| 13 |
leaderboard = gr.DataFrame(label="Results", interactive=False)
|
| 14 |
-
samples_ix = gr.Number(
|
| 15 |
-
label="Example Index",
|
| 16 |
-
value=0,
|
| 17 |
-
step=1,
|
| 18 |
-
info="Navigate through different examples"
|
| 19 |
-
)
|
| 20 |
with gr.Tab("Hardest samples"):
|
| 21 |
hard_samples = gr.HTML()
|
| 22 |
with gr.Tab("Easiest samples"):
|
|
@@ -28,4 +24,4 @@ with gr.Blocks(
|
|
| 28 |
|
| 29 |
demo.load(run_pipeline, [samples_ix], [leaderboard, easy_samples, hard_samples, all_samples])
|
| 30 |
|
| 31 |
-
demo.launch()
|
|
|
|
| 1 |
+
from env import TASK
|
| 2 |
+
from utils import run_pipeline, update_examples
|
| 3 |
+
|
| 4 |
import gradio as gr
|
| 5 |
|
|
|
|
|
|
|
| 6 |
|
| 7 |
with gr.Blocks(
|
| 8 |
title="YourBench Leaderboard",
|
|
|
|
| 12 |
# DISPLAY TABLE AND ANALYSIS
|
| 13 |
title = gr.Markdown(f"YourBench auto-Leaderboard for {TASK}")
|
| 14 |
leaderboard = gr.DataFrame(label="Results", interactive=False)
|
| 15 |
+
samples_ix = gr.Number(label="Example Index", value=0, step=1, info="Navigate through different examples")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
with gr.Tab("Hardest samples"):
|
| 17 |
hard_samples = gr.HTML()
|
| 18 |
with gr.Tab("Easiest samples"):
|
|
|
|
| 24 |
|
| 25 |
demo.load(run_pipeline, [samples_ix], [leaderboard, easy_samples, hard_samples, all_samples])
|
| 26 |
|
| 27 |
+
demo.launch()
|
yourbench_space/leaderboard_space/env.py
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
import os
|
|
|
|
|
|
|
| 2 |
INIT_MODELS = [
|
| 3 |
# 70B
|
| 4 |
("Qwen/Qwen2.5-72B-Instruct", "sambanova"),
|
|
@@ -7,10 +9,10 @@ INIT_MODELS = [
|
|
| 7 |
# 20 to 30B
|
| 8 |
("Qwen/QwQ-32B", "sambanova"),
|
| 9 |
("mistralai/Mistral-Small-24B-Instruct-2501", "together"),
|
| 10 |
-
#("allenai/OLMo-2-0325-32B-Instruct", "hf-inference")
|
| 11 |
-
]
|
| 12 |
MODELS = [m[0] for m in INIT_MODELS]
|
| 13 |
TASK = os.getenv("TASK")
|
| 14 |
# With storage
|
| 15 |
-
HF_TOKEN=os.getenv("HF_TOKEN")
|
| 16 |
ORG_NAME = os.getenv("ORG_NAME")
|
|
|
|
| 1 |
import os
|
| 2 |
+
|
| 3 |
+
|
| 4 |
INIT_MODELS = [
|
| 5 |
# 70B
|
| 6 |
("Qwen/Qwen2.5-72B-Instruct", "sambanova"),
|
|
|
|
| 9 |
# 20 to 30B
|
| 10 |
("Qwen/QwQ-32B", "sambanova"),
|
| 11 |
("mistralai/Mistral-Small-24B-Instruct-2501", "together"),
|
| 12 |
+
# ("allenai/OLMo-2-0325-32B-Instruct", "hf-inference")
|
| 13 |
+
]
|
| 14 |
MODELS = [m[0] for m in INIT_MODELS]
|
| 15 |
TASK = os.getenv("TASK")
|
| 16 |
# With storage
|
| 17 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 18 |
ORG_NAME = os.getenv("ORG_NAME")
|
yourbench_space/leaderboard_space/utils.py
CHANGED
|
@@ -1,14 +1,14 @@
|
|
| 1 |
-
|
| 2 |
-
from functools import lru_cache
|
| 3 |
from typing import Tuple
|
|
|
|
|
|
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
-
import
|
| 6 |
|
| 7 |
-
from env import MODELS, TASK, ORG_NAME
|
| 8 |
|
| 9 |
def aggregate_results() -> list:
|
| 10 |
-
"""From the path of outputs and model list, extracts the current scores and stores them in a list of dicts with model, score, time as keys
|
| 11 |
-
"""
|
| 12 |
all_results = []
|
| 13 |
for org_model in MODELS:
|
| 14 |
try:
|
|
@@ -16,16 +16,12 @@ def aggregate_results() -> list:
|
|
| 16 |
ds = load_dataset(path, "results", split="latest")
|
| 17 |
config = json.loads(ds["config_general"][0])
|
| 18 |
results = json.loads(ds["results"][0])
|
| 19 |
-
|
| 20 |
# Model data
|
| 21 |
org, model = org_model.split("/")
|
| 22 |
|
| 23 |
-
cur_result = {
|
| 24 |
-
|
| 25 |
-
"Model": model,
|
| 26 |
-
"Duration (s)": config["end_time"] - config["start_time"]
|
| 27 |
-
}
|
| 28 |
-
|
| 29 |
# Extract the task from the JSON data
|
| 30 |
for k_metric, v_dict in results.items():
|
| 31 |
if k_metric != "all":
|
|
@@ -36,9 +32,9 @@ def aggregate_results() -> list:
|
|
| 36 |
print(f"Error processing {model} {ORG_NAME}: {e}")
|
| 37 |
return all_results
|
| 38 |
|
|
|
|
| 39 |
def extract_dataviz() -> Tuple[list, list]:
|
| 40 |
-
"""From the path of outputs and model list, extracts from the details the worst samples, best samples
|
| 41 |
-
"""
|
| 42 |
all_samples = {}
|
| 43 |
for org_model in MODELS:
|
| 44 |
try:
|
|
@@ -51,7 +47,6 @@ def extract_dataviz() -> Tuple[list, list]:
|
|
| 51 |
score = list(row["metrics"].values())[0]
|
| 52 |
prediction = row["predictions"][0]
|
| 53 |
|
| 54 |
-
|
| 55 |
# We store flattened samples in a dict
|
| 56 |
# ix -> ix, prompt, gold, model_score for each model, model_prediction for each model
|
| 57 |
# then 2 lists: model_scores and models, to aggreg more easily
|
|
@@ -62,7 +57,7 @@ def extract_dataviz() -> Tuple[list, list]:
|
|
| 62 |
"gold": gold[0] if isinstance(gold, list) else gold,
|
| 63 |
# A bit redundant, but put in their own boxes for simplicity of access later
|
| 64 |
"model_scores": [],
|
| 65 |
-
"models": []
|
| 66 |
}
|
| 67 |
if org_model not in all_samples[ix]["models"]:
|
| 68 |
all_samples[ix][f"{org_model}_score"] = row["metrics"]
|
|
@@ -73,14 +68,20 @@ def extract_dataviz() -> Tuple[list, list]:
|
|
| 73 |
except Exception as e:
|
| 74 |
print(f"Error processing {org_model}: {e}")
|
| 75 |
|
| 76 |
-
full_samples = sorted(
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
return easy_samples, hard_samples, full_samples
|
| 80 |
|
|
|
|
| 81 |
def samples_to_box_display(samples: list, example_index: int = 0):
|
| 82 |
-
"""Adapted from Nathan's code in https://huggingface.co/spaces/SaylorTwift/OpenEvalsModelDetails/
|
| 83 |
-
"""
|
| 84 |
if len(samples) == 0:
|
| 85 |
return "No samples in this category!"
|
| 86 |
outputs = []
|
|
@@ -88,21 +89,21 @@ def samples_to_box_display(samples: list, example_index: int = 0):
|
|
| 88 |
for model in sample["models"]:
|
| 89 |
try:
|
| 90 |
outputs.append({
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
})
|
| 97 |
except (KeyError, IndexError):
|
| 98 |
continue
|
| 99 |
-
|
| 100 |
if not outputs:
|
| 101 |
return "No results found for the selected combination."
|
| 102 |
-
|
| 103 |
# Create HTML output with all models
|
| 104 |
html_output = "<div style='max-width: 800px; margin: 0 auto;'>\n\n"
|
| 105 |
-
|
| 106 |
# Show gold answer at the top with distinct styling
|
| 107 |
if outputs:
|
| 108 |
html_output += "<div style='background: #e6f3e6; padding: 20px; border-radius: 10px; margin-bottom: 20px;'>\n"
|
|
@@ -111,15 +112,15 @@ def samples_to_box_display(samples: list, example_index: int = 0):
|
|
| 111 |
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 0;'><code>{outputs[0]['Gold']}</code></pre>\n"
|
| 112 |
html_output += "</div>\n"
|
| 113 |
html_output += "</div>\n"
|
| 114 |
-
|
| 115 |
for output in outputs:
|
| 116 |
html_output += "<div style='background: #f5f5f5; padding: 20px; margin-bottom: 20px; border-radius: 10px;'>\n"
|
| 117 |
html_output += f"<h2 style='margin-top: 0;'>{output['Model']}</h2>\n"
|
| 118 |
-
|
| 119 |
# Format metrics as a clean table
|
| 120 |
html_output += "<details open style='margin-bottom: 15px;'>\n"
|
| 121 |
html_output += "<summary><h3 style='display: inline; margin: 0;'>Metrics</h3></summary>\n"
|
| 122 |
-
metrics = output[
|
| 123 |
if isinstance(metrics, str):
|
| 124 |
metrics = eval(metrics)
|
| 125 |
html_output += "<div style='overflow-x: auto;'>\n"
|
|
@@ -131,17 +132,17 @@ def samples_to_box_display(samples: list, example_index: int = 0):
|
|
| 131 |
html_output += "</table>\n"
|
| 132 |
html_output += "</div>\n"
|
| 133 |
html_output += "</details>\n\n"
|
| 134 |
-
|
| 135 |
# Handle prompt formatting with better styling
|
| 136 |
html_output += "<details style='margin-bottom: 15px;'>\n"
|
| 137 |
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prompt</h3></summary>\n"
|
| 138 |
html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n"
|
| 139 |
-
|
| 140 |
-
prompt_text = output[
|
| 141 |
if isinstance(prompt_text, list):
|
| 142 |
for i, msg in enumerate(prompt_text):
|
| 143 |
-
if isinstance(msg, dict) and
|
| 144 |
-
role = msg.get(
|
| 145 |
html_output += "<div style='margin-bottom: 10px;'>\n"
|
| 146 |
html_output += f"<strong>{role}:</strong>\n"
|
| 147 |
html_output += "<div style='overflow-x: auto;'>\n"
|
|
@@ -156,20 +157,20 @@ def samples_to_box_display(samples: list, example_index: int = 0):
|
|
| 156 |
html_output += "</div>\n"
|
| 157 |
else:
|
| 158 |
html_output += "<div style='overflow-x: auto;'>\n"
|
| 159 |
-
if isinstance(prompt_text, dict) and
|
| 160 |
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{prompt_text['content']}</code></pre>\n"
|
| 161 |
else:
|
| 162 |
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{prompt_text}</code></pre>\n"
|
| 163 |
html_output += "</div>\n"
|
| 164 |
-
|
| 165 |
html_output += "</div>\n"
|
| 166 |
html_output += "</details>\n\n"
|
| 167 |
-
|
| 168 |
# Style prediction output - now in a collapsible section
|
| 169 |
html_output += "<details open style='margin-bottom: 15px;'>\n"
|
| 170 |
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prediction</h3>"
|
| 171 |
# Add word count in a muted style
|
| 172 |
-
word_count = len(output[
|
| 173 |
html_output += f"<span style='color: #666; font-size: 0.8em; margin-left: 10px;'>({word_count} words)</span>"
|
| 174 |
html_output += "</summary>\n"
|
| 175 |
html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n"
|
|
@@ -179,20 +180,30 @@ def samples_to_box_display(samples: list, example_index: int = 0):
|
|
| 179 |
html_output += "</div>\n"
|
| 180 |
html_output += "</details>\n"
|
| 181 |
html_output += "</div>\n\n"
|
| 182 |
-
|
| 183 |
html_output += "</div>"
|
| 184 |
return html_output
|
| 185 |
|
|
|
|
| 186 |
def run_pipeline(samples_ix: int = 0):
|
| 187 |
results = aggregate_results()
|
| 188 |
best_samples, worst_samples, all_samples = extract_dataviz()
|
| 189 |
-
return
|
| 190 |
-
gr.
|
| 191 |
-
gr.HTML(
|
| 192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
def update_examples(samples_ix: int = 0):
|
| 195 |
best_samples, worst_samples, all_samples = extract_dataviz()
|
| 196 |
-
return
|
| 197 |
-
samples_to_box_display(
|
| 198 |
-
samples_to_box_display(
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
|
|
|
| 2 |
from typing import Tuple
|
| 3 |
+
|
| 4 |
+
from env import TASK, MODELS, ORG_NAME
|
| 5 |
+
|
| 6 |
import gradio as gr
|
| 7 |
+
from datasets import Dataset, load_dataset
|
| 8 |
|
|
|
|
| 9 |
|
| 10 |
def aggregate_results() -> list:
|
| 11 |
+
"""From the path of outputs and model list, extracts the current scores and stores them in a list of dicts with model, score, time as keys"""
|
|
|
|
| 12 |
all_results = []
|
| 13 |
for org_model in MODELS:
|
| 14 |
try:
|
|
|
|
| 16 |
ds = load_dataset(path, "results", split="latest")
|
| 17 |
config = json.loads(ds["config_general"][0])
|
| 18 |
results = json.loads(ds["results"][0])
|
| 19 |
+
|
| 20 |
# Model data
|
| 21 |
org, model = org_model.split("/")
|
| 22 |
|
| 23 |
+
cur_result = {"Org": org, "Model": model, "Duration (s)": config["end_time"] - config["start_time"]}
|
| 24 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
# Extract the task from the JSON data
|
| 26 |
for k_metric, v_dict in results.items():
|
| 27 |
if k_metric != "all":
|
|
|
|
| 32 |
print(f"Error processing {model} {ORG_NAME}: {e}")
|
| 33 |
return all_results
|
| 34 |
|
| 35 |
+
|
| 36 |
def extract_dataviz() -> Tuple[list, list]:
|
| 37 |
+
"""From the path of outputs and model list, extracts from the details the worst samples, best samples"""
|
|
|
|
| 38 |
all_samples = {}
|
| 39 |
for org_model in MODELS:
|
| 40 |
try:
|
|
|
|
| 47 |
score = list(row["metrics"].values())[0]
|
| 48 |
prediction = row["predictions"][0]
|
| 49 |
|
|
|
|
| 50 |
# We store flattened samples in a dict
|
| 51 |
# ix -> ix, prompt, gold, model_score for each model, model_prediction for each model
|
| 52 |
# then 2 lists: model_scores and models, to aggreg more easily
|
|
|
|
| 57 |
"gold": gold[0] if isinstance(gold, list) else gold,
|
| 58 |
# A bit redundant, but put in their own boxes for simplicity of access later
|
| 59 |
"model_scores": [],
|
| 60 |
+
"models": [],
|
| 61 |
}
|
| 62 |
if org_model not in all_samples[ix]["models"]:
|
| 63 |
all_samples[ix][f"{org_model}_score"] = row["metrics"]
|
|
|
|
| 68 |
except Exception as e:
|
| 69 |
print(f"Error processing {org_model}: {e}")
|
| 70 |
|
| 71 |
+
full_samples = sorted(all_samples.values(), key=lambda r: r["ix"])
|
| 72 |
+
|
| 73 |
+
hard_samples = sorted(
|
| 74 |
+
[sample for sample in all_samples.values() if sum(sample["model_scores"]) == 0], key=lambda r: r["ix"]
|
| 75 |
+
)
|
| 76 |
+
easy_samples = sorted(
|
| 77 |
+
[sample for sample in all_samples.values() if sum(sample["model_scores"]) == len(sample["model_scores"])],
|
| 78 |
+
key=lambda r: r["ix"],
|
| 79 |
+
)
|
| 80 |
return easy_samples, hard_samples, full_samples
|
| 81 |
|
| 82 |
+
|
| 83 |
def samples_to_box_display(samples: list, example_index: int = 0):
|
| 84 |
+
"""Adapted from Nathan's code in https://huggingface.co/spaces/SaylorTwift/OpenEvalsModelDetails/"""
|
|
|
|
| 85 |
if len(samples) == 0:
|
| 86 |
return "No samples in this category!"
|
| 87 |
outputs = []
|
|
|
|
| 89 |
for model in sample["models"]:
|
| 90 |
try:
|
| 91 |
outputs.append({
|
| 92 |
+
"Model": model,
|
| 93 |
+
"Prediction": sample[f"{model}_prediction"],
|
| 94 |
+
"Prompt": sample["prompt"],
|
| 95 |
+
"Metrics": sample[f"{model}_score"],
|
| 96 |
+
"Gold": sample["gold"],
|
| 97 |
})
|
| 98 |
except (KeyError, IndexError):
|
| 99 |
continue
|
| 100 |
+
|
| 101 |
if not outputs:
|
| 102 |
return "No results found for the selected combination."
|
| 103 |
+
|
| 104 |
# Create HTML output with all models
|
| 105 |
html_output = "<div style='max-width: 800px; margin: 0 auto;'>\n\n"
|
| 106 |
+
|
| 107 |
# Show gold answer at the top with distinct styling
|
| 108 |
if outputs:
|
| 109 |
html_output += "<div style='background: #e6f3e6; padding: 20px; border-radius: 10px; margin-bottom: 20px;'>\n"
|
|
|
|
| 112 |
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 0;'><code>{outputs[0]['Gold']}</code></pre>\n"
|
| 113 |
html_output += "</div>\n"
|
| 114 |
html_output += "</div>\n"
|
| 115 |
+
|
| 116 |
for output in outputs:
|
| 117 |
html_output += "<div style='background: #f5f5f5; padding: 20px; margin-bottom: 20px; border-radius: 10px;'>\n"
|
| 118 |
html_output += f"<h2 style='margin-top: 0;'>{output['Model']}</h2>\n"
|
| 119 |
+
|
| 120 |
# Format metrics as a clean table
|
| 121 |
html_output += "<details open style='margin-bottom: 15px;'>\n"
|
| 122 |
html_output += "<summary><h3 style='display: inline; margin: 0;'>Metrics</h3></summary>\n"
|
| 123 |
+
metrics = output["Metrics"]
|
| 124 |
if isinstance(metrics, str):
|
| 125 |
metrics = eval(metrics)
|
| 126 |
html_output += "<div style='overflow-x: auto;'>\n"
|
|
|
|
| 132 |
html_output += "</table>\n"
|
| 133 |
html_output += "</div>\n"
|
| 134 |
html_output += "</details>\n\n"
|
| 135 |
+
|
| 136 |
# Handle prompt formatting with better styling
|
| 137 |
html_output += "<details style='margin-bottom: 15px;'>\n"
|
| 138 |
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prompt</h3></summary>\n"
|
| 139 |
html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n"
|
| 140 |
+
|
| 141 |
+
prompt_text = output["Prompt"]
|
| 142 |
if isinstance(prompt_text, list):
|
| 143 |
for i, msg in enumerate(prompt_text):
|
| 144 |
+
if isinstance(msg, dict) and "content" in msg:
|
| 145 |
+
role = msg.get("role", "message").title()
|
| 146 |
html_output += "<div style='margin-bottom: 10px;'>\n"
|
| 147 |
html_output += f"<strong>{role}:</strong>\n"
|
| 148 |
html_output += "<div style='overflow-x: auto;'>\n"
|
|
|
|
| 157 |
html_output += "</div>\n"
|
| 158 |
else:
|
| 159 |
html_output += "<div style='overflow-x: auto;'>\n"
|
| 160 |
+
if isinstance(prompt_text, dict) and "content" in prompt_text:
|
| 161 |
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{prompt_text['content']}</code></pre>\n"
|
| 162 |
else:
|
| 163 |
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{prompt_text}</code></pre>\n"
|
| 164 |
html_output += "</div>\n"
|
| 165 |
+
|
| 166 |
html_output += "</div>\n"
|
| 167 |
html_output += "</details>\n\n"
|
| 168 |
+
|
| 169 |
# Style prediction output - now in a collapsible section
|
| 170 |
html_output += "<details open style='margin-bottom: 15px;'>\n"
|
| 171 |
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prediction</h3>"
|
| 172 |
# Add word count in a muted style
|
| 173 |
+
word_count = len(output["Prediction"].split())
|
| 174 |
html_output += f"<span style='color: #666; font-size: 0.8em; margin-left: 10px;'>({word_count} words)</span>"
|
| 175 |
html_output += "</summary>\n"
|
| 176 |
html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n"
|
|
|
|
| 180 |
html_output += "</div>\n"
|
| 181 |
html_output += "</details>\n"
|
| 182 |
html_output += "</div>\n\n"
|
| 183 |
+
|
| 184 |
html_output += "</div>"
|
| 185 |
return html_output
|
| 186 |
|
| 187 |
+
|
| 188 |
def run_pipeline(samples_ix: int = 0):
|
| 189 |
results = aggregate_results()
|
| 190 |
best_samples, worst_samples, all_samples = extract_dataviz()
|
| 191 |
+
return (
|
| 192 |
+
gr.Dataframe(Dataset.from_list(results).to_pandas(), visible=True),
|
| 193 |
+
gr.HTML(
|
| 194 |
+
samples_to_box_display(best_samples, samples_ix), label="Easiest samples (always found)", visible=True
|
| 195 |
+
),
|
| 196 |
+
gr.HTML(
|
| 197 |
+
samples_to_box_display(worst_samples, samples_ix), label="Hardest samples (always failed)", visible=True
|
| 198 |
+
),
|
| 199 |
+
gr.HTML(samples_to_box_display(all_samples, samples_ix), label="All samples", visible=True),
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
|
| 203 |
def update_examples(samples_ix: int = 0):
|
| 204 |
best_samples, worst_samples, all_samples = extract_dataviz()
|
| 205 |
+
return (
|
| 206 |
+
samples_to_box_display(best_samples, samples_ix),
|
| 207 |
+
samples_to_box_display(worst_samples, samples_ix),
|
| 208 |
+
samples_to_box_display(all_samples, samples_ix),
|
| 209 |
+
)
|