File size: 8,784 Bytes
537d8ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13a54d5
 
 
 
 
 
 
537d8ea
 
 
 
 
 
 
7adf391
8547753
 
 
09bb521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8547753
 
 
 
 
09bb521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8547753
537d8ea
 
7adf391
537d8ea
 
 
 
 
 
 
 
 
 
 
 
 
7adf391
 
 
 
 
 
 
 
 
 
 
 
537d8ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
---
pipeline_tag: text-generation
base_model: bigcode/starcoder2-15b-instruct-v0.1
datasets:
- bigcode/self-oss-instruct-sc2-exec-filter-50k
license: bigcode-openrail-m
library_name: transformers
tags:
- code
- TensorBlock
- GGUF
model-index:
- name: starcoder2-15b-instruct-v0.1
  results:
  - task:
      type: text-generation
    dataset:
      name: LiveCodeBench (code generation)
      type: livecodebench-codegeneration
    metrics:
    - type: pass@1
      value: 20.4
  - task:
      type: text-generation
    dataset:
      name: LiveCodeBench (self repair)
      type: livecodebench-selfrepair
    metrics:
    - type: pass@1
      value: 20.9
  - task:
      type: text-generation
    dataset:
      name: LiveCodeBench (test output prediction)
      type: livecodebench-testoutputprediction
    metrics:
    - type: pass@1
      value: 29.8
  - task:
      type: text-generation
    dataset:
      name: LiveCodeBench (code execution)
      type: livecodebench-codeexecution
    metrics:
    - type: pass@1
      value: 28.1
  - task:
      type: text-generation
    dataset:
      name: HumanEval
      type: humaneval
    metrics:
    - type: pass@1
      value: 72.6
  - task:
      type: text-generation
    dataset:
      name: HumanEval+
      type: humanevalplus
    metrics:
    - type: pass@1
      value: 63.4
  - task:
      type: text-generation
    dataset:
      name: MBPP
      type: mbpp
    metrics:
    - type: pass@1
      value: 75.2
  - task:
      type: text-generation
    dataset:
      name: MBPP+
      type: mbppplus
    metrics:
    - type: pass@1
      value: 61.2
  - task:
      type: text-generation
    dataset:
      name: DS-1000
      type: ds-1000
    metrics:
    - type: pass@1
      value: 40.6
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>

[![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co)
[![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi)
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2)
[![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock)
[![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock)


## bigcode/starcoder2-15b-instruct-v0.1 - GGUF

This repo contains GGUF format model files for [bigcode/starcoder2-15b-instruct-v0.1](https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).


## Our projects
<table border="1" cellspacing="0" cellpadding="10">
  <tr>
    <th colspan="2" style="font-size: 25px;">Forge</th>
  </tr>
  <tr>
    <th colspan="2">
      <img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
    </th>
  </tr>
  <tr>
    <th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
  </tr>
  <tr>
    <th colspan="2">
      <a href="https://github.com/TensorBlock/forge" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">πŸš€ Try it now! πŸš€</a>
    </th>
  </tr>

  <tr>
    <th style="font-size: 25px;">Awesome MCP Servers</th>
    <th style="font-size: 25px;">TensorBlock Studio</th>
  </tr>
  <tr>
    <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
    <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
  </tr>
  <tr>
    <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
    <th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
  </tr>
  <tr>
    <th>
      <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">πŸ‘€ See what we built πŸ‘€</a>
    </th>
    <th>
      <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">πŸ‘€ See what we built πŸ‘€</a>
    </th>
  </tr>
</table>
## Prompt template


```
<|endoftext|>You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.

### Instruction
{prompt}

### Response
```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [starcoder2-15b-instruct-v0.1-Q2_K.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q2_K.gguf) | Q2_K | 5.768 GB | smallest, significant quality loss - not recommended for most purposes |
| [starcoder2-15b-instruct-v0.1-Q3_K_S.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q3_K_S.gguf) | Q3_K_S | 6.507 GB | very small, high quality loss |
| [starcoder2-15b-instruct-v0.1-Q3_K_M.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q3_K_M.gguf) | Q3_K_M | 7.492 GB | very small, high quality loss |
| [starcoder2-15b-instruct-v0.1-Q3_K_L.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q3_K_L.gguf) | Q3_K_L | 8.350 GB | small, substantial quality loss |
| [starcoder2-15b-instruct-v0.1-Q4_0.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q4_0.gguf) | Q4_0 | 8.443 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [starcoder2-15b-instruct-v0.1-Q4_K_S.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q4_K_S.gguf) | Q4_K_S | 8.532 GB | small, greater quality loss |
| [starcoder2-15b-instruct-v0.1-Q4_K_M.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q4_K_M.gguf) | Q4_K_M | 9.183 GB | medium, balanced quality - recommended |
| [starcoder2-15b-instruct-v0.1-Q5_0.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q5_0.gguf) | Q5_0 | 10.265 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [starcoder2-15b-instruct-v0.1-Q5_K_S.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q5_K_S.gguf) | Q5_K_S | 10.265 GB | large, low quality loss - recommended |
| [starcoder2-15b-instruct-v0.1-Q5_K_M.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q5_K_M.gguf) | Q5_K_M | 10.646 GB | large, very low quality loss - recommended |
| [starcoder2-15b-instruct-v0.1-Q6_K.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q6_K.gguf) | Q6_K | 12.201 GB | very large, extremely low quality loss |
| [starcoder2-15b-instruct-v0.1-Q8_0.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q8_0.gguf) | Q8_0 | 15.800 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/starcoder2-15b-instruct-v0.1-GGUF --include "starcoder2-15b-instruct-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/starcoder2-15b-instruct-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```