|
|
import torch |
|
|
import itertools |
|
|
|
|
|
from timm.models.vision_transformer import trunc_normal_ |
|
|
from timm.models.layers import SqueezeExcite |
|
|
from timm.models.registry import register_model |
|
|
|
|
|
class Conv2d_BN(torch.nn.Sequential): |
|
|
def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1, |
|
|
groups=1, bn_weight_init=1, resolution=-10000): |
|
|
super().__init__() |
|
|
self.add_module('c', torch.nn.Conv2d( |
|
|
a, b, ks, stride, pad, dilation, groups, bias=False)) |
|
|
self.add_module('bn', torch.nn.BatchNorm2d(b)) |
|
|
torch.nn.init.constant_(self.bn.weight, bn_weight_init) |
|
|
torch.nn.init.constant_(self.bn.bias, 0) |
|
|
|
|
|
@torch.no_grad() |
|
|
def fuse(self): |
|
|
c, bn = self._modules.values() |
|
|
w = bn.weight / (bn.running_var + bn.eps)**0.5 |
|
|
w = c.weight * w[:, None, None, None] |
|
|
b = bn.bias - bn.running_mean * bn.weight / \ |
|
|
(bn.running_var + bn.eps)**0.5 |
|
|
m = torch.nn.Conv2d(w.size(1) * self.c.groups, w.size( |
|
|
0), w.shape[2:], stride=self.c.stride, padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups) |
|
|
m.weight.data.copy_(w) |
|
|
m.bias.data.copy_(b) |
|
|
return m |
|
|
|
|
|
|
|
|
class BN_Linear(torch.nn.Sequential): |
|
|
def __init__(self, a, b, bias=True, std=0.02): |
|
|
super().__init__() |
|
|
self.add_module('bn', torch.nn.BatchNorm1d(a)) |
|
|
self.add_module('l', torch.nn.Linear(a, b, bias=bias)) |
|
|
trunc_normal_(self.l.weight, std=std) |
|
|
if bias: |
|
|
torch.nn.init.constant_(self.l.bias, 0) |
|
|
|
|
|
@torch.no_grad() |
|
|
def fuse(self): |
|
|
bn, l = self._modules.values() |
|
|
w = bn.weight / (bn.running_var + bn.eps)**0.5 |
|
|
b = bn.bias - self.bn.running_mean * \ |
|
|
self.bn.weight / (bn.running_var + bn.eps)**0.5 |
|
|
w = l.weight * w[None, :] |
|
|
if l.bias is None: |
|
|
b = b @ self.l.weight.T |
|
|
else: |
|
|
b = (l.weight @ b[:, None]).view(-1) + self.l.bias |
|
|
m = torch.nn.Linear(w.size(1), w.size(0)) |
|
|
m.weight.data.copy_(w) |
|
|
m.bias.data.copy_(b) |
|
|
return m |
|
|
|
|
|
|
|
|
class PatchMerging(torch.nn.Module): |
|
|
def __init__(self, dim, out_dim, input_resolution): |
|
|
super().__init__() |
|
|
hid_dim = int(dim * 4) |
|
|
self.conv1 = Conv2d_BN(dim, hid_dim, 1, 1, 0, resolution=input_resolution) |
|
|
self.act = torch.nn.ReLU() |
|
|
self.conv2 = Conv2d_BN(hid_dim, hid_dim, 3, 2, 1, groups=hid_dim, resolution=input_resolution) |
|
|
self.se = SqueezeExcite(hid_dim, .25) |
|
|
self.conv3 = Conv2d_BN(hid_dim, out_dim, 1, 1, 0, resolution=input_resolution // 2) |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.conv3(self.se(self.act(self.conv2(self.act(self.conv1(x)))))) |
|
|
return x |
|
|
|
|
|
|
|
|
class Residual(torch.nn.Module): |
|
|
def __init__(self, m, drop=0.): |
|
|
super().__init__() |
|
|
self.m = m |
|
|
self.drop = drop |
|
|
|
|
|
def forward(self, x): |
|
|
if self.training and self.drop > 0: |
|
|
return x + self.m(x) * torch.rand(x.size(0), 1, 1, 1, |
|
|
device=x.device).ge_(self.drop).div(1 - self.drop).detach() |
|
|
else: |
|
|
return x + self.m(x) |
|
|
|
|
|
|
|
|
class FFN(torch.nn.Module): |
|
|
def __init__(self, ed, h, resolution): |
|
|
super().__init__() |
|
|
self.pw1 = Conv2d_BN(ed, h, resolution=resolution) |
|
|
self.act = torch.nn.ReLU() |
|
|
self.pw2 = Conv2d_BN(h, ed, bn_weight_init=0, resolution=resolution) |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.pw2(self.act(self.pw1(x))) |
|
|
return x |
|
|
|
|
|
|
|
|
class CascadedGroupAttention(torch.nn.Module): |
|
|
r""" Cascaded Group Attention. |
|
|
|
|
|
Args: |
|
|
dim (int): Number of input channels. |
|
|
key_dim (int): The dimension for query and key. |
|
|
num_heads (int): Number of attention heads. |
|
|
attn_ratio (int): Multiplier for the query dim for value dimension. |
|
|
resolution (int): Input resolution, correspond to the window size. |
|
|
kernels (List[int]): The kernel size of the dw conv on query. |
|
|
""" |
|
|
def __init__(self, dim, key_dim, num_heads=8, |
|
|
attn_ratio=4, |
|
|
resolution=14, |
|
|
kernels=[5, 5, 5, 5],): |
|
|
super().__init__() |
|
|
self.num_heads = num_heads |
|
|
self.scale = key_dim ** -0.5 |
|
|
self.key_dim = key_dim |
|
|
self.d = int(attn_ratio * key_dim) |
|
|
self.attn_ratio = attn_ratio |
|
|
|
|
|
qkvs = [] |
|
|
dws = [] |
|
|
for i in range(num_heads): |
|
|
qkvs.append(Conv2d_BN(dim // (num_heads), self.key_dim * 2 + self.d, resolution=resolution)) |
|
|
dws.append(Conv2d_BN(self.key_dim, self.key_dim, kernels[i], 1, kernels[i]//2, groups=self.key_dim, resolution=resolution)) |
|
|
self.qkvs = torch.nn.ModuleList(qkvs) |
|
|
self.dws = torch.nn.ModuleList(dws) |
|
|
self.proj = torch.nn.Sequential(torch.nn.ReLU(), Conv2d_BN( |
|
|
self.d * num_heads, dim, bn_weight_init=0, resolution=resolution)) |
|
|
|
|
|
points = list(itertools.product(range(resolution), range(resolution))) |
|
|
N = len(points) |
|
|
attention_offsets = {} |
|
|
idxs = [] |
|
|
for p1 in points: |
|
|
for p2 in points: |
|
|
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1])) |
|
|
if offset not in attention_offsets: |
|
|
attention_offsets[offset] = len(attention_offsets) |
|
|
idxs.append(attention_offsets[offset]) |
|
|
self.attention_biases = torch.nn.Parameter( |
|
|
torch.zeros(num_heads, len(attention_offsets))) |
|
|
self.register_buffer('attention_bias_idxs', |
|
|
torch.LongTensor(idxs).view(N, N)) |
|
|
|
|
|
@torch.no_grad() |
|
|
def train(self, mode=True): |
|
|
super().train(mode) |
|
|
if mode and hasattr(self, 'ab'): |
|
|
del self.ab |
|
|
else: |
|
|
self.ab = self.attention_biases[:, self.attention_bias_idxs] |
|
|
|
|
|
def forward(self, x): |
|
|
B, C, H, W = x.shape |
|
|
trainingab = self.attention_biases[:, self.attention_bias_idxs] |
|
|
feats_in = x.chunk(len(self.qkvs), dim=1) |
|
|
feats_out = [] |
|
|
feat = feats_in[0] |
|
|
for i, qkv in enumerate(self.qkvs): |
|
|
if i > 0: |
|
|
feat = feat + feats_in[i] |
|
|
feat = qkv(feat) |
|
|
q, k, v = feat.view(B, -1, H, W).split([self.key_dim, self.key_dim, self.d], dim=1) |
|
|
q = self.dws[i](q) |
|
|
q, k, v = q.flatten(2), k.flatten(2), v.flatten(2) |
|
|
attn = ( |
|
|
(q.transpose(-2, -1) @ k) * self.scale |
|
|
+ |
|
|
(trainingab[i] if self.training else self.ab[i]) |
|
|
) |
|
|
attn = attn.softmax(dim=-1) |
|
|
feat = (v @ attn.transpose(-2, -1)).view(B, self.d, H, W) |
|
|
feats_out.append(feat) |
|
|
x = self.proj(torch.cat(feats_out, 1)) |
|
|
return x |
|
|
|
|
|
|
|
|
class LocalWindowAttention(torch.nn.Module): |
|
|
r""" Local Window Attention. |
|
|
|
|
|
Args: |
|
|
dim (int): Number of input channels. |
|
|
key_dim (int): The dimension for query and key. |
|
|
num_heads (int): Number of attention heads. |
|
|
attn_ratio (int): Multiplier for the query dim for value dimension. |
|
|
resolution (int): Input resolution. |
|
|
window_resolution (int): Local window resolution. |
|
|
kernels (List[int]): The kernel size of the dw conv on query. |
|
|
""" |
|
|
def __init__(self, dim, key_dim, num_heads=8, |
|
|
attn_ratio=4, |
|
|
resolution=14, |
|
|
window_resolution=7, |
|
|
kernels=[5, 5, 5, 5],): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.num_heads = num_heads |
|
|
self.resolution = resolution |
|
|
assert window_resolution > 0, 'window_size must be greater than 0' |
|
|
self.window_resolution = window_resolution |
|
|
|
|
|
window_resolution = min(window_resolution, resolution) |
|
|
self.attn = CascadedGroupAttention(dim, key_dim, num_heads, |
|
|
attn_ratio=attn_ratio, |
|
|
resolution=window_resolution, |
|
|
kernels=kernels,) |
|
|
|
|
|
def forward(self, x): |
|
|
H = W = self.resolution |
|
|
B, C, H_, W_ = x.shape |
|
|
|
|
|
assert H == H_ and W == W_, 'input feature has wrong size, expect {}, got {}'.format((H, W), (H_, W_)) |
|
|
|
|
|
if H <= self.window_resolution and W <= self.window_resolution: |
|
|
x = self.attn(x) |
|
|
else: |
|
|
x = x.permute(0, 2, 3, 1) |
|
|
pad_b = (self.window_resolution - H % |
|
|
self.window_resolution) % self.window_resolution |
|
|
pad_r = (self.window_resolution - W % |
|
|
self.window_resolution) % self.window_resolution |
|
|
padding = pad_b > 0 or pad_r > 0 |
|
|
|
|
|
if padding: |
|
|
x = torch.nn.functional.pad(x, (0, 0, 0, pad_r, 0, pad_b)) |
|
|
|
|
|
pH, pW = H + pad_b, W + pad_r |
|
|
nH = pH // self.window_resolution |
|
|
nW = pW // self.window_resolution |
|
|
|
|
|
x = x.view(B, nH, self.window_resolution, nW, self.window_resolution, C).transpose(2, 3).reshape( |
|
|
B * nH * nW, self.window_resolution, self.window_resolution, C |
|
|
).permute(0, 3, 1, 2) |
|
|
x = self.attn(x) |
|
|
|
|
|
x = x.permute(0, 2, 3, 1).view(B, nH, nW, self.window_resolution, self.window_resolution, |
|
|
C).transpose(2, 3).reshape(B, pH, pW, C) |
|
|
if padding: |
|
|
x = x[:, :H, :W].contiguous() |
|
|
x = x.permute(0, 3, 1, 2) |
|
|
return x |
|
|
|
|
|
|
|
|
class EfficientViTBlock(torch.nn.Module): |
|
|
""" A basic EfficientViT building block. |
|
|
|
|
|
Args: |
|
|
type (str): Type for token mixer. Default: 's' for self-attention. |
|
|
ed (int): Number of input channels. |
|
|
kd (int): Dimension for query and key in the token mixer. |
|
|
nh (int): Number of attention heads. |
|
|
ar (int): Multiplier for the query dim for value dimension. |
|
|
resolution (int): Input resolution. |
|
|
window_resolution (int): Local window resolution. |
|
|
kernels (List[int]): The kernel size of the dw conv on query. |
|
|
""" |
|
|
def __init__(self, type, |
|
|
ed, kd, nh=8, |
|
|
ar=4, |
|
|
resolution=14, |
|
|
window_resolution=7, |
|
|
kernels=[5, 5, 5, 5],): |
|
|
super().__init__() |
|
|
|
|
|
self.dw0 = Residual(Conv2d_BN(ed, ed, 3, 1, 1, groups=ed, bn_weight_init=0., resolution=resolution)) |
|
|
self.ffn0 = Residual(FFN(ed, int(ed * 2), resolution)) |
|
|
|
|
|
if type == 's': |
|
|
self.mixer = Residual(LocalWindowAttention(ed, kd, nh, attn_ratio=ar, \ |
|
|
resolution=resolution, window_resolution=window_resolution, kernels=kernels)) |
|
|
|
|
|
self.dw1 = Residual(Conv2d_BN(ed, ed, 3, 1, 1, groups=ed, bn_weight_init=0., resolution=resolution)) |
|
|
self.ffn1 = Residual(FFN(ed, int(ed * 2), resolution)) |
|
|
|
|
|
def forward(self, x): |
|
|
return self.ffn1(self.dw1(self.mixer(self.ffn0(self.dw0(x))))) |
|
|
|
|
|
|
|
|
class EfficientViT(torch.nn.Module): |
|
|
def __init__(self, img_size=224, |
|
|
patch_size=16, |
|
|
in_chans=3, |
|
|
num_classes=1000, |
|
|
stages=['s', 's', 's'], |
|
|
embed_dim=[64, 128, 192], |
|
|
key_dim=[16, 16, 16], |
|
|
depth=[1, 2, 3], |
|
|
num_heads=[4, 4, 4], |
|
|
window_size=[7, 7, 7], |
|
|
kernels=[5, 5, 5, 5], |
|
|
down_ops=[['subsample', 2], ['subsample', 2], ['']], |
|
|
distillation=False,): |
|
|
super().__init__() |
|
|
|
|
|
resolution = img_size |
|
|
|
|
|
self.patch_embed = torch.nn.Sequential(Conv2d_BN(in_chans, embed_dim[0] // 8, 3, 2, 1, resolution=resolution), torch.nn.ReLU(), |
|
|
Conv2d_BN(embed_dim[0] // 8, embed_dim[0] // 4, 3, 2, 1, resolution=resolution // 2), torch.nn.ReLU(), |
|
|
Conv2d_BN(embed_dim[0] // 4, embed_dim[0] // 2, 3, 2, 1, resolution=resolution // 4), torch.nn.ReLU(), |
|
|
Conv2d_BN(embed_dim[0] // 2, embed_dim[0], 3, 2, 1, resolution=resolution // 8)) |
|
|
|
|
|
resolution = img_size // patch_size |
|
|
attn_ratio = [embed_dim[i] / (key_dim[i] * num_heads[i]) for i in range(len(embed_dim))] |
|
|
self.blocks1 = [] |
|
|
self.blocks2 = [] |
|
|
self.blocks3 = [] |
|
|
|
|
|
|
|
|
for i, (stg, ed, kd, dpth, nh, ar, wd, do) in enumerate( |
|
|
zip(stages, embed_dim, key_dim, depth, num_heads, attn_ratio, window_size, down_ops)): |
|
|
for d in range(dpth): |
|
|
eval('self.blocks' + str(i+1)).append(EfficientViTBlock(stg, ed, kd, nh, ar, resolution, wd, kernels)) |
|
|
if do[0] == 'subsample': |
|
|
|
|
|
|
|
|
blk = eval('self.blocks' + str(i+2)) |
|
|
resolution_ = (resolution - 1) // do[1] + 1 |
|
|
blk.append(torch.nn.Sequential(Residual(Conv2d_BN(embed_dim[i], embed_dim[i], 3, 1, 1, groups=embed_dim[i], resolution=resolution)), |
|
|
Residual(FFN(embed_dim[i], int(embed_dim[i] * 2), resolution)),)) |
|
|
blk.append(PatchMerging(*embed_dim[i:i + 2], resolution)) |
|
|
resolution = resolution_ |
|
|
blk.append(torch.nn.Sequential(Residual(Conv2d_BN(embed_dim[i + 1], embed_dim[i + 1], 3, 1, 1, groups=embed_dim[i + 1], resolution=resolution)), |
|
|
Residual(FFN(embed_dim[i + 1], int(embed_dim[i + 1] * 2), resolution)),)) |
|
|
self.blocks1 = torch.nn.Sequential(*self.blocks1) |
|
|
self.blocks2 = torch.nn.Sequential(*self.blocks2) |
|
|
self.blocks3 = torch.nn.Sequential(*self.blocks3) |
|
|
|
|
|
|
|
|
self.head = BN_Linear(embed_dim[-1], num_classes) if num_classes > 0 else torch.nn.Identity() |
|
|
self.distillation = distillation |
|
|
if distillation: |
|
|
self.head_dist = BN_Linear(embed_dim[-1], num_classes) if num_classes > 0 else torch.nn.Identity() |
|
|
|
|
|
@torch.jit.ignore |
|
|
def no_weight_decay(self): |
|
|
return {x for x in self.state_dict().keys() if 'attention_biases' in x} |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.patch_embed(x) |
|
|
x = self.blocks1(x) |
|
|
x = self.blocks2(x) |
|
|
x = self.blocks3(x) |
|
|
x = torch.nn.functional.adaptive_avg_pool2d(x, 1).flatten(1) |
|
|
if self.distillation: |
|
|
x = self.head(x), self.head_dist(x) |
|
|
if not self.training: |
|
|
x = (x[0] + x[1]) / 2 |
|
|
else: |
|
|
x = self.head(x) |
|
|
return x |
|
|
|
|
|
|
|
|
EfficientViT_d = { |
|
|
'img_size': 224, |
|
|
'patch_size': 16, |
|
|
'embed_dim': [96, 144, 400], |
|
|
'depth': [1, 3, 4], |
|
|
'num_heads': [3, 3, 4], |
|
|
'window_size': [7, 7, 7], |
|
|
'kernels': [7, 5, 3, 3], |
|
|
} |
|
|
|
|
|
EfficientViT_w = { |
|
|
'img_size': 224, |
|
|
'patch_size': 16, |
|
|
'embed_dim': [192, 288, 96], |
|
|
'depth': [1, 1, 1], |
|
|
'num_heads': [3, 3, 4], |
|
|
'window_size': [7, 7, 7], |
|
|
'kernels': [7, 5, 3, 3], |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
@register_model |
|
|
def EfficientViT_d(num_classes=5, pretrained=False, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_d): |
|
|
model = EfficientViT(num_classes=num_classes, distillation=distillation, **model_cfg) |
|
|
|
|
|
if fuse: |
|
|
replace_batchnorm(model) |
|
|
return model |
|
|
|
|
|
|
|
|
@register_model |
|
|
def EfficientViT_w(num_classes=5, pretrained=False, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_w): |
|
|
model = EfficientViT(num_classes=num_classes, distillation=distillation, **model_cfg) |
|
|
|
|
|
if fuse: |
|
|
replace_batchnorm(model) |
|
|
return model |
|
|
|
|
|
|
|
|
|
|
|
def replace_batchnorm(net): |
|
|
for child_name, child in net.named_children(): |
|
|
if hasattr(child, 'fuse'): |
|
|
setattr(net, child_name, child.fuse()) |
|
|
elif isinstance(child, torch.nn.BatchNorm2d): |
|
|
setattr(net, child_name, torch.nn.Identity()) |
|
|
else: |
|
|
replace_batchnorm(child) |
|
|
|