import transformers import torch import requests import re question_list = [ "Who was born first out of Cameron Mitchell (Singer) and Léopold De Saussure?", # Ground Truth: "Léopold De Saussure" "The Clavivox was invented by an American composer who was born Harry Warnow in what year?", # Ground Truth: "1908" "Which movie did Disney produce first, The Many Adventures of Winnie the Pooh or Ride a Wild Pony?", # Ground Truth: "Ride a Wild Pony" "Who is the sibling of the author of Kapalkundala?", # Ground Truth: "Sanjib Chandra" or "Sanjib Chandra Chattopadhyay" ] # Model ID and device setup model_id = "yrshi/AutoRefine-Qwen2.5-3B-Base" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") curr_eos = [151645, 151643] # for Qwen2.5 series models curr_search_template = '{output_text}\n\n{search_results}\n\n' # Initialize the tokenizer and model tokenizer = transformers.AutoTokenizer.from_pretrained(model_id) model = transformers.AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto") # Define the custom stopping criterion class StopOnSequence(transformers.StoppingCriteria): def __init__(self, target_sequences, tokenizer): # Encode the string so we have the exact token-IDs pattern self.target_ids = [tokenizer.encode(target_sequence, add_special_tokens=False) for target_sequence in target_sequences] self.target_lengths = [len(target_id) for target_id in self.target_ids] self._tokenizer = tokenizer def __call__(self, input_ids, scores, **kwargs): # Make sure the target IDs are on the same device targets = [torch.as_tensor(target_id, device=input_ids.device) for target_id in self.target_ids] if input_ids.shape[1] < min(self.target_lengths): return False # Compare the tail of input_ids with our target_ids for i, target in enumerate(targets): if torch.equal(input_ids[0, -self.target_lengths[i]:], target): return True return False def get_query(text): import re pattern = re.compile(r"(.*?)", re.DOTALL) matches = pattern.findall(text) if matches: return matches[-1] else: return None def search(query: str): payload = { "queries": [query], "topk": 3, "return_scores": True } results = requests.post("http://127.0.0.1:8000/retrieve", json=payload).json()['result'] def _passages2string(retrieval_result): format_reference = '' for idx, doc_item in enumerate(retrieval_result): content = doc_item['document']['contents'] title = content.split("\n")[0] text = "\n".join(content.split("\n")[1:]) format_reference += f"Doc {idx+1}(Title: {title}) {text}\n" return format_reference return _passages2string(results[0]) # Initialize the stopping criteria target_sequences = ["", " ", "\n", " \n", "\n\n", " \n\n"] stopping_criteria = transformers.StoppingCriteriaList([StopOnSequence(target_sequences, tokenizer)]) def run_search(question): question = question.strip() cnt = 0 trajectory = [] # Prepare the message prompt = f"""You are a helpful assistant excel at answering questions with multi-turn search engine calling. \ To answer questions, you must first reason through the available information using and . \ If you identify missing knowledge, you may issue a search request using query at any time. The retrieval system will provide you with the three most relevant documents enclosed in and . \ After each search, you need to summarize and refine the existing documents in and . \ You may send multiple search requests if needed. \ Once you have sufficient information, provide a concise final answer using and . For example, Donald Trump . Question: {question}\n""" if tokenizer.chat_template: prompt = tokenizer.apply_chat_template([{"role": "user", "content": prompt}], add_generation_prompt=True, tokenize=False) print(prompt) # Encode the chat-formatted prompt and move it to the correct device while True: input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device) attention_mask = torch.ones_like(input_ids) # Generate text with the stopping criteria outputs = model.generate( input_ids, attention_mask=attention_mask, max_new_tokens=1024, stopping_criteria=stopping_criteria, pad_token_id=tokenizer.eos_token_id, do_sample=True, temperature=0.7 ) if outputs[0][-1].item() in curr_eos: generated_tokens = outputs[0][input_ids.shape[1]:] output_text = tokenizer.decode(generated_tokens, skip_special_tokens=True) trajectory.append(output_text) print(output_text) break generated_tokens = outputs[0][input_ids.shape[1]:] output_text = tokenizer.decode(generated_tokens, skip_special_tokens=True) query_text = get_query(tokenizer.decode(outputs[0], skip_special_tokens=True)) if query_text: search_results = search(query_text) else: search_results = '' search_text = curr_search_template.format(output_text=output_text.strip(), search_results=search_results.strip()) prompt += search_text cnt += 1 print(search_text) trajectory.append(search_text) print(f"Total iterations: {cnt}") answer_pattern = re.compile(r"(.*?)", re.DOTALL) answer_match = answer_pattern.search(trajectory[-1]) if answer_match: final_answer = answer_match.group(1).strip() print(f"Final answer found: {final_answer}") else: print("No final answer found in the output.") final_answer = "No final answer found." return ''.join([text for text in trajectory]), final_answer if __name__ == "__main__": output_text, final_answer = run_search(question_list[0]) print(f"Output trajectory: {output_text}") print(f"Final answer: {final_answer}")