Spaces:
Runtime error
Runtime error
| import copy | |
| import functools | |
| import json | |
| import os | |
| from pathlib import Path | |
| from pdb import set_trace as st | |
| import blobfile as bf | |
| import imageio | |
| import numpy as np | |
| import torch as th | |
| import torch.distributed as dist | |
| import torchvision | |
| from PIL import Image | |
| from torch.nn.parallel.distributed import DistributedDataParallel as DDP | |
| from torch.optim import AdamW | |
| from torch.utils.tensorboard.writer import SummaryWriter | |
| from tqdm import tqdm | |
| from guided_diffusion import dist_util, logger | |
| from guided_diffusion.fp16_util import MixedPrecisionTrainer | |
| from guided_diffusion.nn import update_ema | |
| from guided_diffusion.resample import LossAwareSampler, UniformSampler | |
| # from .train_util import TrainLoop3DRec | |
| from guided_diffusion.train_util import (TrainLoop, calc_average_loss, | |
| find_ema_checkpoint, | |
| find_resume_checkpoint, | |
| get_blob_logdir, log_loss_dict, | |
| log_rec3d_loss_dict, | |
| parse_resume_step_from_filename) | |
| import dnnlib | |
| # AMP | |
| from accelerate import Accelerator | |
| # from ..guided_diffusion.train_util import TrainLoop | |
| # use_amp = False | |
| # use_amp = True | |
| class TrainLoop3DDiffusion(TrainLoop): | |
| def __init__( | |
| self, | |
| *, | |
| # model, | |
| rec_model, | |
| denoise_model, | |
| diffusion, | |
| loss_class, | |
| data, | |
| eval_data, | |
| batch_size, | |
| microbatch, | |
| lr, | |
| ema_rate, | |
| log_interval, | |
| eval_interval, | |
| save_interval, | |
| resume_checkpoint, | |
| use_fp16=False, | |
| fp16_scale_growth=0.001, | |
| schedule_sampler=None, | |
| weight_decay=0, | |
| lr_anneal_steps=0, | |
| iterations=10001, | |
| ignore_resume_opt=False, | |
| freeze_ae=False, | |
| denoised_ae=True, | |
| triplane_scaling_divider=10, | |
| use_amp=False, | |
| **kwargs): | |
| super().__init__(model=denoise_model, | |
| diffusion=diffusion, | |
| data=data, | |
| batch_size=batch_size, | |
| microbatch=microbatch, | |
| lr=lr, | |
| ema_rate=ema_rate, | |
| log_interval=log_interval, | |
| save_interval=save_interval, | |
| resume_checkpoint=resume_checkpoint, | |
| use_fp16=use_fp16, | |
| fp16_scale_growth=fp16_scale_growth, | |
| schedule_sampler=schedule_sampler, | |
| lr_anneal_steps=lr_anneal_steps, | |
| weight_decay=weight_decay, | |
| use_amp=use_amp) | |
| self.accelerator = Accelerator() | |
| self.pool_512 = th.nn.AdaptiveAvgPool2d((512, 512)) | |
| self.pool_128 = th.nn.AdaptiveAvgPool2d((128, 128)) | |
| self.loss_class = loss_class | |
| self.rec_model = rec_model | |
| self.eval_interval = eval_interval | |
| self.eval_data = eval_data | |
| self.iterations = iterations | |
| # self.triplane_std = 10 | |
| self.triplane_scaling_divider = triplane_scaling_divider | |
| self._load_and_sync_parameters(model=self.rec_model, model_name='rec') | |
| # * for loading EMA | |
| self.mp_trainer_rec = MixedPrecisionTrainer( | |
| model=self.rec_model, | |
| use_fp16=self.use_fp16, | |
| use_amp=use_amp, | |
| fp16_scale_growth=fp16_scale_growth, | |
| model_name='rec', | |
| ) | |
| self.denoised_ae = denoised_ae | |
| if not freeze_ae: | |
| self.opt_rec = AdamW(self._init_optim_groups(kwargs)) | |
| else: | |
| print('!! freezing AE !!') | |
| if dist_util.get_rank() == 0: | |
| self.writer = SummaryWriter(log_dir=f'{logger.get_dir()}/runs') | |
| print(self.opt) | |
| if not freeze_ae: | |
| print(self.opt_rec) | |
| # if not freeze_ae: | |
| if self.resume_step: | |
| if not ignore_resume_opt: | |
| self._load_optimizer_state() | |
| else: | |
| logger.warn("Ignoring optimizer state from checkpoint.") | |
| # Model was resumed, either due to a restart or a checkpoint | |
| # being specified at the command line. | |
| # if not freeze_ae: | |
| # self.ema_params_rec = [ | |
| # self._load_ema_parameters( | |
| # rate, | |
| # self.rec_model, | |
| # self.mp_trainer_rec, | |
| # model_name=self.mp_trainer_rec.model_name) | |
| # for rate in self.ema_rate | |
| # ] | |
| # else: | |
| self.ema_params_rec = [ | |
| self._load_ema_parameters( | |
| rate, | |
| self.rec_model, | |
| self.mp_trainer_rec, | |
| model_name=self.mp_trainer_rec.model_name) | |
| for rate in self.ema_rate | |
| ] | |
| else: | |
| if not freeze_ae: | |
| self.ema_params_rec = [ | |
| copy.deepcopy(self.mp_trainer_rec.master_params) | |
| for _ in range(len(self.ema_rate)) | |
| ] | |
| if self.use_ddp is True: | |
| self.rec_model = th.nn.SyncBatchNorm.convert_sync_batchnorm( | |
| self.rec_model) | |
| self.ddp_rec_model = DDP( | |
| self.rec_model, | |
| device_ids=[dist_util.dev()], | |
| output_device=dist_util.dev(), | |
| broadcast_buffers=False, | |
| bucket_cap_mb=128, | |
| find_unused_parameters=False, | |
| # find_unused_parameters=True, | |
| ) | |
| else: | |
| self.ddp_rec_model = self.rec_model | |
| if freeze_ae: | |
| self.ddp_rec_model.eval() | |
| self.ddp_rec_model.requires_grad_(False) | |
| self.freeze_ae = freeze_ae | |
| # if use_amp: | |
| def _init_optim_groups(self, kwargs): | |
| optim_groups = [ | |
| # vit encoder | |
| { | |
| 'name': 'vit_encoder', | |
| 'params': self.mp_trainer_rec.model.encoder.parameters(), | |
| 'lr': kwargs['encoder_lr'], | |
| 'weight_decay': kwargs['encoder_weight_decay'] | |
| }, | |
| # vit decoder | |
| { | |
| 'name': | |
| 'vit_decoder', | |
| 'params': | |
| self.mp_trainer_rec.model.decoder.vit_decoder.parameters(), | |
| 'lr': | |
| kwargs['vit_decoder_lr'], | |
| 'weight_decay': | |
| kwargs['vit_decoder_wd'] | |
| }, | |
| { | |
| 'name': | |
| 'vit_decoder_pred', | |
| 'params': | |
| self.mp_trainer_rec.model.decoder.decoder_pred.parameters(), | |
| 'lr': | |
| kwargs['vit_decoder_lr'], | |
| # 'weight_decay': 0 | |
| 'weight_decay': | |
| kwargs['vit_decoder_wd'] | |
| }, | |
| # triplane decoder | |
| { | |
| 'name': | |
| 'triplane_decoder', | |
| 'params': | |
| self.mp_trainer_rec.model.decoder.triplane_decoder.parameters( | |
| ), | |
| 'lr': | |
| kwargs['triplane_decoder_lr'], | |
| # 'weight_decay': self.weight_decay | |
| }, | |
| ] | |
| if self.mp_trainer_rec.model.decoder.superresolution is not None: | |
| optim_groups.append({ | |
| 'name': | |
| 'triplane_decoder_superresolution', | |
| 'params': | |
| self.mp_trainer_rec.model.decoder.superresolution.parameters(), | |
| 'lr': | |
| kwargs['super_resolution_lr'], | |
| }) | |
| return optim_groups | |
| def run_loop(self, batch=None): | |
| th.cuda.empty_cache() | |
| while (not self.lr_anneal_steps | |
| or self.step + self.resume_step < self.lr_anneal_steps): | |
| # let all processes sync up before starting with a new epoch of training | |
| dist_util.synchronize() | |
| # batch, cond = next(self.data) | |
| # if batch is None: | |
| batch = next(self.data) | |
| self.run_step(batch) | |
| if self.step % self.log_interval == 0 and dist_util.get_rank( | |
| ) == 0: | |
| out = logger.dumpkvs() | |
| # * log to tensorboard | |
| for k, v in out.items(): | |
| self.writer.add_scalar(f'Loss/{k}', v, | |
| self.step + self.resume_step) | |
| # if self.step % self.eval_interval == 0 and self.step != 0: | |
| if self.step % self.eval_interval == 0: | |
| if dist_util.get_rank() == 0: | |
| self.eval_ddpm_sample() | |
| # continue # TODO, diffusion inference | |
| # self.eval_loop() | |
| # self.eval_novelview_loop() | |
| # let all processes sync up before starting with a new epoch of training | |
| dist_util.synchronize() | |
| th.cuda.empty_cache() | |
| if self.step % self.save_interval == 0 and self.step != 0: | |
| self.save() | |
| if not self.freeze_ae: | |
| self.save(self.mp_trainer_rec, 'rec') | |
| dist_util.synchronize() | |
| th.cuda.empty_cache() | |
| # Run for a finite amount of time in integration tests. | |
| if os.environ.get("DIFFUSION_TRAINING_TEST", | |
| "") and self.step > 0: | |
| return | |
| self.step += 1 | |
| if self.step > self.iterations: | |
| print('reached maximum iterations, exiting') | |
| # Save the last checkpoint if it wasn't already saved. | |
| if (self.step - 1) % self.save_interval != 0: | |
| self.save() | |
| if not self.freeze_ae: | |
| self.save(self.mp_trainer_rec, 'rec') | |
| exit() | |
| # Save the last checkpoint if it wasn't already saved. | |
| if (self.step - 1) % self.save_interval != 0: | |
| self.save() | |
| if not self.freeze_ae: | |
| self.save(self.mp_trainer_rec, 'rec') | |
| def run_step(self, batch, cond=None): | |
| self.forward_backward(batch, | |
| cond) # type: ignore # * 3D Reconstruction step | |
| took_step_ddpm = self.mp_trainer.optimize(self.opt) | |
| if took_step_ddpm: | |
| self._update_ema() | |
| if not self.freeze_ae: | |
| took_step_rec = self.mp_trainer_rec.optimize(self.opt_rec) | |
| if took_step_rec: | |
| self._update_ema_rec() | |
| self._anneal_lr() | |
| self.log_step() | |
| def forward_backward(self, batch, *args, **kwargs): | |
| # return super().forward_backward(batch, *args, **kwargs) | |
| self.mp_trainer.zero_grad() | |
| # all_denoised_out = dict() | |
| batch_size = batch['img'].shape[0] | |
| for i in range(0, batch_size, self.microbatch): | |
| micro = { | |
| k: v[i:i + self.microbatch].to(dist_util.dev()) | |
| for k, v in batch.items() | |
| } | |
| last_batch = (i + self.microbatch) >= batch_size | |
| # if not freeze_ae: | |
| # =================================== ae part =================================== | |
| # with th.cuda.amp.autocast(dtype=th.float16, | |
| # enabled=self.mp_trainer_rec.use_amp | |
| # and not self.freeze_ae): | |
| with th.cuda.amp.autocast(dtype=th.float16, | |
| enabled=False,): # ! debugging, no AMP on all the input | |
| pred = self.ddp_rec_model(img=micro['img_to_encoder'], | |
| c=micro['c']) # pred: (B, 3, 64, 64) | |
| if not self.freeze_ae: | |
| target = micro | |
| if last_batch or not self.use_ddp: | |
| ae_loss, loss_dict = self.loss_class(pred, | |
| target, | |
| test_mode=False) | |
| else: | |
| with self.ddp_model.no_sync(): # type: ignore | |
| ae_loss, loss_dict = self.loss_class( | |
| pred, target, test_mode=False) | |
| log_rec3d_loss_dict(loss_dict) | |
| else: | |
| ae_loss = th.tensor(0.0).to(dist_util.dev()) | |
| micro_to_denoise = pred[ | |
| 'latent'] / self.triplane_scaling_divider # normalize std to 1 | |
| t, weights = self.schedule_sampler.sample( | |
| micro_to_denoise.shape[0], dist_util.dev()) | |
| # print('!!!', micro_to_denoise.dtype) | |
| # =================================== denoised part =================================== | |
| model_kwargs = {} | |
| # print(micro_to_denoise.min(), micro_to_denoise.max()) | |
| compute_losses = functools.partial( | |
| self.diffusion.training_losses, | |
| self.ddp_model, | |
| micro_to_denoise, # x_start | |
| t, | |
| model_kwargs=model_kwargs, | |
| ) | |
| denoised_fn = functools.partial( | |
| self.diffusion.p_mean_variance, | |
| self.ddp_model, | |
| micro_to_denoise, # x_start | |
| t, | |
| model_kwargs=model_kwargs) | |
| with th.cuda.amp.autocast(dtype=th.float16, | |
| enabled=self.mp_trainer.use_amp): | |
| if last_batch or not self.use_ddp: | |
| losses = compute_losses() | |
| denoised_out = denoised_fn() | |
| else: | |
| with self.ddp_model.no_sync(): # type: ignore | |
| losses = compute_losses() | |
| denoised_out = denoised_fn() | |
| if isinstance(self.schedule_sampler, LossAwareSampler): | |
| self.schedule_sampler.update_with_local_losses( | |
| t, losses["loss"].detach()) | |
| denoise_loss = (losses["loss"] * weights).mean() | |
| log_loss_dict(self.diffusion, t, | |
| {k: v * weights | |
| for k, v in losses.items()}) | |
| # self.mp_trainer.backward(denoise_loss) | |
| # =================================== denosied ae part =================================== | |
| # if self.denoised_ae or self.step % 500 == 0: | |
| if self.denoised_ae: | |
| with th.cuda.amp.autocast( | |
| dtype=th.float16, | |
| enabled=self.mp_trainer_rec.use_amp | |
| and not self.freeze_ae): | |
| # continue | |
| denoised_ae_pred = self.ddp_rec_model( | |
| img=None, | |
| c=micro['c'], | |
| latent=denoised_out['pred_xstart'] * self. | |
| triplane_scaling_divider, # TODO, how to define the scale automatically? | |
| behaviour='triplane_dec') | |
| # if self.denoised_ae: | |
| if last_batch or not self.use_ddp: | |
| denoised_ae_loss, loss_dict = self.loss_class( | |
| denoised_ae_pred, micro, test_mode=False) | |
| else: | |
| with self.ddp_model.no_sync(): # type: ignore | |
| denoised_ae_loss, loss_dict = self.loss_class( | |
| denoised_ae_pred, micro, test_mode=False) | |
| # * rename | |
| loss_dict_denoise_ae = {} | |
| for k, v in loss_dict.items(): | |
| loss_dict_denoise_ae[f'{k}_denoised'] = v.mean() | |
| log_rec3d_loss_dict(loss_dict_denoise_ae) | |
| else: | |
| denoised_ae_loss = th.tensor(0.0).to(dist_util.dev()) | |
| # loss = ae_loss + denoise_loss + denoised_ae_loss | |
| loss = denoise_loss # ! leave only denoise_loss for debugging | |
| # loss = ae_loss + denoise_loss | |
| # self.mp_trainer.backward(denosied_ae_loss) | |
| # if use_amp: | |
| # self.mp_trainer.backward(loss) | |
| # self.mp_trainer.scaler.scale(loss).backward() | |
| # else: | |
| # exit AMP before backward | |
| self.mp_trainer.backward(loss) | |
| # TODO, merge visualization with original AE | |
| # =================================== denoised AE log part =================================== | |
| if dist_util.get_rank() == 0 and self.step % 500 == 0: | |
| with th.no_grad(): | |
| # gt_vis = th.cat([batch['img'], batch['depth']], dim=-1) | |
| gt_depth = micro['depth'] | |
| if gt_depth.ndim == 3: | |
| gt_depth = gt_depth.unsqueeze(1) | |
| gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() - | |
| gt_depth.min()) | |
| # if True: | |
| pred_depth = pred['image_depth'] | |
| pred_depth = (pred_depth - pred_depth.min()) / ( | |
| pred_depth.max() - pred_depth.min()) | |
| pred_img = pred['image_raw'] | |
| gt_img = micro['img'] | |
| if 'image_sr' in pred: # TODO | |
| pred_img = th.cat( | |
| [self.pool_512(pred_img), pred['image_sr']], | |
| dim=-1) | |
| gt_img = th.cat( | |
| [self.pool_512(micro['img']), micro['img_sr']], | |
| dim=-1) | |
| pred_depth = self.pool_512(pred_depth) | |
| gt_depth = self.pool_512(gt_depth) | |
| gt_vis = th.cat( | |
| [ | |
| gt_img, micro['img'], | |
| gt_depth.repeat_interleave(3, dim=1) | |
| ], | |
| dim=-1)[0:1] # TODO, fail to load depth. range [0, 1] | |
| if not self.denoised_ae: | |
| # continue | |
| denoised_ae_pred = self.ddp_rec_model( | |
| img=None, | |
| c=micro['c'][0:1], | |
| latent=denoised_out['pred_xstart'][0:1] * self. | |
| triplane_scaling_divider, # TODO, how to define the scale automatically | |
| behaviour='triplane_dec') | |
| # assert denoised_ae_pred is not None | |
| # print(pred_img.shape) | |
| # print('denoised_ae:', self.denoised_ae) | |
| pred_vis = th.cat([ | |
| pred_img[0:1], denoised_ae_pred['image_raw'], | |
| pred_depth[0:1].repeat_interleave(3, dim=1) | |
| ], | |
| dim=-1) # B, 3, H, W | |
| vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute( | |
| 1, 2, 0).cpu() # ! pred in range[-1, 1] | |
| # vis_grid = torchvision.utils.make_grid(vis) # HWC | |
| vis = vis.numpy() * 127.5 + 127.5 | |
| vis = vis.clip(0, 255).astype(np.uint8) | |
| Image.fromarray(vis).save( | |
| f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t[0].item()}.jpg' | |
| ) | |
| print( | |
| 'log denoised vis to: ', | |
| f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t[0].item()}.jpg' | |
| ) | |
| th.cuda.empty_cache() | |
| # def eval_loop(self, c_list:list): | |
| def eval_novelview_loop(self): | |
| # novel view synthesis given evaluation camera trajectory | |
| video_out = imageio.get_writer( | |
| f'{logger.get_dir()}/video_novelview_{self.step+self.resume_step}.mp4', | |
| mode='I', | |
| fps=60, | |
| codec='libx264') | |
| all_loss_dict = [] | |
| novel_view_micro = {} | |
| # for i in range(0, len(c_list), 1): # TODO, larger batch size for eval | |
| for i, batch in enumerate(tqdm(self.eval_data)): | |
| # for i in range(0, 8, self.microbatch): | |
| # c = c_list[i].to(dist_util.dev()).reshape(1, -1) | |
| micro = {k: v.to(dist_util.dev()) for k, v in batch.items()} | |
| if i == 0: | |
| novel_view_micro = { | |
| k: v[0:1].to(dist_util.dev()).repeat_interleave( | |
| micro['img'].shape[0], 0) | |
| for k, v in batch.items() | |
| } | |
| else: | |
| # if novel_view_micro['c'].shape[0] < micro['img'].shape[0]: | |
| novel_view_micro = { | |
| k: v[0:1].to(dist_util.dev()).repeat_interleave( | |
| micro['img'].shape[0], 0) | |
| for k, v in novel_view_micro.items() | |
| } | |
| pred = self.model(img=novel_view_micro['img_to_encoder'], | |
| c=micro['c']) # pred: (B, 3, 64, 64) | |
| # target = { | |
| # 'img': micro['img'], | |
| # 'depth': micro['depth'], | |
| # 'depth_mask': micro['depth_mask'] | |
| # } | |
| # targe | |
| _, loss_dict = self.loss_class(pred, micro, test_mode=True) | |
| all_loss_dict.append(loss_dict) | |
| # ! move to other places, add tensorboard | |
| # pred_vis = th.cat([ | |
| # pred['image_raw'], | |
| # -pred['image_depth'].repeat_interleave(3, dim=1) | |
| # ], | |
| # dim=-1) | |
| # normalize depth | |
| # if True: | |
| pred_depth = pred['image_depth'] | |
| pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() - | |
| pred_depth.min()) | |
| if 'image_sr' in pred: | |
| pred_vis = th.cat([ | |
| micro['img_sr'], | |
| self.pool_512(pred['image_raw']), pred['image_sr'], | |
| self.pool_512(pred_depth).repeat_interleave(3, dim=1) | |
| ], | |
| dim=-1) | |
| else: | |
| pred_vis = th.cat([ | |
| self.pool_128(micro['img']), pred['image_raw'], | |
| pred_depth.repeat_interleave(3, dim=1) | |
| ], | |
| dim=-1) # B, 3, H, W | |
| vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy() | |
| vis = vis * 127.5 + 127.5 | |
| vis = vis.clip(0, 255).astype(np.uint8) | |
| for j in range(vis.shape[0]): | |
| video_out.append_data(vis[j]) | |
| video_out.close() | |
| val_scores_for_logging = calc_average_loss(all_loss_dict) | |
| with open(os.path.join(logger.get_dir(), 'scores_novelview.json'), | |
| 'a') as f: | |
| json.dump({'step': self.step, **val_scores_for_logging}, f) | |
| # * log to tensorboard | |
| for k, v in val_scores_for_logging.items(): | |
| self.writer.add_scalar(f'Eval/NovelView/{k}', v, | |
| self.step + self.resume_step) | |
| # def eval_loop(self, c_list:list): | |
| def eval_loop(self): | |
| # novel view synthesis given evaluation camera trajectory | |
| video_out = imageio.get_writer( | |
| f'{logger.get_dir()}/video_{self.step+self.resume_step}.mp4', | |
| mode='I', | |
| fps=60, | |
| codec='libx264') | |
| all_loss_dict = [] | |
| # for i in range(0, len(c_list), 1): # TODO, larger batch size for eval | |
| for i, batch in enumerate(tqdm(self.eval_data)): | |
| # for i in range(0, 8, self.microbatch): | |
| # c = c_list[i].to(dist_util.dev()).reshape(1, -1) | |
| micro = {k: v.to(dist_util.dev()) for k, v in batch.items()} | |
| # pred = self.model(img=micro['img_to_encoder'], | |
| # c=micro['c']) # pred: (B, 3, 64, 64) | |
| # pred of rec model | |
| pred = self.ddp_rec_model(img=micro['img_to_encoder'], | |
| c=micro['c']) # pred: (B, 3, 64, 64) | |
| pred_depth = pred['image_depth'] | |
| pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() - | |
| pred_depth.min()) | |
| if 'image_sr' in pred: | |
| pred_vis = th.cat([ | |
| micro['img_sr'], | |
| self.pool_512(pred['image_raw']), pred['image_sr'], | |
| self.pool_512(pred_depth).repeat_interleave(3, dim=1) | |
| ], | |
| dim=-1) | |
| else: | |
| pred_vis = th.cat([ | |
| self.pool_128(micro['img']), pred['image_raw'], | |
| pred_depth.repeat_interleave(3, dim=1) | |
| ], | |
| dim=-1) # B, 3, H, W | |
| vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy() | |
| vis = vis * 127.5 + 127.5 | |
| vis = vis.clip(0, 255).astype(np.uint8) | |
| for j in range(vis.shape[0]): | |
| video_out.append_data(vis[j]) | |
| video_out.close() | |
| val_scores_for_logging = calc_average_loss(all_loss_dict) | |
| with open(os.path.join(logger.get_dir(), 'scores.json'), 'a') as f: | |
| json.dump({'step': self.step, **val_scores_for_logging}, f) | |
| # * log to tensorboard | |
| for k, v in val_scores_for_logging.items(): | |
| self.writer.add_scalar(f'Eval/Rec/{k}', v, | |
| self.step + self.resume_step) | |
| self.eval_novelview_loop() | |
| def save(self, mp_trainer=None, model_name='ddpm'): | |
| if mp_trainer is None: | |
| mp_trainer = self.mp_trainer | |
| def save_checkpoint(rate, params): | |
| state_dict = mp_trainer.master_params_to_state_dict(params) | |
| if dist_util.get_rank() == 0: | |
| logger.log(f"saving model {model_name} {rate}...") | |
| if not rate: | |
| filename = f"model_{model_name}{(self.step+self.resume_step):07d}.pt" | |
| else: | |
| filename = f"ema_{model_name}_{rate}_{(self.step+self.resume_step):07d}.pt" | |
| with bf.BlobFile(bf.join(get_blob_logdir(), filename), | |
| "wb") as f: | |
| th.save(state_dict, f) | |
| save_checkpoint(0, self.mp_trainer.master_params) | |
| for rate, params in zip(self.ema_rate, self.ema_params): | |
| save_checkpoint(rate, params) | |
| dist.barrier() | |
| def _load_and_sync_parameters(self, model=None, model_name='ddpm'): | |
| resume_checkpoint, self.resume_step = find_resume_checkpoint( | |
| self.resume_checkpoint, model_name) or self.resume_checkpoint | |
| if model is None: | |
| model = self.model | |
| print(resume_checkpoint) | |
| if resume_checkpoint and Path(resume_checkpoint).exists(): | |
| if dist_util.get_rank() == 0: | |
| # ! rank 0 return will cause all other ranks to hang | |
| # if not Path(resume_checkpoint).exists(): | |
| # logger.log( | |
| # f"failed to load model from checkpoint: {resume_checkpoint}, not exist" | |
| # ) | |
| # return | |
| logger.log( | |
| f"loading model from checkpoint: {resume_checkpoint}...") | |
| map_location = { | |
| 'cuda:%d' % 0: 'cuda:%d' % dist_util.get_rank() | |
| } # configure map_location properly | |
| print(f'mark {model_name} loading ', flush=True) | |
| resume_state_dict = dist_util.load_state_dict( | |
| resume_checkpoint, map_location=map_location) | |
| print(f'mark {model_name} loading finished', flush=True) | |
| model_state_dict = model.state_dict() | |
| for k, v in resume_state_dict.items(): | |
| if k in model_state_dict.keys() and v.size( | |
| ) == model_state_dict[k].size(): | |
| model_state_dict[k] = v | |
| else: | |
| print('!!!! ignore key: ', k, ": ", v.size(), | |
| 'shape in model: ', model_state_dict[k].size()) | |
| model.load_state_dict(model_state_dict, strict=True) | |
| del model_state_dict | |
| if dist_util.get_world_size() > 1: | |
| dist_util.sync_params(model.parameters()) | |
| print(f'synced {model_name} params') | |
| def _update_ema_rec(self): | |
| for rate, params in zip(self.ema_rate, self.ema_params_rec): | |
| update_ema(params, self.mp_trainer_rec.master_params, rate=rate) | |
| def eval_ddpm_sample(self): | |
| args = dnnlib.EasyDict( | |
| dict(batch_size=1, | |
| image_size=224, | |
| denoise_in_channels=24, | |
| clip_denoised=True, | |
| class_cond=False, | |
| use_ddim=False)) | |
| model_kwargs = {} | |
| if args.class_cond: | |
| classes = th.randint(low=0, | |
| high=NUM_CLASSES, | |
| size=(args.batch_size, ), | |
| device=dist_util.dev()) | |
| model_kwargs["y"] = classes | |
| diffusion = self.diffusion | |
| sample_fn = (diffusion.p_sample_loop | |
| if not args.use_ddim else diffusion.ddim_sample_loop) | |
| for i in range(2): | |
| triplane_sample = sample_fn( | |
| self.ddp_model, | |
| (args.batch_size, args.denoise_in_channels, args.image_size, | |
| args.image_size), | |
| clip_denoised=args.clip_denoised, | |
| model_kwargs=model_kwargs, | |
| ) | |
| self.render_video_given_triplane( | |
| triplane_sample, | |
| name_prefix=f'{self.step + self.resume_step}_{i}') | |
| def render_video_given_triplane(self, planes, name_prefix='0'): | |
| planes *= self.triplane_scaling_divider # if setting clip_denoised=True, the sampled planes will lie in [-1,1]. Thus, values beyond [+- std] will be abandoned in this version. Move to IN for later experiments. | |
| # print(planes.min(), planes.max()) | |
| # used during diffusion sampling inference | |
| video_out = imageio.get_writer( | |
| f'{logger.get_dir()}/triplane_{name_prefix}.mp4', | |
| mode='I', | |
| fps=60, | |
| codec='libx264') | |
| # for i in range(0, len(c_list), 1): # TODO, larger batch size for eval | |
| for i, batch in enumerate(tqdm(self.eval_data)): | |
| micro = {k: v.to(dist_util.dev()) for k, v in batch.items()} | |
| pred = self.ddp_rec_model(img=None, | |
| c=micro['c'], | |
| latent=planes, | |
| behaviour='triplane_dec') | |
| # if True: | |
| pred_depth = pred['image_depth'] | |
| pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() - | |
| pred_depth.min()) | |
| if 'image_sr' in pred: | |
| pred_vis = th.cat([ | |
| micro['img_sr'], | |
| self.pool_512(pred['image_raw']), pred['image_sr'], | |
| self.pool_512(pred_depth).repeat_interleave(3, dim=1) | |
| ], | |
| dim=-1) | |
| else: | |
| pred_vis = th.cat([ | |
| self.pool_128(micro['img']), pred['image_raw'], | |
| pred_depth.repeat_interleave(3, dim=1) | |
| ], | |
| dim=-1) # B, 3, H, W | |
| vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy() | |
| vis = vis * 127.5 + 127.5 | |
| vis = vis.clip(0, 255).astype(np.uint8) | |
| for j in range(vis.shape[0]): | |
| video_out.append_data(vis[j]) | |
| video_out.close() | |
| print('logged video to: ', | |
| f'{logger.get_dir()}/triplane_{name_prefix}.mp4') | |
| def render_video_noise_schedule(self, name_prefix='0'): | |
| # planes *= self.triplane_std # denormalize for rendering | |
| video_out = imageio.get_writer( | |
| f'{logger.get_dir()}/triplane_visnoise_{name_prefix}.mp4', | |
| mode='I', | |
| fps=30, | |
| codec='libx264') | |
| for i, batch in enumerate(tqdm(self.eval_data)): | |
| micro = {k: v.to(dist_util.dev()) for k, v in batch.items()} | |
| if i % 10 != 0: | |
| continue | |
| # ========= novel view plane settings ==== | |
| if i == 0: | |
| novel_view_micro = { | |
| k: v[0:1].to(dist_util.dev()).repeat_interleave( | |
| micro['img'].shape[0], 0) | |
| for k, v in batch.items() | |
| } | |
| else: | |
| # if novel_view_micro['c'].shape[0] < micro['img'].shape[0]: | |
| novel_view_micro = { | |
| k: v[0:1].to(dist_util.dev()).repeat_interleave( | |
| micro['img'].shape[0], 0) | |
| for k, v in novel_view_micro.items() | |
| } | |
| latent = self.ddp_rec_model( | |
| img=novel_view_micro['img_to_encoder'], | |
| c=micro['c'])['latent'] # pred: (B, 3, 64, 64) | |
| x_start = latent / self.triplane_scaling_divider # normalize std to 1 | |
| # x_start = latent | |
| all_pred_vis = [] | |
| # for t in th.range(0, | |
| # 4001, | |
| # 500, | |
| # dtype=th.long, | |
| # device=dist_util.dev()): # cosine 4k steps | |
| for t in th.range(0, | |
| 1001, | |
| 125, | |
| dtype=th.long, | |
| device=dist_util.dev()): # cosine 4k steps | |
| # ========= add noise according to t | |
| noise = th.randn_like(x_start) # x_start is the x0 image | |
| x_t = self.diffusion.q_sample( | |
| x_start, t, noise=noise | |
| ) # * add noise according to predefined schedule | |
| planes_x_t = (x_t * self.triplane_scaling_divider).clamp( | |
| -50, 50) # de-scaling noised x_t | |
| # planes_x_t = (x_t * 1).clamp( | |
| # -50, 50) # de-scaling noised x_t | |
| # ===== visualize | |
| pred = self.ddp_rec_model( | |
| img=None, | |
| c=micro['c'], | |
| latent=planes_x_t, | |
| behaviour='triplane_dec') # pred: (B, 3, 64, 64) | |
| # pred_depth = pred['image_depth'] | |
| # pred_depth = (pred_depth - pred_depth.min()) / ( | |
| # pred_depth.max() - pred_depth.min()) | |
| # pred_vis = th.cat([ | |
| # # self.pool_128(micro['img']), | |
| # pred['image_raw'], | |
| # ], | |
| # dim=-1) # B, 3, H, W | |
| pred_vis = pred['image_raw'] | |
| all_pred_vis.append(pred_vis) | |
| # TODO, make grid | |
| all_pred_vis = torchvision.utils.make_grid( | |
| th.cat(all_pred_vis, 0), | |
| nrow=len(all_pred_vis), | |
| normalize=True, | |
| value_range=(-1, 1), | |
| scale_each=True) # normalized to [-1,1] | |
| vis = all_pred_vis.permute(1, 2, 0).cpu().numpy() # H W 3 | |
| vis = (vis * 255).clip(0, 255).astype(np.uint8) | |
| video_out.append_data(vis) | |
| video_out.close() | |
| print('logged video to: ', | |
| f'{logger.get_dir()}/triplane_visnoise_{name_prefix}.mp4') | |
| th.cuda.empty_cache() | |