Spaces:
Sleeping
Sleeping
File size: 14,643 Bytes
7522691 62858a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
"""
Zen VL Training Space - HuggingFace Pro GPU Training
Trains zen-vl-4b with combined ADP+xLAM datasets
"""
import os
import sys
import time
import json
import random
import logging
from pathlib import Path
from typing import List, Dict, Any
import torch
from transformers import (
Qwen3VLForConditionalGeneration,
Qwen3VLProcessor,
TrainingArguments,
Trainer,
)
from datasets import load_dataset, Dataset
import gradio as gr
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Global training state
training_state = {
"status": "idle",
"progress": 0,
"current_step": 0,
"total_steps": 0,
"loss": 0.0,
"logs": []
}
def log_message(message: str):
"""Add message to training logs"""
timestamp = time.strftime("%Y-%m-%d %H:%M:%S")
log_entry = f"[{timestamp}] {message}"
training_state["logs"].append(log_entry)
logger.info(message)
return log_entry
class ZenVLTrainer:
def __init__(self, model_size="4b", gpu_type="a10g"):
self.model_size = model_size
self.gpu_type = gpu_type
self.model_name = f"zenlm/zen-vl-{model_size}-instruct"
self.output_name = f"zenlm/zen-vl-{model_size}-agent"
# GPU-specific configs
self.configs = {
"a10g": {
"batch_size": 1,
"gradient_accumulation": 8,
"max_samples": 30000,
"learning_rate": 2e-5,
},
"a100-large": {
"batch_size": 2,
"gradient_accumulation": 8,
"max_samples": 50000,
"learning_rate": 2e-5,
},
"a100": {
"batch_size": 4,
"gradient_accumulation": 8,
"max_samples": 100000,
"learning_rate": 2e-5,
}
}
self.config = self.configs.get(gpu_type, self.configs["a10g"])
log_message(f"Initialized Zen VL Trainer for {model_size} on {gpu_type}")
log_message(f"Config: {self.config}")
def load_adp_data(self, max_samples: int = None) -> List[Dict[str, Any]]:
"""Load Agent Data Protocol dataset"""
log_message("Loading ADP dataset...")
data_dir = Path("data/adp")
all_data = []
if data_dir.exists():
# Load from local cache
for json_file in data_dir.glob("*.jsonl"):
log_message(f"Loading {json_file.name}...")
with open(json_file, 'r') as f:
for line in f:
if line.strip():
all_data.append(json.loads(line))
if max_samples and len(all_data) >= max_samples:
break
else:
# Download from HuggingFace
log_message("Downloading ADP dataset from HuggingFace...")
configs = [
'agenttuning_os', 'agenttuning_kg', 'agenttuning_db',
'synatra', 'code_feedback', 'go-browse-wa'
]
for config in configs:
try:
dataset = load_dataset(
"neulab/agent-data-collection",
config,
split="train",
streaming=True
)
for i, example in enumerate(dataset):
all_data.append(example)
if max_samples and len(all_data) >= max_samples:
break
log_message(f"Loaded {len(all_data)} samples from {config}")
if max_samples and len(all_data) >= max_samples:
break
except Exception as e:
log_message(f"Warning: Could not load {config}: {e}")
continue
log_message(f"Loaded {len(all_data)} ADP samples")
return all_data
def load_xlam_data(self, max_samples: int = None) -> List[Dict[str, Any]]:
"""Load xLAM function calling dataset"""
log_message("Loading xLAM dataset...")
data_dir = Path("data/xlam")
all_data = []
if data_dir.exists():
# Load from local cache
json_file = data_dir / "xlam_converted.jsonl"
if json_file.exists():
with open(json_file, 'r') as f:
for line in f:
if line.strip():
all_data.append(json.loads(line))
if max_samples and len(all_data) >= max_samples:
break
else:
# Download from HuggingFace
log_message("Downloading xLAM dataset from HuggingFace...")
try:
dataset = load_dataset(
"Salesforce/xlam-function-calling-60k",
split="train"
)
for i, example in enumerate(dataset):
all_data.append(example)
if max_samples and len(all_data) >= max_samples:
break
log_message(f"Loaded {len(all_data)} xLAM samples")
except Exception as e:
log_message(f"Error loading xLAM: {e}")
return all_data
def create_balanced_mixture(
self,
adp_data: List[Dict],
xlam_data: List[Dict],
adp_weight: float = 0.80,
xlam_weight: float = 0.20
) -> List[Dict]:
"""Create balanced mixture of ADP and xLAM data"""
log_message(f"Creating balanced mixture: {adp_weight:.0%} ADP, {xlam_weight:.0%} xLAM")
total_size = min(len(adp_data), int(len(xlam_data) / xlam_weight))
adp_target = int(total_size * adp_weight)
xlam_target = int(total_size * xlam_weight)
adp_sample = random.sample(adp_data, min(adp_target, len(adp_data)))
xlam_sample = random.sample(xlam_data, min(xlam_target, len(xlam_data)))
combined = adp_sample + xlam_sample
random.shuffle(combined)
log_message(f"Created mixture: {len(adp_sample)} ADP + {len(xlam_sample)} xLAM = {len(combined)} total")
return combined
def train(self):
"""Main training function"""
try:
training_state["status"] = "preparing"
log_message("=" * 80)
log_message("Starting Zen VL Training on HuggingFace Space")
log_message("=" * 80)
# Load model and processor
training_state["status"] = "loading_model"
log_message(f"Loading model: {self.model_name}")
model = Qwen3VLForConditionalGeneration.from_pretrained(
self.model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
processor = Qwen3VLProcessor.from_pretrained(self.model_name)
log_message("Model and processor loaded successfully")
# Load datasets
training_state["status"] = "loading_data"
max_samples = self.config["max_samples"]
adp_data = self.load_adp_data(max_samples=int(max_samples * 0.8))
xlam_data = self.load_xlam_data(max_samples=int(max_samples * 0.2))
# Create mixture
combined_data = self.create_balanced_mixture(adp_data, xlam_data)
# Convert to HuggingFace Dataset
dataset = Dataset.from_list(combined_data)
log_message(f"Created dataset with {len(dataset)} examples")
# Training arguments
training_state["status"] = "configuring"
output_dir = f"./output/{self.model_size}"
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=3,
per_device_train_batch_size=self.config["batch_size"],
gradient_accumulation_steps=self.config["gradient_accumulation"],
learning_rate=self.config["learning_rate"],
warmup_steps=500,
logging_steps=10,
save_steps=500,
save_total_limit=3,
fp16=False,
bf16=True,
push_to_hub=True,
hub_model_id=self.output_name,
hub_strategy="every_save",
report_to="tensorboard",
)
log_message("Training configuration:")
log_message(f" Epochs: {training_args.num_train_epochs}")
log_message(f" Batch size: {training_args.per_device_train_batch_size}")
log_message(f" Gradient accumulation: {training_args.gradient_accumulation_steps}")
log_message(f" Learning rate: {training_args.learning_rate}")
log_message(f" Total samples: {len(dataset)}")
# Calculate total steps
total_steps = (
len(dataset)
// (training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps)
* training_args.num_train_epochs
)
training_state["total_steps"] = total_steps
log_message(f" Total training steps: {total_steps}")
# Initialize trainer
training_state["status"] = "training"
log_message("Initializing trainer...")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset,
)
# Start training
log_message("=" * 80)
log_message("TRAINING STARTED")
log_message("=" * 80)
result = trainer.train()
# Training completed
training_state["status"] = "uploading"
log_message("=" * 80)
log_message("TRAINING COMPLETED")
log_message("=" * 80)
log_message(f"Final loss: {result.training_loss:.4f}")
# Push to hub
log_message(f"Uploading model to {self.output_name}...")
trainer.push_to_hub()
training_state["status"] = "completed"
training_state["progress"] = 100
log_message("=" * 80)
log_message("SUCCESS! Model uploaded to HuggingFace")
log_message("=" * 80)
return "Training completed successfully!"
except Exception as e:
training_state["status"] = "error"
error_msg = f"Training failed: {str(e)}"
log_message(error_msg)
return error_msg
def get_training_status():
"""Get current training status for Gradio UI"""
status = training_state["status"]
progress = training_state["progress"]
current_step = training_state["current_step"]
total_steps = training_state["total_steps"]
loss = training_state["loss"]
status_text = {
"idle": "βΈοΈ Ready to start training",
"preparing": "π§ Preparing training environment...",
"loading_model": "π¦ Loading model and processor...",
"loading_data": "π Loading training datasets...",
"configuring": "βοΈ Configuring training parameters...",
"training": f"π Training in progress: {current_step}/{total_steps} steps",
"uploading": "βοΈ Uploading model to HuggingFace...",
"completed": "β
Training completed successfully!",
"error": "β Training failed"
}
return status_text.get(status, status), progress, "\n".join(training_state["logs"][-50:])
def start_training(model_size, gpu_type):
"""Start training job"""
log_message(f"Starting training for {model_size} on {gpu_type}")
trainer = ZenVLTrainer(model_size=model_size, gpu_type=gpu_type)
result = trainer.train()
return result
# Gradio Interface
with gr.Blocks(title="Zen VL Training") as demo:
gr.Markdown("""
# π§ Zen VL Training Space
Train zen-vl models with combined ADP+xLAM datasets on HuggingFace Pro GPUs.
**Datasets:**
- Agent Data Protocol (ADP): ~220k agent trajectories
- xLAM Function Calling: 60k function calling examples
**Training Time Estimates:**
- 4B model on A10G: ~6-8 hours
- 8B model on A100: ~10-12 hours
- 30B model on A100-80GB: ~20-24 hours
""")
with gr.Row():
model_size = gr.Dropdown(
choices=["4b", "8b", "30b"],
value="4b",
label="Model Size"
)
gpu_type = gr.Dropdown(
choices=["a10g", "a100-large", "a100"],
value="a10g",
label="GPU Type"
)
start_btn = gr.Button("π Start Training", variant="primary")
status_text = gr.Textbox(label="Status", value="Ready to start training")
progress_bar = gr.Slider(minimum=0, maximum=100, value=0, label="Progress")
logs_text = gr.Textbox(label="Training Logs", lines=20, max_lines=50)
# Auto-refresh status every 10 seconds
demo.load(
get_training_status,
None,
[status_text, progress_bar, logs_text],
every=10
)
start_btn.click(
start_training,
inputs=[model_size, gpu_type],
outputs=[status_text]
)
if __name__ == "__main__":
# Check if running in HF Space
if os.environ.get("SPACE_ID"):
log_message(f"Running in HuggingFace Space: {os.environ['SPACE_ID']}")
# Launch Gradio interface
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
# AUTO-START TRAINING
import threading
def auto_start_training():
"""Auto-start training when Space launches"""
time.sleep(5) # Wait for Space to fully initialize
print("π AUTO-STARTING TRAINING (4B model on A10G)")
trainer = ZenVLTrainer(model_size="4b", gpu_type="a10g")
trainer.train()
# Launch training in background thread
training_thread = threading.Thread(target=auto_start_training, daemon=True)
training_thread.start()
|