File size: 8,784 Bytes
537d8ea 13a54d5 537d8ea 7adf391 8547753 09bb521 8547753 09bb521 8547753 537d8ea 7adf391 537d8ea 7adf391 537d8ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
---
pipeline_tag: text-generation
base_model: bigcode/starcoder2-15b-instruct-v0.1
datasets:
- bigcode/self-oss-instruct-sc2-exec-filter-50k
license: bigcode-openrail-m
library_name: transformers
tags:
- code
- TensorBlock
- GGUF
model-index:
- name: starcoder2-15b-instruct-v0.1
results:
- task:
type: text-generation
dataset:
name: LiveCodeBench (code generation)
type: livecodebench-codegeneration
metrics:
- type: pass@1
value: 20.4
- task:
type: text-generation
dataset:
name: LiveCodeBench (self repair)
type: livecodebench-selfrepair
metrics:
- type: pass@1
value: 20.9
- task:
type: text-generation
dataset:
name: LiveCodeBench (test output prediction)
type: livecodebench-testoutputprediction
metrics:
- type: pass@1
value: 29.8
- task:
type: text-generation
dataset:
name: LiveCodeBench (code execution)
type: livecodebench-codeexecution
metrics:
- type: pass@1
value: 28.1
- task:
type: text-generation
dataset:
name: HumanEval
type: humaneval
metrics:
- type: pass@1
value: 72.6
- task:
type: text-generation
dataset:
name: HumanEval+
type: humanevalplus
metrics:
- type: pass@1
value: 63.4
- task:
type: text-generation
dataset:
name: MBPP
type: mbpp
metrics:
- type: pass@1
value: 75.2
- task:
type: text-generation
dataset:
name: MBPP+
type: mbppplus
metrics:
- type: pass@1
value: 61.2
- task:
type: text-generation
dataset:
name: DS-1000
type: ds-1000
metrics:
- type: pass@1
value: 40.6
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
[](https://tensorblock.co)
[](https://twitter.com/tensorblock_aoi)
[](https://discord.gg/Ej5NmeHFf2)
[](https://github.com/TensorBlock)
[](https://t.me/TensorBlock)
## bigcode/starcoder2-15b-instruct-v0.1 - GGUF
This repo contains GGUF format model files for [bigcode/starcoder2-15b-instruct-v0.1](https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Our projects
<table border="1" cellspacing="0" cellpadding="10">
<tr>
<th colspan="2" style="font-size: 25px;">Forge</th>
</tr>
<tr>
<th colspan="2">
<img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
</th>
</tr>
<tr>
<th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
</tr>
<tr>
<th colspan="2">
<a href="https://github.com/TensorBlock/forge" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">π Try it now! π</a>
</th>
</tr>
<tr>
<th style="font-size: 25px;">Awesome MCP Servers</th>
<th style="font-size: 25px;">TensorBlock Studio</th>
</tr>
<tr>
<th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
<th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
</tr>
<tr>
<th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
<th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
</tr>
<tr>
<th>
<a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">π See what we built π</a>
</th>
<th>
<a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">π See what we built π</a>
</th>
</tr>
</table>
## Prompt template
```
<|endoftext|>You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.
### Instruction
{prompt}
### Response
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [starcoder2-15b-instruct-v0.1-Q2_K.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q2_K.gguf) | Q2_K | 5.768 GB | smallest, significant quality loss - not recommended for most purposes |
| [starcoder2-15b-instruct-v0.1-Q3_K_S.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q3_K_S.gguf) | Q3_K_S | 6.507 GB | very small, high quality loss |
| [starcoder2-15b-instruct-v0.1-Q3_K_M.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q3_K_M.gguf) | Q3_K_M | 7.492 GB | very small, high quality loss |
| [starcoder2-15b-instruct-v0.1-Q3_K_L.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q3_K_L.gguf) | Q3_K_L | 8.350 GB | small, substantial quality loss |
| [starcoder2-15b-instruct-v0.1-Q4_0.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q4_0.gguf) | Q4_0 | 8.443 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [starcoder2-15b-instruct-v0.1-Q4_K_S.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q4_K_S.gguf) | Q4_K_S | 8.532 GB | small, greater quality loss |
| [starcoder2-15b-instruct-v0.1-Q4_K_M.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q4_K_M.gguf) | Q4_K_M | 9.183 GB | medium, balanced quality - recommended |
| [starcoder2-15b-instruct-v0.1-Q5_0.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q5_0.gguf) | Q5_0 | 10.265 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [starcoder2-15b-instruct-v0.1-Q5_K_S.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q5_K_S.gguf) | Q5_K_S | 10.265 GB | large, low quality loss - recommended |
| [starcoder2-15b-instruct-v0.1-Q5_K_M.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q5_K_M.gguf) | Q5_K_M | 10.646 GB | large, very low quality loss - recommended |
| [starcoder2-15b-instruct-v0.1-Q6_K.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q6_K.gguf) | Q6_K | 12.201 GB | very large, extremely low quality loss |
| [starcoder2-15b-instruct-v0.1-Q8_0.gguf](https://huggingface.co/tensorblock/starcoder2-15b-instruct-v0.1-GGUF/blob/main/starcoder2-15b-instruct-v0.1-Q8_0.gguf) | Q8_0 | 15.800 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/starcoder2-15b-instruct-v0.1-GGUF --include "starcoder2-15b-instruct-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/starcoder2-15b-instruct-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|