AutoRefine / retrieval_server.py
yrshi's picture
update some files
de48493
raw
history blame
13.6 kB
import json
import os
import warnings
from typing import List, Dict, Optional
import argparse
import faiss
import torch
import numpy as np
from transformers import AutoConfig, AutoTokenizer, AutoModel
from tqdm import tqdm
import datasets
import uvicorn
from fastapi import FastAPI
from pydantic import BaseModel
parser = argparse.ArgumentParser(description="Launch the local faiss retriever.")
parser.add_argument("--index_path", type=str, help="Corpus indexing file.")
parser.add_argument("--corpus_path", type=str, help="Local corpus file.")
parser.add_argument("--topk", type=int, default=3, help="Number of retrieved passages for one query.")
parser.add_argument("--retriever_model", type=str, default="intfloat/e5-base-v2", help="Name of the retriever model.")
args = parser.parse_args()
def load_corpus(corpus_path: str):
corpus = datasets.load_dataset(
'json',
data_files=corpus_path,
split="train",
num_proc=4
)
return corpus
def read_jsonl(file_path):
data = []
with open(file_path, "r") as f:
for line in f:
data.append(json.loads(line))
return data
def load_docs(corpus, doc_idxs):
results = [corpus[int(idx)] for idx in doc_idxs]
return results
def load_model(model_path: str, use_fp16: bool = False):
model_config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
model.eval()
model.cuda()
if use_fp16:
model = model.half()
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, trust_remote_code=True)
return model, tokenizer
def pooling(
pooler_output,
last_hidden_state,
attention_mask = None,
pooling_method = "mean"
):
if pooling_method == "mean":
last_hidden = last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
elif pooling_method == "cls":
return last_hidden_state[:, 0]
elif pooling_method == "pooler":
return pooler_output
else:
raise NotImplementedError("Pooling method not implemented!")
class Encoder:
def __init__(self, model_name, model_path, pooling_method, max_length, use_fp16):
self.model_name = model_name
self.model_path = model_path
self.pooling_method = pooling_method
self.max_length = max_length
self.use_fp16 = use_fp16
self.model, self.tokenizer = load_model(model_path=model_path, use_fp16=use_fp16)
self.model.eval()
@torch.no_grad()
def encode(self, query_list: List[str], is_query=True) -> np.ndarray:
# processing query for different encoders
if isinstance(query_list, str):
query_list = [query_list]
if "e5" in self.model_name.lower():
if is_query:
query_list = [f"query: {query}" for query in query_list]
else:
query_list = [f"passage: {query}" for query in query_list]
if "bge" in self.model_name.lower():
if is_query:
query_list = [f"Represent this sentence for searching relevant passages: {query}" for query in query_list]
inputs = self.tokenizer(query_list,
max_length=self.max_length,
padding=True,
truncation=True,
return_tensors="pt"
)
inputs = {k: v.cuda() for k, v in inputs.items()}
if "T5" in type(self.model).__name__:
# T5-based retrieval model
decoder_input_ids = torch.zeros(
(inputs['input_ids'].shape[0], 1), dtype=torch.long
).to(inputs['input_ids'].device)
output = self.model(
**inputs, decoder_input_ids=decoder_input_ids, return_dict=True
)
query_emb = output.last_hidden_state[:, 0, :]
else:
output = self.model(**inputs, return_dict=True)
query_emb = pooling(output.pooler_output,
output.last_hidden_state,
inputs['attention_mask'],
self.pooling_method)
if "dpr" not in self.model_name.lower():
query_emb = torch.nn.functional.normalize(query_emb, dim=-1)
query_emb = query_emb.detach().cpu().numpy()
query_emb = query_emb.astype(np.float32, order="C")
del inputs, output
torch.cuda.empty_cache()
return query_emb
class BaseRetriever:
def __init__(self, config):
self.config = config
self.retrieval_method = config.retrieval_method
self.topk = config.retrieval_topk
self.index_path = config.index_path
self.corpus_path = config.corpus_path
def _search(self, query: str, num: int, return_score: bool):
raise NotImplementedError
def _batch_search(self, query_list: List[str], num: int, return_score: bool):
raise NotImplementedError
def search(self, query: str, num: int = None, return_score: bool = False):
return self._search(query, num, return_score)
def batch_search(self, query_list: List[str], num: int = None, return_score: bool = False):
return self._batch_search(query_list, num, return_score)
class BM25Retriever(BaseRetriever):
def __init__(self, config):
super().__init__(config)
from pyserini.search.lucene import LuceneSearcher
self.searcher = LuceneSearcher(self.index_path)
self.contain_doc = self._check_contain_doc()
if not self.contain_doc:
self.corpus = load_corpus(self.corpus_path)
self.max_process_num = 8
def _check_contain_doc(self):
return self.searcher.doc(0).raw() is not None
def _search(self, query: str, num: int = None, return_score: bool = False):
if num is None:
num = self.topk
hits = self.searcher.search(query, num)
if len(hits) < 1:
if return_score:
return [], []
else:
return []
scores = [hit.score for hit in hits]
if len(hits) < num:
warnings.warn('Not enough documents retrieved!')
else:
hits = hits[:num]
if self.contain_doc:
all_contents = [
json.loads(self.searcher.doc(hit.docid).raw())['contents']
for hit in hits
]
results = [
{
'title': content.split("\n")[0].strip("\""),
'text': "\n".join(content.split("\n")[1:]),
'contents': content
}
for content in all_contents
]
else:
results = load_docs(self.corpus, [hit.docid for hit in hits])
if return_score:
return results, scores
else:
return results
def _batch_search(self, query_list: List[str], num: int = None, return_score: bool = False):
results = []
scores = []
for query in query_list:
item_result, item_score = self._search(query, num, True)
results.append(item_result)
scores.append(item_score)
if return_score:
return results, scores
else:
return results
class DenseRetriever(BaseRetriever):
def __init__(self, config):
super().__init__(config)
self.index = faiss.read_index(self.index_path)
if config.faiss_gpu:
co = faiss.GpuMultipleClonerOptions()
co.useFloat16 = True
co.shard = True
self.index = faiss.index_cpu_to_all_gpus(self.index, co=co)
self.corpus = load_corpus(self.corpus_path)
self.encoder = Encoder(
model_name = self.retrieval_method,
model_path = config.retrieval_model_path,
pooling_method = config.retrieval_pooling_method,
max_length = config.retrieval_query_max_length,
use_fp16 = config.retrieval_use_fp16
)
self.topk = config.retrieval_topk
self.batch_size = config.retrieval_batch_size
def _search(self, query: str, num: int = None, return_score: bool = False):
if num is None:
num = self.topk
query_emb = self.encoder.encode(query)
scores, idxs = self.index.search(query_emb, k=num)
idxs = idxs[0]
scores = scores[0]
results = load_docs(self.corpus, idxs)
if return_score:
return results, scores.tolist()
else:
return results
def _batch_search(self, query_list: List[str], num: int = None, return_score: bool = False):
if isinstance(query_list, str):
query_list = [query_list]
if num is None:
num = self.topk
results = []
scores = []
for start_idx in tqdm(range(0, len(query_list), self.batch_size), desc='Retrieval process: '):
query_batch = query_list[start_idx:start_idx + self.batch_size]
batch_emb = self.encoder.encode(query_batch)
batch_scores, batch_idxs = self.index.search(batch_emb, k=num)
batch_scores = batch_scores.tolist()
batch_idxs = batch_idxs.tolist()
# load_docs is not vectorized, but is a python list approach
flat_idxs = sum(batch_idxs, [])
batch_results = load_docs(self.corpus, flat_idxs)
# chunk them back
batch_results = [batch_results[i*num : (i+1)*num] for i in range(len(batch_idxs))]
results.extend(batch_results)
scores.extend(batch_scores)
del batch_emb, batch_scores, batch_idxs, query_batch, flat_idxs, batch_results
torch.cuda.empty_cache()
if return_score:
return results, scores
else:
return results
def get_retriever(config):
if config.retrieval_method == "bm25":
return BM25Retriever(config)
else:
return DenseRetriever(config)
#####################################
# FastAPI server below
#####################################
class Config:
"""
Minimal config class (simulating your argparse)
Replace this with your real arguments or load them dynamically.
"""
def __init__(
self,
retrieval_method: str = "bm25",
retrieval_topk: int = 10,
index_path: str = "./index/bm25",
corpus_path: str = "./data/corpus.jsonl",
dataset_path: str = "./data",
data_split: str = "train",
faiss_gpu: bool = True,
retrieval_model_path: str = "./model",
retrieval_pooling_method: str = "mean",
retrieval_query_max_length: int = 256,
retrieval_use_fp16: bool = False,
retrieval_batch_size: int = 128
):
self.retrieval_method = retrieval_method
self.retrieval_topk = retrieval_topk
self.index_path = index_path
self.corpus_path = corpus_path
self.dataset_path = dataset_path
self.data_split = data_split
self.faiss_gpu = faiss_gpu
self.retrieval_model_path = retrieval_model_path
self.retrieval_pooling_method = retrieval_pooling_method
self.retrieval_query_max_length = retrieval_query_max_length
self.retrieval_use_fp16 = retrieval_use_fp16
self.retrieval_batch_size = retrieval_batch_size
class QueryRequest(BaseModel):
queries: List[str]
topk: Optional[int] = None
return_scores: bool = False
app = FastAPI()
# 1) Build a config (could also parse from arguments).
# In real usage, you'd parse your CLI arguments or environment variables.
config = Config(
retrieval_method = "e5", # or "dense"
index_path=args.index_path,
corpus_path=args.corpus_path,
retrieval_topk=args.topk,
faiss_gpu=False,
retrieval_model_path=args.retriever_model,
retrieval_pooling_method="mean",
retrieval_query_max_length=256,
retrieval_use_fp16=True,
retrieval_batch_size=512,
)
# 2) Instantiate a global retriever so it is loaded once and reused.
retriever = get_retriever(config)
@app.post("/retrieve")
def retrieve_endpoint(request: QueryRequest):
"""
Endpoint that accepts queries and performs retrieval.
Input format:
{
"queries": ["What is Python?", "Tell me about neural networks."],
"topk": 3,
"return_scores": true
}
"""
if not request.topk:
request.topk = config.retrieval_topk # fallback to default
# Perform batch retrieval
results, scores = retriever.batch_search(
query_list=request.queries,
num=request.topk,
return_score=request.return_scores
)
# Format response
resp = []
for i, single_result in enumerate(results):
if request.return_scores:
# If scores are returned, combine them with results
combined = []
for doc, score in zip(single_result, scores[i]):
combined.append({"document": doc, "score": score})
resp.append(combined)
else:
resp.append(single_result)
return {"result": resp}
if __name__ == "__main__":
# 3) Launch the server. By default, it listens on http://127.0.0.1:8000
uvicorn.run(app, host="0.0.0.0", port=8000)