File size: 11,966 Bytes
78752d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import gradio as gr
from gradio import ChatMessage
from openai import OpenAI
import time

# Configure Lemonade Server connection
base_url = "http://localhost:8000/api/v1"
client = OpenAI(
    base_url=base_url,
    api_key="lemonade",  # required, but unused in Lemonade
)

def stream_chat_response(message: str, history: list, model_name: str, system_prompt: str):
    """
    Stream responses from Lemonade Server and display thinking process separately.
    """
    # Add user message to history
    history.append(ChatMessage(role="user", content=message))
    yield history
    
    # Convert history to OpenAI format - only include actual conversation messages
    messages = []
    
    # Add system prompt if provided
    if system_prompt and system_prompt.strip():
        messages.append({"role": "system", "content": system_prompt})
    
    # Convert history, skipping metadata-only messages
    for msg in history:
        if isinstance(msg, ChatMessage):
            # Skip thinking/metadata messages when sending to API
            if msg.metadata and msg.metadata.get("title"):
                continue
            messages.append({
                "role": msg.role,
                "content": msg.content
            })
        elif isinstance(msg, dict):
            # Skip metadata messages
            if msg.get("metadata"):
                continue
            messages.append({
                "role": msg.get("role", "user"),
                "content": msg.get("content", "")
            })
    
    try:
        # Initialize response tracking
        thinking_content = ""
        response_content = ""
        thinking_added = False
        response_added = False
        thinking_start_time = None
        
        # Stream response from Lemonade Server
        stream = client.chat.completions.create(
            model=model_name,
            messages=messages,
            stream=True,
            max_tokens=2048,
            temperature=0.7,
        )
        
        for chunk in stream:
            # Safety check for chunk structure
            if not chunk.choices or len(chunk.choices) == 0:
                continue
            
            if not hasattr(chunk.choices[0], 'delta'):
                continue
            
            delta = chunk.choices[0].delta
            
            # Check for reasoning_content (thinking process)
            reasoning_content = getattr(delta, 'reasoning_content', None)
            # Check for regular content (final answer)
            content = getattr(delta, 'content', None)
            
            # Handle reasoning/thinking content
            if reasoning_content:
                if not thinking_added:
                    # Add thinking section
                    thinking_start_time = time.time()
                    history.append(ChatMessage(
                        role="assistant",
                        content="",
                        metadata={
                            "title": "๐Ÿง  Thought Process",
                            "status": "pending"
                        }
                    ))
                    thinking_added = True
                
                # Accumulate thinking content
                thinking_content += reasoning_content
                history[-1] = ChatMessage(
                    role="assistant",
                    content=thinking_content,
                    metadata={
                        "title": "๐Ÿง  Thought Process",
                        "status": "pending"
                    }
                )
                yield history
            
            # Handle regular content (final answer)
            elif content:
                # Finalize thinking section if it exists
                if thinking_added and thinking_start_time:
                    elapsed = time.time() - thinking_start_time
                    # Update the thinking message to "done" status
                    for i in range(len(history) - 1, -1, -1):
                        if isinstance(history[i], ChatMessage) and history[i].metadata and history[i].metadata.get("title") == "๐Ÿง  Thought Process":
                            history[i] = ChatMessage(
                                role="assistant",
                                content=thinking_content,
                                metadata={
                                    "title": "๐Ÿง  Thought Process",
                                    "status": "done",
                                    "duration": elapsed
                                }
                            )
                            break
                    thinking_start_time = None
                
                # Add or update response content
                if not response_added:
                    history.append(ChatMessage(
                        role="assistant",
                        content=""
                    ))
                    response_added = True
                
                response_content += content
                history[-1] = ChatMessage(
                    role="assistant",
                    content=response_content
                )
                yield history
        
        # Final check: if thinking section exists but wasn't finalized
        if thinking_added and thinking_start_time:
            elapsed = time.time() - thinking_start_time
            for i in range(len(history) - 1, -1, -1):
                if isinstance(history[i], ChatMessage) and history[i].metadata and history[i].metadata.get("title") == "๐Ÿง  Thought Process":
                    history[i] = ChatMessage(
                        role="assistant",
                        content=thinking_content,
                        metadata={
                            "title": "๐Ÿง  Thought Process",
                            "status": "done",
                            "duration": elapsed
                        }
                    )
                    break
            yield history
            
    except Exception as e:
        import traceback
        error_msg = str(e)
        error_trace = traceback.format_exc()
        
        # Try to extract more details from the error
        if "422" in error_msg:
            error_details = f"""
โš ๏ธ **Request Validation Error**

The server rejected the request. Possible issues:
- Model name might be incorrect (currently: `{model_name}`)
- Check that the model is loaded on the server
- Try simplifying the system prompt

**Error:** {error_msg}
"""
        elif "list index out of range" in error_msg or "IndexError" in error_trace:
            error_details = f"""
โš ๏ธ **Streaming Response Error**

There was an issue processing the streaming response.

**Debug Info:**
- Model: `{model_name}`
- Base URL: `{base_url}`
- Error: {error_msg}

Try refreshing and sending another message.
"""
        else:
            error_details = f"""
โš ๏ธ **Connection Error**

Error: {error_msg}

Make sure:
1. Lemonade Server is running at `{base_url}`
2. Model `{model_name}` is loaded
3. The server is accessible

**Debug trace:**
```
{error_trace[-500:]}
```
"""
        
        history.append(ChatMessage(
            role="assistant",
            content=error_details,
            metadata={
                "title": "โš ๏ธ Error Details"
            }
        ))
        yield history


def clear_chat():
    """Clear the chat history."""
    return []


# Build the Gradio interface
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
    # Define input textbox first so it can be referenced in Examples
    msg = gr.Textbox(
        placeholder="Type your message here and press Enter...",
        show_label=False,
        container=False,
        render=False  # Don't render yet, will be rendered in main area
    )
    
    # Sidebar for settings and information
    with gr.Sidebar(position="left", open=True):
        gr.Markdown("""
        # ๐Ÿ‹ Lemonade Reasoning Chatbot
        Chat with local LLMs running on AMD Lemonade Server. This interface beautifully displays the model's thinking process!
        """)
        
        gr.Markdown("### โš™๏ธ Settings")
        
        model_dropdown = gr.Dropdown(
            choices=[
                "Qwen3-0.6B-GGUF",
                "Llama-3.1-8B-Instruct-Hybrid",
                "Qwen2.5-7B-Instruct",
                "Phi-3.5-mini-instruct",
                "Meta-Llama-3-8B-Instruct"
            ],
            value="Qwen3-0.6B-GGUF",
            label="Model",
            info="Select the LLM model to use",
            allow_custom_value=True
        )
        
        system_prompt = gr.Textbox(
            label="System Prompt (Optional)",
            value="You are a helpful assistant.",
            lines=3,
            info="Customize the model's behavior",
            placeholder="Leave empty to use model defaults"
        )
        
        # How Thinking Works Accordion
        with gr.Accordion("๐Ÿ’ก How Thinking Works", open=False):
            gr.Markdown("""
            - Reasoning models output `reasoning_content` (thinking) and `content` (final answer) separately
            - Thinking appears in a collapsible "๐Ÿง  Thought Process" section
            - Duration of thinking is displayed automatically
            - Works with models like: DeepSeek-R1, QwQ, and other reasoning models
            """)
        
        # Current Model Accordion
        with gr.Accordion("๐Ÿ“‹ Current Model", open=False):
            gr.Markdown("""
            Make sure your model supports reasoning output for thinking to be displayed.
            """)
        
        # Example Prompts Accordion
        with gr.Accordion("๐Ÿ“ Example Prompts", open=False):
            gr.Markdown("""
            - "Solve: If a train travels 120 km in 2 hours, what's its speed?"
            - "Compare pros and cons of electric vs gas cars"
            - "Explain step-by-step how to make coffee"
            - "What's the difference between AI and ML?"
            """)
        
        # Add example interactions in sidebar
        gr.Examples(
            examples=[
                "What is 15 + 24?",
                "Write a short poem about AI",
                "What is the capital of Japan?",
                "Explain what machine learning is in simple terms"
            ],
            inputs=msg,
            label="Quick Examples"
        )
    
    # Main chat area - full screen
    chatbot = gr.Chatbot(
        type="messages",
        label="Chat",
        height="calc(100vh - 200px)",
        avatar_images=(
            "https://em-content.zobj.net/source/twitter/376/bust-in-silhouette_1f464.png",
            "https://em-content.zobj.net/source/twitter/376/robot_1f916.png"
        ),
        show_label=False,
        #placeholder="C:\Users\Yuvi\dev\testing\placeholder.png"
        placeholder= #"""
        #<div style="display: flex; justify-content: center; align-items: center; height: 100%;">
        #    <img src="/gradio_api/file=C:\\Users\\Yuvi\\dev\\testing\\placeholder.png" style="opacity: 0.4; max-width: 80%; max-height: 80%; object-fit: contain;" alt="Placeholder">
        #</div>
        #"""
        """<div>
        <img src="/gradio_api/file=placeholder.png"> 
        </div>"""
    )
    
    # Render the input textbox in main area
    msg.render()
    
    # Event handlers - only submit event
    def submit_message(message, history, model, sys_prompt):
        """Wrapper to handle message submission"""
        if not message or message.strip() == "":
            return history, ""
        yield from stream_chat_response(message, history, model, sys_prompt)
    
    msg.submit(
        submit_message,
        inputs=[msg, chatbot, model_dropdown, system_prompt],
        outputs=chatbot
    ).then(
        lambda: "",
        None,
        msg
    )

# Launch the app
if __name__ == "__main__":
    demo.launch(allowed_paths=["."], ssr_mode=True)