Update README.md
Browse files
README.md
CHANGED
|
@@ -7,27 +7,74 @@ base_model:
|
|
| 7 |
tags:
|
| 8 |
- safetensors
|
| 9 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
# DepthPro-Safetensors
|
| 11 |
|
| 12 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
|
| 16 |
-
|
| 17 |
-
- Memory Usage: 1815.78 MB
|
| 18 |
-
- Precisions: torch.float16
|
| 19 |
-
- Estimated FLOPs: 3,501,896,768
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
## Citation
|
| 24 |
|
| 25 |
```bibtex
|
| 26 |
@article{Bochkovskii2024:arxiv,
|
| 27 |
author = {Aleksei Bochkovskii and Ama\"{e}l Delaunoy and Hugo Germain and Marcel Santos and
|
| 28 |
-
Yichao Zhou and Stephan R. Richter and Vladlen Koltun}
|
| 29 |
title = {Depth Pro: Sharp Monocular Metric Depth in Less Than a Second},
|
| 30 |
journal = {arXiv},
|
| 31 |
year = {2024},
|
| 32 |
}
|
| 33 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
tags:
|
| 8 |
- safetensors
|
| 9 |
---
|
| 10 |
+
|
| 11 |
+
<img src="https://takara.ai/images/logo-24/TakaraAi.svg" width="200" alt="Takara.ai Logo" />
|
| 12 |
+
|
| 13 |
+
From the Frontier Research Team at **Takara.ai** we present **DepthPro-Safetensors**, a memory-efficient and optimized implementation of Apple's high-precision depth estimation model.
|
| 14 |
+
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
# DepthPro-Safetensors
|
| 18 |
|
| 19 |
+
This repository contains Apple's [DepthPro](https://huggingface.co/apple/DepthPro) depth estimation model converted to the SafeTensors format for improved memory efficiency, security, and faster loading times.
|
| 20 |
+
|
| 21 |
+
## Model Overview
|
| 22 |
+
|
| 23 |
+
DepthPro is a state-of-the-art monocular depth estimation model developed by Apple that produces sharp and accurate metric depth maps from a single image in less than a second. This converted version preserves all the capabilities of the original model while providing the benefits of the SafeTensors format.
|
| 24 |
+
|
| 25 |
+
## Technical Specifications
|
| 26 |
+
|
| 27 |
+
- **Total Parameters**: 951,991,330
|
| 28 |
+
- **Memory Usage**: 1815.78 MB
|
| 29 |
+
- **Precision**: torch.float16
|
| 30 |
+
- **Estimated FLOPs**: 3,501,896,768
|
| 31 |
|
| 32 |
+
_Details calculated with [TensorKIKO](https://github.com/takara-ai/TensorKiko)_
|
| 33 |
|
| 34 |
+
## Usage
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
```python
|
| 37 |
+
from transformers import AutoModelForDepthEstimation, AutoImageProcessor
|
| 38 |
+
import torch
|
| 39 |
+
from PIL import Image
|
| 40 |
+
|
| 41 |
+
# Load model and processor
|
| 42 |
+
model = AutoModelForDepthEstimation.from_pretrained("takara-ai/DepthPro-Safetensors")
|
| 43 |
+
processor = AutoImageProcessor.from_pretrained("takara-ai/DepthPro-Safetensors")
|
| 44 |
+
|
| 45 |
+
# Prepare image
|
| 46 |
+
image = Image.open("your_image.jpg")
|
| 47 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 48 |
+
|
| 49 |
+
# Inference
|
| 50 |
+
with torch.no_grad():
|
| 51 |
+
outputs = model(**inputs)
|
| 52 |
+
predicted_depth = outputs.predicted_depth
|
| 53 |
+
|
| 54 |
+
# Post-process for visualization
|
| 55 |
+
depth_map = processor.post_process_depth_estimation(outputs, target_size=image.size[::-1])
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
## Benefits of SafeTensors Format
|
| 59 |
+
|
| 60 |
+
- **Improved Security**: Resistant to code execution vulnerabilities
|
| 61 |
+
- **Faster Loading Times**: Optimized memory mapping for quicker model initialization
|
| 62 |
+
- **Memory Efficiency**: Better handling of tensor storage for reduced memory footprint
|
| 63 |
+
- **Parallel Loading**: Support for efficient parallel tensor loading
|
| 64 |
|
| 65 |
## Citation
|
| 66 |
|
| 67 |
```bibtex
|
| 68 |
@article{Bochkovskii2024:arxiv,
|
| 69 |
author = {Aleksei Bochkovskii and Ama\"{e}l Delaunoy and Hugo Germain and Marcel Santos and
|
| 70 |
+
Yichao Zhou and Stephan R. Richter and Vladlen Koltun},
|
| 71 |
title = {Depth Pro: Sharp Monocular Metric Depth in Less Than a Second},
|
| 72 |
journal = {arXiv},
|
| 73 |
year = {2024},
|
| 74 |
}
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
---
|
| 78 |
+
For research inquiries and press, please reach out to [email protected]
|
| 79 |
+
|
| 80 |
+
> 人類を変革する
|